1 Controllability and Observability

- **Controllability**
 - Key idea in the definition: steer the system to any point in the state space within a finite time
 - Cayley Halmilton theorem: \(A^n \) is linearly dependent on \(\{I, A, A^2, \ldots, A^{n-1}\} \)
 - Proof: Let \(p(\lambda) \triangleq \det(\lambda I - A) = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0 \). We have \(p(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_p)^{m_p} \).
 - Thus
 \[
 p(A) = A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I = (A - \lambda_1I)^{m_1} \cdots (A - \lambda_pI)^{m_p}
 \]
 - Take any eigenvector or generalized eigenvector \(t_i \), we have \(p(A)t_i = 0 \). Therefore \(p(A)[t_1, t_2, \ldots, t_n] = 0 \). But \(T = [t_1, t_2, \ldots, t_n] \) is invertible, hence \(p(A) = 0 \), namely, \(A^n = -(c_{n-1}A^{n-1} + \cdots + c_1A + c_0I) \), which is a linear combination of \(\{I, A, A^2, \ldots, A^{n-1}\} \).
 - Essential equations:
 \[
 x(n) = A^n x(0) + \sum_{j=0}^{n-1} A^{n-1-j}Bu(j) = A^n x(0) + \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(n-1) \end{bmatrix}
 \]
 - and Cayley Halmilton theorem
 - Theorem: The following statements are equivalent:
 1. \(x(k+1) = Ax(k) + Bu(k) \) is controllable.
 2. The columns of the controllability matrix \(P = [B A B A^2 B \cdots A^{n-1} B] \) span \(\mathbb{R}^n \). (equivalence between 1 and 2: use \(x(n) = A^n x(0) + \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(n-1) \end{bmatrix} \))
 3. The controllability matrix \(P = [B A B A^2 B \cdots A^{n-1} B] \) is rank \(n \) (full row rank). (equivalence between 2 and 3: rank \(n \) \(\iff \) spans \(\mathbb{R}^n \))
 4. The controllability grammian \(W_c(k_1) = \sum_{k=0}^{k_1} A^k B B^T (A^T)^k \) is positive definite, for some finite integer \(k_1 \).
 (3 \(\iff \) 4: consider \(W_c(n) = PPT^T \))
 5. (Popov-Belevitch-Hautus (PBH) test) The matrix \([A - \lambda I B] \) has full row rank at every eigenvalue, \(\lambda \), of \(A \). (intuition: if 5 does not hold, then \(\exists v \) such that \(v^T [A - \lambda I B] = 0 \Rightarrow v^T A = \lambda v^T, v^T B = 0 \), yielding \(v^T [B A B A^2 B \cdots A^{n-1} B] = 0 \), which violates the full row rank condition for \(P \))
 - Example 1: identify controllability of \((A, B)\):
 \[
 A = \begin{bmatrix} \lambda_1 & 1 \\ \lambda_2 & \lambda_2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
 \]
 - The controllability property is invariant under any coordinate transformation:
 \[
 (A, B) \text{ is controllable. } \iff (\bar{A}, \bar{B}) = (TAT^{-1}, TB) \text{ is controllable.}
 \]
 where \(T \) is any nonsingular matrix. (Proof: \(\bar{P} = TP \) where \(T \) is invertible)
 - If \(A \) is asymptotically stable, \(k_1 \) can be set to \(\infty \) in the controllability grammian, and we may obtain the grammian by solving the Lyapunov equation
 \[
 AW_c A^T - W_c = -BB^T
 \]
 The solution is positive definite if and only if the system is controllable.
• Observability

 – Key idea in the definition: knowing the outputs and the inputs can determine the initial state (Question: why initial state here?)

 – Essential equations: assuming \(u(k) = 0 \), then \(y(0) = Cx(0), \ y(1) = Cx(1) = CAx(0), \ y(2) = Cx(2) = CA^2x(0) \)...

 – Theorem: the following statements are equivalent:

 1. \(x(k+1) = Ax(k), \ y = Cx(k) \) is observable.

 2. The observability grammian \(\mathcal{W}_o(k_1) = \sum_{k=0}^{k_1} (A^T)^k C T C A^k \) is positive definite, for some finite integer \(k_1 \).

 3. The observability matrix \(Q = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \) is rank \(n \) (full column rank).

 4. The matrix \(\begin{bmatrix} A - \lambda I \\ C \end{bmatrix} \) has full column rank at every eigenvalue, \(\lambda \), of \(A \).

 – The observability property is invariant under any coordinate transformation:

 \((A, C)\) is observable. \(\iff (\bar{A}, \bar{C}) = (T A T^{-1}, C T^{-1}) \) is observable.

 where \(T \) is any nonsingular matrix.

 – If \(A \) is asymptotically stable, \(k_1 \) can be set to \(\infty \) in the observability grammian, and we may look for the grammian by solving the Lyapunov equation

 \[
 A^T \mathcal{W}_o A - \mathcal{W}_o = -C^T C
 \]

 The solution is positive definite if and only if the system is observable.

• Example 2: analyze the controllability, observability, stabilizability, and detectability of the following systems

 \[
 A = \begin{bmatrix} 1 & -2 & 3/10 \\ \end{bmatrix}, \quad B = \begin{bmatrix} 23 \\ 0 \\ 3/20 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 132 & 0 \end{bmatrix}
 \]

 \[
 A = \begin{bmatrix} -2 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}
 \]

• the grammians for the time-invariant cases (\(t_0 = 0 \))

<table>
<thead>
<tr>
<th></th>
<th>Controllability Grammian</th>
<th>Observability Grammian</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous time</td>
<td>(\int_0^t e^{A\tau} BB^T (e^{A\tau})^T d\tau)</td>
<td>(\int_0^t (e^{A\tau})^T C T C e^{A\tau} d\tau)</td>
</tr>
<tr>
<td>Lyapunov equation (when (t \to \infty))</td>
<td>(AW_c + W_c A^T + BB^T = 0)</td>
<td>(A^T W_o + W_o A + C^T C = 0)</td>
</tr>
<tr>
<td>discrete time</td>
<td>(\sum_{k=0}^k A^k BB (A^T)^k) for some (k_1)</td>
<td>(\sum_{k=0}^k (A^T)^k C T C A^k) for some (k_1)</td>
</tr>
<tr>
<td>Lyapunov equation (when (k_1 \to \infty))</td>
<td>(AW_c A^T - W_c + BB^T = 0)</td>
<td>(A^T W_o A - W_o + C^T C = 0)</td>
</tr>
</tbody>
</table>