
Linear Systems (UW ME547), Winter 2022: Handout for Discussion 3 Instructor: Prof. Xu Chen

Outline:

• solution of LTI systems (and some intuitions)

1 Fundamental Theorem of Differential Equations
Knowing the existance of a solution is the first step towards getting the answer. The following theorem addresses the
question of whether a dynamical system has a unique solution or not.

Theorem 1. Consider ẋ = f (x, t), x (t0) = x0, with:

• f (x, t) piecewise continuous in t

• f (x, t) Lipschitz continuous in x

then there exists a unique function of time φ (·) : R+ → Rn which is continuous almost everywhere and satisfies

• φ (t0) = x0

• φ̇ (t) = f (φ (t) , t), ∀t ∈ R+\D , where D is the set of discontinuity points for f as a function of t.

Note:

• piecewise continuous: continuous except at finite points of discontinuity.

– exercise: are these functions piecewise continuous?–f (t) = |t| and

f (x, t) =

{
A1x, t ≤ t1
A2x, t > t1

• Lipschitz continuous: if f (x, t) satisfies the following cone-shape constraint:

||f (x, t)− f (y, t) || ≤ k (t) ||x− y||

where k (t) is piecewise continuous.

– exercise: is f (x) = Ax+B Lipschitz continuous?

2 Solution of LTI systems
Consider a state equation

ẋ (t) = Ax (t) +Bu (t) ; x (t0) = x0

Note that f (x, t) = Ax + Bu satisfies the conditions in Fundamental Theorem for Differential Equations. A unique
solution thus exists. The solution is given by

x (t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu (τ) dτ (1)

For discrete-time systems, we have

x (k + 1) = Ax (k) +Bu (k)⇒ x (k) = Ak−k0x (ko) +

k−1∑
j=k0

Ak−1−jBu (j) (2)

Understanding (2):

• why k − 1 but not k in the summation
∑k−1
j=k0

?: observe in x (k) = Ax (k − 1) +Bu (k − 1), that only the inputs at
or before the k − 1 time instance are required to obtain x (k).
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• another form of (2):

x (k) = Ak−k0x (ko) +

k−1∑
j=k0

Ak−1−jBu (j) = Ak−k0x (ko) +
[
Ak−k0−1B Ak−k0−2B · · · B

]


u (k0)
u (k0 + 1)

...
u (k − 1)


From here we see that the system is indeed linear, and x (k) is an affine function of u (i), k0 ≤ i ≤ k − 1.

Expressing x (t) and x (k) as (1) and (2) is usually not enough to reveal detailed properties of the states. Specifically for
(1), we usually want to get a more detailed form of eAt. Here are some special cases:

A eAt[
λ1 0
0 λ2

] [
eλ1t 0
0 eλ2t

]
[
λ 1
0 λ

] [
eλt teλt

0 eλt

]
 λ 1

λ 1
λ

  eλt teλt 1
2! t

2eλt

eλt teλt

eλt



λ 1

λ 1
λ 1

λ



eλt teλt t2

2 e
λt t3

3! e
λt

eλt teλt t2

2 e
λt

eλt teλt

eλt


Understanding the results: why does the term teλt occur in eAt for A =

[
λ 1
0 λ

]
?

• We could do the usual Taylor expansion of eAt. But we could also gain intuition from the Laplace perspective.
Notice that det (sI −A) = (s− λ)2 and 1

(s−λ)2 corresponds to teλt in time domain. This gives a motivation of using
Laplace or inverse Laplace transforms. Consider the free response of the system ẋ = Ax, x (0) = x0. Performing the
Laplace transform yields

sX (s)− x (0) = AX (s)

⇒ X (s) = (sI −A)−1
x (0)

=
1

(s− λ)2

[
s− λ 1

s− λ

]
x (0)

=

[
1

s−λ
1

(s−λ)2
1

s−λ

]
x (0)

Applying inverse Laplace transform, we have

x (t) =

[
eλt teλt

0 eλt

]
x (0)

Comparing the above with
x (t) = eAtx (0)

we get

eAt =

[
eλt teλt

0 eλt

]
.
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