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A cart with an inverted pendulum is shown below:

The mass of the cart is mc, the mass and moment of inertia (about mass center)
of the pendulum are mp, Ip respectively. The pendulum is attached to the cart
at a frictionless pivot point. The pendulum’s center of mass is l units from the
pivot. The coordinate x measures the position of the cart (a point-mass) relative
to an inertial frame. F is an applied external horizontal force to the cart.

1. Find the equations of motion. The following hints may be useful.

• Hint 1: Analyze the force balance in the x-direction for the system.
Note that the x-position of the center of gravity of the pendulum is a
function of x and θ.

• Hint 2: Analyze the torque balance of the pendulum with respect
to the pivot point (mounted on a moving base). In this case, the
moment of inertia about the pivot point is Ip +mpl

2.
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2. Assume that x and θ are small. Find the linearized equations of motion
about x = 0, θ = 0.

3. Let mc = mp = l = 1 and Ip = 1/3. Approximate g with g = 10. Find the
transfer functions

H1(s) = X(s)
F (s) , H2(s) = Θ(s)

F (s)

4. Let the force F be chosen to be a linear feedback,

F (t) = −c1θ(t)− c2θ̇(t)− c3x(t)− c4ẋ(t),

• find the transfer function of this controller.

• find the closed-loop characteristic equation.

5. Find necessary (but not sufficient) conditions on c1, c2, c3, c4 to guarantee
the stability of the linearized system.

Solution:
1. Nonlinear equation of motion: xp is related to x by

xp = x+ l sin θ.

We have

F = mcẍ+mpẍp = (mc +mp)ẍ+mpl(θ̈ cos θ − θ̇2 sin θ)

⇒ ẍ = − mpl

mc +mp
(θ̈ cos θ − θ̇2 sin θ) + F

mc +mp

For the torque balance of the pendulum, note that this is in a moving
frame with acceleration ẍ. There is a force component in the -x direction
that equals mpẍ. Hence

(Ip +mpl
2)θ̈ = mpgl sin θ −mpẍl cos θ.

or
θ̈ = mpl

Ip +mpl2
(g sin θ − ẍ cos θ)

(When the rod is uniform, the moment of inertia satisfies Ip = mp(2l)2/12.)

2. Linearization: When θ is very small,

cos θ ≈ 1

sin θ ≈ 0

and
θ̇2 ≈ 0
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yielding

ẍ = 1
mc +mp

(−mplθ̈ + F ) (1)

θ̈ = mpl

Ip +mpl2
(gθ − ẍ) (2)

3. Transfer functions: Applying Laplace transform and assuming zero initial
conditions give

X(s)
F (s) = 60− 8s2

60s2 − 5s4

and
Θ(s)
F (s) = 6s2

60s2 − 5s4 = 6
60− 5s2

4. TBD

5. TBD

Controllability of the linearized system
Let the state vector be η = [x, ẋ, θ, θ̇]T . Substituting (1) into (2) yields

θ̈ = mpl

Ip +mpl2
(gθ − ẍ) = mpl

Ip +mpl2

(
gθ − 1

mc +mp
(−mplθ̈ + F )

)
⇒ θ̈ = mpl

Ip + mcmpl2

mc+mp

(
gθ − 1

mc +mp
F

)
Substituting the above back into (1), we then have

ẍ =
−m2

pl
2g

Ip (mc +mp) +mcmpl2
θ + mpl

2 + Ip

Ip (mc +mp) +mcmpl2
F

d

dt


x
ẋ
θ

θ̇

 =


0 1 0 0
0 0 −m2

pl2g

Ip(mc+mp)+mcmpl2 0
0 0 0 1
0 0 mplg(mc+mp)

Ip(mc+mp)+mcmpl2 0



x
ẋ
θ

θ̇

+


0

mpl2+Ip

Ip(mc+mp)+mcmpl2

0
−mpl

mcIp+mpIp+mcmpl2

F
The controllability matrix

P =


0 mpl2+Ip

Ip(mc+mp)+mcmpl2 0 m2
pl2gmpl

(Ip(mc+mp)+mcmpl2)2

mpl2+Ip

Ip(mc+mp)+mcmpl2 0 m2
pl2gmpl

(Ip(mc+mp)+mcmpl2)2 0

0 −mpl
Ip(mc+mp)+mcmpl2 0 −m2

pl2g(mc+mp)
(Ip(mc+mp)+mcmpl2)2

−mpl
Ip(mc+mp)+mcmpl2 0 −m2

pl2g(mc+mp)
(Ip(mc+mp)+mcmpl2)2 0


has full row rank.
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Extensions
• double pendulum on a cart: https://www.youtube.com/watch?v=B6vr1x6KDaY

• triple pendulum on a cart: https://www.youtube.com/watch?v=FFW52FuUODQ

• Example in Matlab:

– single pendulum: http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkModeling;
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkControl

– double pendulum: sm_cart_double_pendulum
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