
Linear Systems (UW ME547), Winter 2022: Handout for Discussion 2 Instructor: Prof. Xu Chen

Outline:

• when does a dynamical system have a unique solution?

• state-space and transfer-function representations of LTI systems

• state-space canonical forms

• matrix computation: determinants

1 State-space and transfer-function descriptions of LTI systems
• why are we learning them?

• relations between the two:

Table 1: Relations between state-space (ss) and transfer-function (tf) system representations
ss tf

ẋ (t) = Ax (t) +Bu (t) , y (t) = Cx (t) +Du (t) G (s) = C (sI −A)−1
B +D

x (k + 1) = Ax (k) +Bu (k) , y (k) = Cx (k) +Du (k) G (z) = C (zI −A)−1
B +D

2 Math review

2.1 Computing determinants
• 2× 2 matrices:

det

[
a b
c d

]
= ad− bc

• 3× 3 matrices:

det

 a b c
d e f
g h k

 = a det

[
e f
h k

]
− bdet

[
d f
g k

]
+ cdet

[
d e
g h

]
= aek + bfg + cdh− gec− bdk − ahf

2.2 Computing the inverse of a matrix
There are several ways to compute a matrix inverse. One approach for low-order matrices is the method of using adjugate
matrix (aka adjoint matrix):

A−1 =
1

det (A)
adj (A)

We explain the computation by two examples:

• 2× 2 example: [
a b
c d

]−1

=
1

ad− bc

[
(−1)1+1

d (−1)1+2
b

(−1)2+1
c (−1)2+2

a

]
where b in (−1)1+2

b is obtained by:

– noticing b is at row 1 column 2 of A;

– looking at the element at row 2 column 1 of A;

– constructing a submatrix of A by removing row 2 and column 1 from it, i.e., [b] in this 2× 2 example;

– computing the determinant of this submatrix.
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– adding (−1)1+2 as a scalar

• 3× 3 example:

A−1 =

 a b c
d e f
g h k

−1

=
1

detA



∣∣∣∣ e f
h k

∣∣∣∣ −
∣∣∣∣ b c
h k

∣∣∣∣ ∣∣∣∣ b c
e f

∣∣∣∣
−
∣∣∣∣ d f
g k

∣∣∣∣ ∣∣∣∣ a c
g k

∣∣∣∣ −
∣∣∣∣ a c
d f

∣∣∣∣∣∣∣∣ d e
g h

∣∣∣∣ −
∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a b
d e

∣∣∣∣


where |·| denotes the determinant of a matrix. Similar as before, the row 1 column 2 element −

∣∣∣∣ b c
h k

∣∣∣∣ is obtained
via

(−1)2+1
det

A with [d, e, f ] ,

 a
d
g

 removed


3 Canonical forms

G =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

• Controllable canonical form

A =

 1
1

−a0 −a1 −a2

 , B =

 0
0
1

 , C =
[
b0 b1 b2

]
, D = 0

– understanding the formula: the transfer function is given by G (s) = C (sI −A)−1
B +D, where the poles of

the system come from det (sI −A) = 0. Suppose we don’t know the order of a0, a1 and a2 in the last row of
A, and use ? as a temporary representation in A. Looking at

det (sI −A) = det

 s −1
s −1

? ? s+ ?


we see that the only way for s2 to appear is from the term s2 (s+ ?) in the determinant computation. Hence
the location of −a2 has to be at the bottom right corner of A.

– exercise: write down the controllable canonical form for the following systems

∗ G (s) = s2+1
s3+2s+10

∗ G (s) = b0s
2+b1s+b2

s3+a0s2+a1s+a2

• Observable canonical form

A =

 −a2 1
−a1 1
−a0

 , B =

 b2
b1
b0

 , C =
[
1 0 0

]
, D = 0

• Diagonal form: for systems described by

G (s) =
k1

s− p1
+

k2
s− p2

+
k3

s− p3

one state-space form is

A =

 p1
p2

p3

 , B =

 1
1
1

 , C =
[
k1 k2 k3

]
, D = 0
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• Jordan form: if
G (s) =

k1
s− p1

+
k2

(s− pm)
2 +

k3
s− pm

then one state-space form of the system is

A =

 p1
pm 1

pm

 , B =

 1
0
1

 , C =
[
k1 k2 k3

]
, D = 0

– understanding the formula: why B = [1, 0, 1]T ? What if

G (s) =
k1

(s− p1)2
+

k1
s− p1

+
k2

(s− pm)
2 +

k3
s− pm

• Modified Jordan form: this is for systems with complex poles:

G (s) =
k1

s− p1
+

αs+ β

(s− σ)2 + ω2

we have

A =

 p1
σ ω
−ω σ

 , B =

 1
0
1

 , C =
[
k1 k2 k3

]
, D = 0
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