1 Controllability and Observability

- Controllability
 - Key idea in the definition: steer the system to any point in the state space within a finite time
 - Cayley Halmilton theorem: A^n is linearly dependent on $\{I, A, A^2, \dots A^{n-1}\}$ Proof: Let $p(\lambda) \triangleq \det(\lambda I - A) = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$. We have $p(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$. Thus

$$p(A) = A^{n} + c_{n-1}A^{n-1} + \dots + c_{1}A + c_{0}I$$
$$= (A - \lambda_{1}I)^{m_{1}} \dots (A - \lambda_{n}I)^{m_{p}}$$

Take any eigenvector or generalized eigenvector t_i , we have $p(A)t_i = 0$. Therefore $p(A)[t_1, t_2, \ldots, t_n] = 0$. But $T = [t_1, t_2, \ldots, t_n]$ is invertible, hence p(A) = 0, namely, $A^n = -(c_{n-1}A^{n-1} + \cdots + c_1A + c_0I)$, which is a linear combination of $\{I, A, A^2, \cdots A^{n-1}\}$.

- Essential equations:

$$x(n) = A^{n}x(0) + \sum_{j=0}^{n-1} A^{n-1-j}Bu(j) = A^{n}x(0) + \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & B \end{bmatrix} \begin{vmatrix} u(0) \\ u(1) \\ \vdots \\ u(n-1) \end{vmatrix}$$

and Cayley Halmilton theorem

- Theorem: The following statements are equivalent:
 - 1. x(k+1) = Ax(k) + Bu(k) is controllable.
 - 2. The columns of the controllability matrix $P = [BABA^2B\cdots A^{n-1}B]$ span \mathbb{R}^n . (equivalence between 1 $\begin{bmatrix} u & 0 \end{bmatrix}$

and 2: use
$$x(n) = A^n x(0) + \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(n-1) \end{bmatrix}$$

- 3. The controllability matrix $P = [B A B A^2 B \cdots A^{n-1} B]$ is rank *n* (full row rank). (equivalence between 2 and 3: rank $n \Leftrightarrow \text{spans } \mathbb{R}^n$)
- 4. The controllability grammian $W_c(k_1) = \sum_{k=0}^{k_1} A^k B B^T (A^T)^k$ is positive definite, for some finite integer k_1 . (3 \Leftrightarrow 4: consider $W_c(n) = PP^T$)
- 5. (Popov-Belevitch-Hautus (PBH) test) The matrix $[A \lambda I B]$ has full row rank at every eigenvalue, λ , of A. (intuition: if 5 does not hold, then $\exists v$ such that $v^T [A - \lambda I B] = 0 \Rightarrow v^T A = \lambda v^T$, $v^T B = 0$, yielding $v^T [B A B A^2 B \cdots A^{n-1} B] = 0$, which violates the full row rank condition for P)
- Example 1: identify controllability of (A, B):

$$A = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & 1 \\ & & \lambda_2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- The controllability property is invariant under any coordinate transformation:

$$(A, B)$$
 is controllable. $\iff (\overline{A}, \overline{B}) = (TAT^{-1}, TB)$ is controllable

where T is any nonsingular matrix. (Proof: $\overline{P} = TP$ where T is invertible)

– If A is asymptotically stable, k_1 can be set to ∞ in the controllability grammian, and we may obtain the grammian by solving the Lyapunov equation

$$AW_cA^T - W_c = -BB^T$$

The solution is positive definite if and only if the system is controllable.

- Observability
 - Key idea in the definition: knowing the outputs and the inputs can determine the initial state (Question: why initial state here?)
 - Essential equations: assuming u(k) = 0, then y(0) = Cx(0), y(1) = Cx(1) = CAx(0), $y(2) = Cx(2) = CA^{2}x(0)$,... (Question: what if $u \neq 0$?)
 - Theorem: the following statements are equivalent:
 - 1. x(k+1) = Ax(k), y = Cx(k) is observable.
 - 2. The observability grammian $W_o(k_1) = \sum_{k=0}^{k_1} (A^T)^k C^T C A^k$ is positive definite, for some finite integer k_1 .
 - 3. The observability matrix $Q = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$ is rank *n* (full column rank).

4. The matrix $\begin{bmatrix} A - \lambda I \\ C \end{bmatrix}$ has full column rank at every eigenvalue, λ , of A.

The observability property is invariant under any coordinate transformation:

$$(A, C)$$
 is observable. $\iff (\overline{A}, \overline{C}) = (TAT^{-1}, CT^{-1})$ is observable.

where T is any nonsingular matrix.

- If A is asymptotically stable, k_1 can be set to ∞ in the observability grammian, and we may look for the grammian by solving the Lyapunov equation

$$A^T W_o A - W_o = -C^T C$$

The solution is positive definite if and only if the system is observable.

• Example 2: analyze the controllability, observability, stabilizability, and detectability of the following systems

$$A = \begin{bmatrix} 1 & & \\ & -2 & \\ & & 3/10 \end{bmatrix}, B = \begin{bmatrix} 23 & \\ 0 & \\ 3/20 \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 132 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1 \\ 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

• the grammians for the time-invariant cases $(t_0 = 0)$

	Controllability Grammian	Observability Grammian
continuous time	$\int_0^t e^{A\tau} B B^T \left(e^{A\tau} \right)^T d\tau$	$\int_{0}^{t} \left(e^{A\tau} \right)^{T} C^{T} C e^{A\tau} d\tau$
Lyapunov equation (when $t \to \infty$)	$AW_c + W_c A^T + BB^T = 0$	$A^T W_o + W_o A + C^T C = 0$
discrete time	$\sum_{k=0}^{k_1} A^k BB(A^T)^k$ for some k_1	$\sum_{k=0}^{k_1} (A^T)^k C^T C A^k$ for some k_1
Lyapunov equation (when $k_1 \to \infty$)	$AW_cA^T - W_c + BB^T = 0$	$A^T W_o A - W_o + C^T C = 0$