Inverted Pendulum Modeling

Xu Chen

Dec 272016

A cart with an inverted pendulum is shown below:

The mass of the cart is m_{c}, the mass and moment of inertia (about mass center) of the pendulum are m_{p}, I_{p} respectively. The pendulum is attached to the cart at a frictionless pivot point. The pendulum's center of mass is l units from the pivot. The coordinate x measures the position of the cart (a point-mass) relative to an inertial frame. F is an applied external horizontal force to the cart.

1. Find the equations of motion. The following hints may be useful.

- Hint 1: Analyze the force balance in the x-direction for the system. Note that the x-position of the center of gravity of the pendulum is a function of x and θ.
- Hint 2: Analyze the torque balance of the pendulum with respect to the pivot point (mounted on a moving base). In this case, the moment of inertia about the pivot point is $I_{p}+m_{p} l^{2}$.

2. Assume that x and θ are small. Find the linearized equations of motion about $x=0, \theta=0$.
3. Let $m_{c}=m_{p}=l=1$ and $I_{p}=1 / 3$. Approximate g with $g=10$. Find the transfer functions

$$
H_{1}(s)=\frac{X(s)}{F(s)}, \quad H_{2}(s)=\frac{\Theta(s)}{F(s)}
$$

4. Let the force F be chosen to be a linear feedback,

$$
F(t)=-c_{1} \theta(t)-c_{2} \dot{\theta}(t)-c_{3} x(t)-c_{4} \dot{x}(t)
$$

- find the transfer function of this controller.
- find the closed-loop characteristic equation.

5. Find necessary (but not sufficient) conditions on $c_{1}, c_{2}, c_{3}, c_{4}$ to guarantee the stability of the linearized system.

Solution:

1. Nonlinear equation of motion: x_{p} is related to x by

$$
x_{p}=x+l \sin \theta
$$

We have

$$
\begin{aligned}
F & =m_{c} \ddot{x}+m_{p} \ddot{x}_{p}=\left(m_{c}+m_{p}\right) \ddot{x}+m_{p} l\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right) \\
\Rightarrow \ddot{x} & =-\frac{m_{p} l}{m_{c}+m_{p}}\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right)+\frac{F}{m_{c}+m_{p}}
\end{aligned}
$$

For the torque balance of the pendulum, note that this is in a moving frame with acceleration \ddot{x}. There is a force component in the $-x$ direction that equals $m_{p} \ddot{x}$. Hence

$$
\left(I_{p}+m_{p} l^{2}\right) \ddot{\theta}=m_{p} g l \sin \theta-m_{p} \ddot{x} l \cos \theta
$$

or

$$
\ddot{\theta}=\frac{m_{p} l}{I_{p}+m_{p} l^{2}}(g \sin \theta-\ddot{x} \cos \theta)
$$

(When the rod is uniform, the moment of inertia satisfies $I_{p}=m_{p}(2 l)^{2} / 12$.)
2. Linearization: When θ is very small,

$$
\begin{aligned}
& \cos \theta \approx 1 \\
& \sin \theta \approx 0
\end{aligned}
$$

and

$$
\dot{\theta}^{2} \approx 0
$$

yielding

$$
\begin{align*}
\ddot{x} & =\frac{1}{m_{c}+m_{p}}\left(-m_{p} l \ddot{\theta}+F\right) \tag{1}\\
\ddot{\theta} & =\frac{m_{p} l}{I_{p}+m_{p} l^{2}}(g \theta-\ddot{x}) \tag{2}
\end{align*}
$$

3. Transfer functions: Applying Laplace transform and assuming zero initial conditions give

$$
\frac{X(s)}{F(s)}=\frac{60-8 s^{2}}{60 s^{2}-5 s^{4}}
$$

and

$$
\frac{\Theta(s)}{F(s)}=\frac{6 s^{2}}{60 s^{2}-5 s^{4}}=\frac{6}{60-5 s^{2}}
$$

4. TBD
5. TBD

Controllability of the linearized system

Let the state vector be $\eta=[x, \dot{x}, \theta, \dot{\theta}]^{T}$. Substituting (1) into (2) yields

$$
\begin{aligned}
\ddot{\theta} & =\frac{m_{p} l}{I_{p}+m_{p} l^{2}}(g \theta-\ddot{x})=\frac{m_{p} l}{I_{p}+m_{p} l^{2}}\left(g \theta-\frac{1}{m_{c}+m_{p}}\left(-m_{p} l \ddot{\theta}+F\right)\right) \\
\Rightarrow \ddot{\theta} & =\frac{m_{p} l}{I_{p}+\frac{m_{c} m_{p} l^{2}}{m_{c}+m_{p}}}\left(g \theta-\frac{1}{m_{c}+m_{p}} F\right)
\end{aligned}
$$

Substituting the above back into (1), we then have

$$
\begin{gathered}
\ddot{x}=\frac{-m_{p}^{2} l^{2} g}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} \theta+\frac{m_{p} l^{2}+I_{p}}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} F \\
\frac{d}{d t}\left[\begin{array}{c}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{-m_{p}^{2} l^{2} g}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{m_{p} l g\left(m_{c}+m_{p}\right)}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{m_{p} l^{2}+I_{p}}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} \\
0 \\
\frac{-m_{p} l}{m_{c} I_{p}+m_{p} I_{p}+m_{c} m_{p} l^{2}}
\end{array}\right] F
\end{gathered}
$$

The controllability matrix
$P=\left[\begin{array}{cccc}0 & \frac{m_{p} l^{2}+I_{p}}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0 & \frac{m_{p}^{2} l^{2} g m_{p} l}{\left(I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}\right)^{2}} \\ \frac{m_{p} l^{2}+I_{p}}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0 & \frac{m_{p}^{2} l^{2} g m_{p} l}{\left(I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}\right)^{2}} & 0 \\ 0 & \frac{-m_{p} l}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0 & \frac{-m_{p}^{2} l^{2} g\left(m_{c}+m_{p}\right)}{\left(I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}\right)^{2}} \\ \frac{-m_{p} l}{I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}} & 0 & \frac{-m_{p}^{2} l^{2} g\left(m_{c}+m_{p}\right)}{\left(I_{p}\left(m_{c}+m_{p}\right)+m_{c} m_{p} l^{2}\right)^{2}} & 0\end{array}\right]$
has full row rank.

Extensions

- double pendulum on a cart: https://www.youtube.com/watch?v=B6vr1x6KDaY
- triple pendulum on a cart: https://www.youtube.com/watch?v=FFW52FuUODQ
- Example in Matlab:
- single pendulum: http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum\§i http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum\§ion=SimulinkCont
- double pendulum: sm_cart_double_pendulum

