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Outline:

• Recap: controllability and observability

• Linear state feedback control

1 Recap: controllability and observability
• introductory examples: discuss controllability, observability conditions for the following system realizations1 A11 A12 B1

0 A22 B2

0 C2 D

 ,

 A11 A12 B1

A22 0
C1 C2 D

 ,

 A11 0 B1

A21 A22 B2

C1 0 D

 ,

 A11 0 0
A21 A22 B2

C1 C2 D


• exercise: find the uncontrollable and unobservable states for the following system

A =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

 , B =


B1

B2

0
0


C =

[
C1 0 C3 0

]
• why do we study the decomposition forms?

– if controllability and observability fail, these decomposed forms provide detectability and stabilizability for us.
These are essential for a good engineering judgment of the problem we are solving. For example, if the system is
not stabilizable, then either it is not properly designed or some desired control goals are simply not achievable
(turn back the problem to the hardware designer or give up).

• intuitions and extensions of the decomposition: the column space (a.k.a. range) of P =
[
B,AB,A2B, . . . , An−1B

]
is A-invariant.

– Definition: consider a vector space (V,F) and a linear mapping A : V → V , A subspace M is said to be
A-invariant if ∀x ∈M , A (x) ∈M . Example: the null space of A, N (A), is A-invariant.

– Application in controllability analysis:

∗ We first prove (outline only) the range of P is A-invariant: ∀x ∈ R (P ), there exists y such that x = Py,
yielding

Ax = APy =
[
AB,A2B, . . . , AnB

]
y ∈ R (P )

where we used Caylay Halmilton theorem in the last ∈ sign.
∗ Now let M1 be composed of the independent column vectors from P . We will next slightly abuse the
notation M1 to denote both a matrix and the subspace spanned by its column vectors.

∗ Complete the basis for Rn with Rn = M1 ⊕M2 where dimM1 = k, dimM2 = n− k. Here Rn = M1 ⊕M2

means the combination of the two subspaces form Rn, and in addition, the two subspaces are perpendicular
to each other (i.e., ∀mi ∈M1 and mj ∈M2, the inner product mT

i mj = 0).
∗ Now let M = [M1,M2]. Since the column space of P is A-invariant, all columns of AM1 are in the subspace

spanned by M1. Thus there exists

AM1 = [M1,M2]

[
Ã11

0

]
where the lower block in the right most matrix above has to be zero in order to let the columns of AM1

stay in M1. Hence we have

AM = M

[
Ã11 Ã12

0 Ã22

]
1We use the compact form

[
A B
C D

]
to denote a system with state-space matrices {A,B,C,D}.

1



Linear Systems (UW ME547), Winter 2022: Handout 8: Decomposition and state feedback Instructor: Prof. Xu Chen

yielding

M−1AM = M−1M

[
Ã11 Ã12

0 Ã22

]
=

[
Ã11 Ã12

0 Ã22

]
which is the similarity transform to decompose the system intro controllable and uncontrollable modes.

• exercise: work out the case for observability

2 Notes about linear state/output feedback control
• State variable feedback control theorem: the pair {A,B} is controllable if and only if the roots of the closed loop

characteristic equation (closed-loop eigenvalues) can be arbitrarily assigned2 in the complex plane.
Proof: “⇒”: as exercise; “⇐”: if not controllable, then there exists a Kalman canonical realization such that

d

dt

[
x̃c

x̃uc

]
=

[
Ãc Ã12

0 Ãuc

] [
x̃c

x̃uc

]
+

[
B̃c

0

]
and the eigenvalues of Ãuc cannot be changed.

• Controllability is preserved under (linear or nonlinear) state and output feedback control.

2Complex roots must be accompanied by their complex conjugates - symmetry about real axis.
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