Outline:

• solution of LTI systems (and some intuitions)

1 Fundamental Theorem of Differential Equations

Knowing the existence of a solution is the first step towards getting the answer. The following theorem addresses the question of whether a dynamical system has a *unique* solution or not.

Instructor: Prof. Xu Chen

Theorem 1. Consider $\dot{x} = f(x,t)$, $x(t_0) = x_0$, with:

- f(x,t) piecewise continuous in t
- f(x,t) Lipschitz continuous in x

then there exists a unique function of time $\phi(\cdot): \mathbb{R}_+ \to \mathbb{R}^n$ which is continuous almost everywhere and satisfies

- $\phi(t_0) = x_0$
- $\dot{\phi}(t) = f(\phi(t), t), \forall t \in \mathbb{R}_{+} \setminus D$, where D is the set of discontinuity points for f as a function of t.

Note:

- piecewise continuous: continuous except at finite points of discontinuity.
 - exercise: are these functions piecewise continuous?-f(t) = |t| and

$$f(x,t) = \begin{cases} A_1 x, & t \le t_1 \\ A_2 x, & t > t_1 \end{cases}$$

• Lipschitz continuous: if f(x,t) satisfies the following cone-shape constraint:

$$||f(x,t) - f(y,t)|| \le k(t)||x - y||$$

where k(t) is piecewise continuous.

- <u>exercise</u>: is f(x) = Ax + B Lipschitz continuous?

2 Solution of LTI systems

Consider a state equation

$$\dot{x}(t) = Ax(t) + Bu(t); \quad x(t_0) = x_0$$

Note that f(x,t) = Ax + Bu satisfies the conditions in Fundamental Theorem for Differential Equations. A unique solution thus exists. The solution is given by

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau$$
 (1)

For discrete-time systems, we have

$$x(k+1) = Ax(k) + Bu(k) \Rightarrow x(k) = A^{k-k_0}x(k_o) + \sum_{j=k_0}^{k-1} A^{k-1-j}Bu(j)$$
(2)

Understanding (2):

• why k-1 but not k in the summation $\sum_{j=k_0}^{k-1}$?: observe in x(k) = Ax(k-1) + Bu(k-1), that only the inputs at or before the k-1 time instance are required to obtain x(k).

• another form of (2):

$$x(k) = A^{k-k_0}x(k_o) + \sum_{j=k_0}^{k-1} A^{k-1-j}Bu(j) = A^{k-k_0}x(k_o) + \begin{bmatrix} A^{k-k_0-1}B & A^{k-k_0-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u(k_0) \\ u(k_0+1) \\ \vdots \\ u(k-1) \end{bmatrix}$$

Instructor: Prof. Xu Chen

From here we see that the system is indeed linear, and x(k) is an affine function of u(i), $k_0 \le i \le k-1$.

Expressing x(t) and x(k) as (1) and (2) is usually not enough to reveal detailed properties of the states. Specifically for (1), we usually want to get a more detailed form of e^{At} . Here are some special cases:

A	e^{At}
$\left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right]$	$\begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$
$ \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} $	$\begin{bmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{bmatrix}$
$\left[\begin{array}{ccc} \lambda & 1 \\ & \lambda & 1 \\ & & \lambda \end{array}\right]$	$\begin{bmatrix} e^{\lambda t} & te^{\lambda t} & \frac{1}{2!}t^2e^{\lambda t} \\ e^{\lambda t} & te^{\lambda t} \\ e^{\lambda t} & e^{\lambda t} \end{bmatrix}$
$ \begin{bmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{bmatrix} $	$\begin{bmatrix} e^{\lambda t} & te^{\lambda t} & \frac{t^2}{2}e^{\lambda t} & \frac{t^3}{3!}e^{\lambda t} \\ e^{\lambda t} & te^{\lambda t} & \frac{t^2}{2}e^{\lambda t} \\ e^{\lambda t} & te^{\lambda t} & \frac{t^2}{2}e^{\lambda t} \\ e^{\lambda t} & e^{\lambda t} \end{bmatrix}$

Understanding the results: why does the term $te^{\lambda t}$ occur in e^{At} for $A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$?

• We could do the usual Taylor expansion of e^{At} . But we could also gain intuition from the Laplace perspective. Notice that $\det(sI-A)=(s-\lambda)^2$ and $\frac{1}{(s-\lambda)^2}$ corresponds to $te^{\lambda t}$ in time domain. This gives a motivation of using Laplace or inverse Laplace transforms. Consider the free response of the system $\dot{x}=Ax$, $x(0)=x_0$. Performing the Laplace transform yields

$$sX(s) - x(0) = AX(s)$$

$$\Rightarrow X(s) = (sI - A)^{-1} x(0)$$

$$= \frac{1}{(s - \lambda)^2} \begin{bmatrix} s - \lambda & 1\\ s - \lambda \end{bmatrix} x(0)$$

$$= \begin{bmatrix} \frac{1}{s - \lambda} & \frac{1}{(s - \lambda)^2} \\ \frac{1}{s - \lambda} & \frac{1}{s - \lambda} \end{bmatrix} x(0)$$

Applying inverse Laplace transform, we have

$$x\left(t\right) = \left[\begin{array}{cc} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{array}\right] x\left(0\right)$$

Comparing the above with

$$x\left(t\right) =e^{At}x\left(0\right)$$

we get

$$e^{At} = \left[\begin{array}{cc} e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda t} \end{array} \right].$$