Linear Systems (UW ME547), Winter 2022: Handout for Discussion 3 Instructor: Prof. Xu Chen

Outline:

e solution of LTI systems (and some intuitions)

1 Fundamental Theorem of Differential Equations

Knowing the existance of a solution is the first step towards getting the answer. The following theorem addresses the
question of whether a dynamical system has a unique solution or not.

Theorem 1. Consider & = f (x,t), x (to) = xo, with:
o f(x,t) piecewise continuous in ¢
e f(x,t) Lipschitz continuous in x
then there exists a unique function of time ¢ (-) : Ry — R™ which is continuous almost everywhere and satisfies
* ¢(to) = o
o ¢(t)=f(p(t),t), Vt € RZ\D , where D is the set of discontinuity points for f as a function of ¢.
Note:

e piecewise continuous: continuous except at finite points of discontinuity.

— exercise: are these functions piecewise continuous?—f (¢) = |¢| and

AQ(E, t> 1t

e Lipschitz continuous: if f (x,t) satisfies the following cone-shape constraint:
1 (2, t) = f (. ) || < k(@) []o =yl
where k (t) is piecewise continuous.

— exercise: is f (z) = Az + B Lipschitz continuous?

2 Solution of LTI systems

Consider a state equation
z(t)=Axz (t) + Bu(t); x(tg) = xo

Note that f (x,t) = Az 4+ Bu satisfies the conditions in Fundamental Theorem for Differential Equations. A unique
solution thus exists. The solution is given by

t
z(t) = eAtt)p 4 / A=) By (1) dr (1)
to
For discrete-time systems, we have
k—1 ‘
z(k+1) = Az (k) + Bu (k) = o (k) = A" ™z (k,) + Y A7 Bu(j) (2)
J=ko

Understanding (2):

e why k£ — 1 but not &k in the summation Z?;;O?: observe in x (k) = Az (k — 1) + Bu (k — 1), that only the inputs at
or before the k — 1 time instance are required to obtain x (k).
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e another form of (2):

u (ko)
k-1 . U (k/’o + 1)
(k) = A" Fog (ko) + Y AM1IBu(j) = AP Rog (ky) + [ AFRemlp Akmhe-2p B ] ,
— :
’ w(k—1)

From here we see that the system is indeed linear, and x (k) is an affine function of w (i), ko <9 <k — 1.

Expressing z (t) and x (k) as (1) and (2) is usually not enough to reveal detailed properties of the states. Specifically for
(1), we usually want to get a more detailed form of e4*. Here are some special cases:

| A \ et |
A0 eMt 0
0 )\2 0 6)‘2t
A1 e tert
0 A 0 eM
)\ 1 e)\t te}\t %t2e)\t
A1 eM teM
by e)\t
A1 EYASY %ez\t gez\t
A1 A pet ge,\t
A1 oMt tet
Y Y

?

Understanding the results: why does the term te* occur in e4? for A = [ 6\ }\ ]

e We could do the usual Taylor expansion of e4t.

But we could also gain intuition from the Laplace perspective.
Notice that det (s — A) = (s — \)* and ﬁ corresponds to te* in time domain. This gives a motivation of using

Laplace or inverse Laplace transforms. Consider the free response of the system & = Az, x (0) = (. Performing the
Laplace transform yields

sX (s) —xz(0) = AX (s)
= X (s) = (sI — A)" "z (0)

Comparing the above with

we get



