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MES547: Linear Systems

Introduction

Xu Chen

University of Washington

The power of controls

» Our internal body temperature is regulated around 37° C or 98.6° F,
whether in a sauna room or outside at the north pole.

» The power of feedback controls: it allows us to make a precision
device out of a crude one that works well even in changing
environments.

» We also use prediction and feedforward controls: as kids, we had
learned to wear T-shirts in summer, long sleeves and coats in winter.
With such predictive and feedforward controls, the burden of feedback
control is greatly lifted.
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Analysis and control of linear dynamic systems

» System: an interconnection of elements and devices for a desired
purpose

» Control System: an interconnection of components forming a system
configuration that will provide a desired response

» Feedback: the use of information of the past or the present to
influence behaviors of a system

Why automatic control?

A system can be either manually or automatically controlled. Why
automatic control?

» Stability /Safety: difficult/impossible for humans to control the
process or would expose humans to risk

» Performance: cannot be done “as well” by humans
» Cost: Humans are more expensive and can get bored

» Robustness: can deliver the requisite performance even if process
behaves slightly differently

4/19



Terminologies

Reference

Disturbance

Output

—>| Input filter

—(»| Controller

Sensor

T

Sensor noise

» Process: whose output(s) is/are to be controlled

» Actuator: device to influence the controlled variable of the process

» Plant: process + actuator

» Block diagram: visualizes system structure and the flow information

in control systems

Open-loop control v.s. closed-loop control

Desired Output

u(t)

Disturbance

5/19

Controlled System

Controller

» the output of the plant does not influence the input to the controller

» input and output as signals: functions of time, e.g., speed of a car,
temperature in a room, voltage applied to a motor, price of a stock,

1)

—

electrical-cardiograph, all as functions of time.
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Open-loop control v.s. closed-loop control

Heat Loss

Desired T — R
— Thermostat | Gas Valve Furnace e, House

» multiple components (plant, controller, etc) have a closed
Interconnection

» there is always feedback in a closed-loop system

Closed-loop control: regulation example

Heat Loss

Desired T — R
— Thermostat | Gas Valve Furnace e, House




Regulation control example: automobile cruise control

Road Grade

Desired Speed Controller l Actual Speed
Engine §§ Auto Body

e 77

Throttl

174

Measured Speed

Speedometer

What is the control objective?

What are the process, process output, actuator, sensor, reference, and
disturbance?

Control objectives

Better stability

Improved response characteristics
Regulation of output in the presence of disturbances and noises
Robustness to plant uncertainties

Tracking time varying desired output

There are some aspects of control objectives that are universal. For
example, we would always want our control system to result in closed-loop
dynamics that are insensitive to disturbances. This is the disturbance
rejection problem. Also, as pointed out previously, we would want the
controller to be robust to plant modeling errors.
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Means to achieve the control objectives

Model the controlled plant
Analyze the characteristics of the plant
Design control algorithms (controllers)

Analyze performance and robustness of the control system

vvyyvyyvyy

Implement the controller

About this course

» a first-year graduate course on modern control systems
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Introduction to Modern Controls

UW ME 547 Linear Systems

Introduction

MES547 is a first-year graduate course on modern control systems focusing on:
state-space description of dynamic systems, linear algebra for controls, solutions
of state-space systems, discrete-time models, stability, controllability and
observability, state-feedback control, observers, observer state feedback controls,
and when time allows, linear quadratic optimal controls. ME547 is a prerequisite
to most advanced graduate control courses in the UW ME department.

Lecture notes

« Single-file course reader
« Review of linear algebra for controls: notes, slides

Reference
¢ [CTC]: Linear Systems Theory and Design (4th Ed) by Chi-Tsong Chen,
Oxford University Press
¢ Matlab Control Turorial
« Python Control Toolbox

Lectures

o Week 1
o Introduction & basic concepts
o Modeling of dynamic systems
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Introduction to Modern Controls
with lllustrations in MATLAB and Python

Xu Chen

This book is supported by a suite of online resources including E . E Masayoshi Tomizuk:

source code, lecture slides, lecture recordings, and exercises at
the end of each chapter. Read more at https://mcimp-book.
github.io/meimp/.
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Written materials

» Open-source Course Notes

Resources for control education: societies

» AIAA (American Institute of Aeronautics and Astronautics)
» Publications: AIAA Journal of Guidance, Control and Navigation

» ASME (American Society of Mechanical Engineers)

» Publications: ASME Journal of Dynamic Systems, Measurement and
Control!

» |EEE (Institute of Electrical and Electronics Engineers)

> www.ieee.org
» Control System Society
» Publications:

» |EEE Control Systems Magazine!
» |EEE Transactions on Control Technology
» |EEE Transactions on Automatic Control

» IFAC (International Federation of Automatic Control)
» Publications: Automatica, Control Engineering Practice

Istart looking at these, online or at library




IEEE Control Systems Magazine

IEEE

Control Systems
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MES547: Linear Systems
Modeling of Dynamic Systems

Xu Chen

University of Washington

Why modeling?

Modeling of physical systems:

a vital component of modern engineering

often consists of complex coupled differential equations

only when we have good understanding of a system can we optimally
control it:

can simulate and predict actual system response, and
design model-based controllers
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Two general approaches of modeling

» based on physics:
» using fundamental engineering principles such as Newton's laws, energy

conservation, etc

» based on measurement data:
» using input-output response of the system

> a field itself known as system identification

» often the tools are combined in practice

Example: Mass spring damper

position: y(t)

( )

m Newton's second law gives

Sl gy

my (t) + by (t) + ky (t) = u(t), ¥(0) =y, ¥(0) = Yo

» modeled as a second-order ODE with input u(t) and output y(t)




Example: HDD

» Newton's second law for rotation

E T J (87
. ~~ ~~~

! moment of inertia angular acceleration
—— g

net torque
» letting 6 :=output and 7 :=input yields
1

é == 77'
Example: HDD
== 57 0(9) = 15109
=a= 7 s)= 52 T(s
» with damping:
0 + 2Cwnf + w20 = kT = O(s) = " T(s)

824 2Cwps + w?
» with multiple modes:
2 + 2Cjwis + w,-z

é,’ + 2C;w;9; + w,-2¢9,- = R|T < @,‘(5) T(S)
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Example: HDD

i} . Ki
0i + 2wt + wi b = kit < Oi(s) = 5————5T(s
Ciw W KiT © 2 1 2w 1 o2 ©)

final model:

1=

Ki
O(s) = — T
(5) Z $? + 2Cjwis + w,-2 (5)

numpy np
matplotlib.pyplot plt
scipy signal
control ct
num_sector 420 # Number of sector
num_rpm = 7200 # Number of RPM
Kp_vcm = 3.7976e+07 # VCM gain
omega_vcm np.array([0, 5300, 6100, 6500, 8050, 9600, 14800, 17400,
21000, 26000, 26600, 29000, 32200, 38300, 43300,
44800]) * 2 * np.pt
kappa_vcm = np.arraey([1, -1.0, +0.1, -0.1, 0.04, -0.7,
0.2, -1.0, +3.0, -3.2, 2.1, -1.5, +2.0, -0.2,
0.3, -0.5]1)
zeta_vcm = np.array([0, 0.02, 0.04, 0.02, 0.01, 0.03, 0.01,
0.02, 0.02, 0.012, 0.007, 0.01, 0.03, 0.01, 0.01,
0.01])
Sys_Pc_vem_cl = ct.TransferFunction([], [1]) # Create an empty
transfer function
i range (len(omega_vcm)) :
Sys_Pc_vem_c1 Sys_Pc_vem_c1 ct.TransferFunction(np. array(
[0, O, kappa_vcm[i]]) * Kp_vcm, np.array([l, 2 * zeta_vcm[i]
omega_vcm[i], (omega_vcm[i]) 21))
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Models of continuous-time systems

modeled as differential equations:

position: y(t)

)

m

my (t) + by (t) + ky (t) = u(t), ¥(0) = y0, ¥(0) = Yo

Kj

0; + 2Cwib; 70 = ki < O(s) =

T(s)




Models of continuous-time systems

General continuous-time systems:

n n—1
d y(t) 4+ an—1 ddtny(lt)

d"u(t) d™tu(t)
bm—
o + 1

dtm dtm—1

4+ aoy(t) = b

Foe 1t bou(t)

with the initial conditions y(0) = yp, ..., \M(0) = y(()n).

Models of discrete-time systems

General discrete-time systems
inputs and outputs defined at discrete time instances k=1,2, ...

described by ordinary difference equations in the form of

v(k)+ap—1y(k—1)+---+aoy(k—n) = bpu(k+m—n)+- - -+ bou(k— n)

Example: bank statements
> X(k+1) = (1 + p)x(K) + u(k), x(0) = x0
» k — month counter; p — interest rate; x(k) — wealth at the beginning

of month k; u(k) — money saved at the end of month k; xg — initial
wealth in account
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Model properties: static v.s. dynamic, causal v.s. acausal

u—M

<

Model M is said to be
memoryless or static if y(t) depends only on u(t)

dynamic (has memory) if y at time t depends on input values at other
times

e.g.: y(t) = M(u(t)) = yu(t = Jo u(r)dr, y(K) = 2o u(i)
causal if y(t) depends on U(T) for T<t

strictly causal if y(t) depends on u(7) for 7 < t, e.g.: y(t) = u(t— 10)

Linearity and time-invariance

The system M is called

linear if satisfying the superposition property:
M(agui(t) + apua(t)) = aaM(ur(t)) + aaM(ua(t))

for any input signals ui(t) and wuy(t), and any real numbers a; and s
time-invariant if its properties do not change with respect to time
e.g., ¥(t) = Ay(t) + Bu(t) is linear and time-invariant

y(t) = 2y(t) — sin(y(t))u(t) is nonlinear, yet time-invariant

y(t) = 2y(t) — tsin(y(t))u(t) is time-varying

assuming the same initial conditions, if we shift u(t) by a constant time
interval, i.e., consider M(u(t+ 79)), then M is time-invariant if the output
M(u(t +70)) = ¥(t + 7o)

24 /29



George Box

“All Models are Wrong, but Some are Useful”

statistical models always fall short of the
complexities of reality but can still be useful
nonetheless

a dynamic system may simply be too complex
(consider the neural system of human brains)

or there are inevitable hardware uncertainties
such as the fatigue of gears or bearings in a car

temperature influence

manufacturing variations 10
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Benchmark Problem for Magnetic-Head
Positioning Control System in HDDs
Takenori Atsumi*

ning systems, Actuators, Servo.

PZT actuators, a head-stack assembly (HSA), magnetic
heads, disks, and a spindle motor. Most of the
¥

or cloud storage emp aled technology
s that fow-induced

compensate for
mploy the dus
v

out the m;

This paper presents the details of the benchmark problems
and a control design method with the decoupling filter
2. HARD DISK DRIVE

gure 1 shows a picture of the HDD with the cover
opened. The HDD consis voice coil motor (VCM).

Fig. 1. Hard disk drive
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MEDS47: Linear Systems

Modeling: Review of Laplace Transform

Xu Chen

University of Washington

From infinite series to Laplace

co (=1)™
> i, GO

n

» how does it relate to the Laplace transform?




Introduction

Pierre-Simon Laplace (1749-1827)

“the French Newton” or “Newton of France”

13 years younger than Lagrange

studied under Jean le Rond d'Alembert
(co-discovered fundamental theorem of algebra,
aka d'Alembert/Gauss theorem)

The Laplace approach to ODEs

Laplace Transform

ODE Algebraic equation
: Easy
L7 Easy Arithmetic
' Easy
ODE solution Algebraic solution

Inverse Laplace Transform




Sets of numbers and the relevant domains

set: a well-defined collection of distinct objects, e.g., {1,2,3}
R: the set of real numbers

C: the set of complex numbers

€: belong to, eg., 1€ R

R, : the set of positive real numbers
2: defined as, e.g., y(t) £ 3x(t) + 1

Continuous-time functions

Formal notation:
f: R_|_ — R
where the domain of fis in Ry, and the value of fis in R
we use f(t) to denote a continuous-time function
assume that f{t) =0 for all t < 0




Laplace transform definition

For a continuous-time function

f: R+—>R

define Laplace Transform:

F(s) = C{A(t)} & /O T et

Existence: Sufficient condition 1

f(t) is piecewise continuous

(1)

By




Existence: Sufficient condition 2

f{t) does not grow faster than an exponential as t — oo:
1(t)| < ke™t, for all t > tg

for some constants: k, a, tp € R,.

1)

Examples: Exponential

t)=e acC




Examples: Exponential

Laplace transform and infinite series

Zoo (_1)n+1 _?

n=1 n




Examples: Sine

f(t) = sin(wt)
Flo) = &

Use: sin(wt) = %Je—w L{e¥t) = 1L

Ss—jw

Recall: Euler formula

e? = cosa+ jsina
Leonhard Euler (04/15/1707 - 09/18/1783):

Swiss mathematician, physicist, astronomer, geographer, logician and
engineer

studied under Johann Bernoulli
teacher of Lagrange
wrote 380 articles within 25 years at Berlin

produced on average one paper per week at age 67, when almost
blind!
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Examples: Cosine

f{t) = cos(wt)
F(s) = =

§24w?

Examples: Dirac impulse

A

o(t—T)

T t

a generalized function (formally, a distribution)
e.g., consider y — ay = i+ bu

if uis a unit step 1(t)

U has a jump at 0

cannot directly evaluate !




Approximating the unit step

0 fort<O
pe(t) =4 1t for0<t<e
1 fore<t

Approximating the unit step

0 fort<O
pe(t) =4 1t for0<t<e
1 fore<t




Approximating the unit step

0 fort<O
pe(t) =4 1t for0<t<e
1 fore<t

Approximating the unit step

0 fort<O
pe(t) =4 1t for0<t<e
1 fore<t




Approximating 1(t)

0 fort<O
pre(t) := %t for0<t<e
1 fore<t

Approximating 1(t)

0 fort<O
Me(t) = %t for0<t<e
1 fore<t

fue(1)

:L.Le(t) —

Oalr O

Onlm O

fort<O0

for0 < t<e

fore <t

fort <0

for0<t<e
fore<t
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Approximating 1(t)

0 fort<O
pre(t) := %t for0<t<e
1 fore<t

Approximating 1(t)

0 fort<O
Me(t) = %t for0<t<e
1 fore<t

fue(1)

:L.Le(t) —

Oalr O

Onlm O

fort<O0

for0 < t<e

fore <t

fort <0

for0<t<e
fore<t
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Properties of the first-order approximation

0 fort<O
% for0 < t<e
0

fore <t

75 pc(t)dt=1

limeso J70 f(t)f1e(t)dt =
lime_o [y f(t)1dt = A0)

General Dirac impulse properties

o(t—T)
- B T
iifmfj(f?odtf(_t;e(r)dt . Jo~ ot = Tat = 1
limeso [ A1) Ldt = 70) Jo~ ot = DAt)dt = A7)

26 / 46



Challenges with the first-order approximation

differentiable

cannot handle, e.g.,

lime_o oo A(t)fee(t)dt =
lime0 [y f(t)¢dt = f(0)

Second-order approximation of 1(t)

0 fort<O 0 for

1 t
) 2 for0<t<e ) = for
pre(t) = 0 fore<t<2e 0c(t) = iiz_t for
0 fore<t 0] for

[te(t) is piecewise-continuous
and not fully differentiable

te(t) = 1(t) is only first-order

t<O0
O<t<e
€< t< 2e
2¢ < t
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Second-order approximation of 1(t)

0 fort<O 0 for t<0
1 t
) = for0<t<e ) 5 for 0<t<e
pre(t) = 0 fore<t< 2e¢ 0c(t) := Eeez_t for €< t<2e¢
0 fore<t 0 for 2e <t

Second-order approximation of 1(t)

1
0 fort<O 0 for t<O0
1 t
) ¢ for0<t<e _ ) =z for 0<t<e
fre(t) = 0 fore<t< 2e¢ 0c(t) = iiz_t for €< t< 2e¢
0 fore<t 0] for 2e <t
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Second-order approximation of 1(t)

fe(t)

O Onlmr O

fort<0
for0<t<e
fore < t < 2¢
fore <t

0 for
L for
e 2
56(1:) . Eeez—t fOI’
0 for

Second-order approximation of 1(t)

for
for
for
for

t<O0
O<t<e
e < t< 2e
2¢e < t

t<O0
O<t<e
e < t<2e
2¢e < t

pe(t) = [y c(T)dr: a smoother
approximation of the unit step!

is twice differentiable

can keep on doing this to make
dc infinitely differentiable
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the concept

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 26, NO. 2, MARCH 2018

Transmission of Signal Nonsmoothness
and Transient Improvement in
Add-On Servo Control

Tianyu Jiang and Xu Chen

Abstract—Plug-in or add-on control tegral for high-
performance control in modern precision systems. Despite the
capability of greatly enhancing the steady-state performance,
add-on u)m]wn\almn canintroduce output_discontinuity and
significant transient response. Motivated by the vast application

ind the practical importance of add-on control designs, this paper
identifies and investigates how general nonsmoothness in signals
transmits through linear control systems. We explain the jump
of system states in the presence of nonsmooth inputs in add-
on servo enhancement, and derive formulas to

Youla-parameterization-based loop shaping [3]. [4]. Either for
general low-frequency enhancement [5]-[7], o for the exten
sions to structured disturbance rejection [8]-[10], disturbance
observers usually update the commands at the input side of
the plant. Youla parameterization can be parameterized either
as an add-on compensation at the plant input side [11], [12]
or a combined compensation at the plant input and controller
input [13]. nu In feedforward-related control, adaptive or

f the The results
are_then appllcd to devise fast transient responses over the
tra e of add-on de he input of the plant.
\p]) ation mmpm to a manufacturing control system are
conducted, with si n and experimental results that validate
he developed theorctical tools.

Index  Terms—Disturbance rejection, nonsmooth  inputs,
transient control.

INTRODUCTION

LUG-IN or add-on control design is central for servo
enhancements in control engineering. In order to provide

a storage capacity in the terabyte scale, a modern hard disk
drive contains more than 900000 data tracks within 1 in of the
disk. Correspondingly, the width of each track, called track
pitch (TP), can easily fall below 30 nm. During read/write
operations, servo control must maintain a tracking error that
is below 10% TP while strong external disturbances can induce
tracking errors that are as large as 70% TP. Such large errors
can only be attenuated by adding plug-in control commands.

As another example, in high-speed wafer scanning for semi-
conductor manufacturing, [1] showed that 99.97% of the force
commands iin the positioning system are contributions of add
on feedforward control

In feedback algorithms, add-on servo is central for a large
class of design schemes that require a baseline feedback
controller. Two examples are: disturbance observers [2] and

Manuscript received January 27, 2016: revised January 22, 2017; aceepted

2017 Dt of iblcaion Marh 10.201:dt ofcuet vesion

2018. Manuscript received in final form February 16, 201
The research is supported in part by the UTC-IASE Breakihrough Award
Recommended by Associate Editor S. Galeani. (Corresponding auth
Xu Chen.

Theauthors s wih he Depuiment of Vsl Egineing. Universsy
of Connecticut, Stoms 9 Us tianyu jiang @uconn.cdu
xchen@uconn.cdu).

Color versions of one or more of the figures in this paper are available
online at hup:/iceexplore.

Digial Object denifie 10.1109/TCST2017.2672399

forwar [15]-[17] can be con-

figured as add-on algorithms eiher at the plant input or at the
reference input (see more details in Section IIT)

Fundamentally, add-on control brings servo enhancement
by introducing new dynamic properties in closed-loop signals.
Such a process induces certain degrees of nonsmoothness in
the signals. For meeting future demands in high-precision
systems, itis essential to understand what types of systems and
add-on changes create large transient, and what are the math-
ematical relationships between the signal nonsmoothness and
the induced transient. The importance of such considerations is
verified in simulation and experiments in [18] and [19], which
compared the transient performance in different feedforward
control algorithms. Still, a full theoretical solution to the prob-
lem is intrinsically nontrivial, except for simple discontinuities,
such as step and ramp signals. Despite the rich literature on
designs o achieve the desired steady-state performance, sparse
investigations on the transient in add-on compensation are
available, and a full understanding of the theoretical add-on
transient remains missing. This paper targets to bridge this gap.
The focuses are twofold. First, we develop l\nmm\wl results
about input-to-output discontinuity and reveal its practical
importance for the transient performance in control design.
Second, new investigations are made to examine the transient
characteristics in different add-on control designs. We derive
an exact mathematical formula for computing the char
in system outputs when the input and/or its derivatives have
discontinuities, and provide computation of the associated

ansient response. One central result we obtain is that, the
common choice of performing add-on control at the input side
of the plant yields undesired long transients, if there are delays
during wrning ON the compensation. Solution of the problem
is discussed in detail and verified on a precision motion control
platform in semiconductor manufacturing

The remainder of this paper is organized as follows.
Section 11 describes the wafer scanner hardware on which
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Transmission of Signal Nonsmoothness
and Transient Improvement in
Add-On Servo Control

Tianyu Jiang

Abstract—
performance co ns. Despite the
capah f greatly enhancing the steady-state performance,
addon compensation can fatroduce ontpt dscoutioalty md
signifi sient response. Motivated by the vast application
nd m. e mmul importanc n control designs, this paper
nd igates how general nonsmoothness in signals
transmits through lincar control systems. We explain the jump
of system states in the presence of nonsmooth inputs in add-
cement, and derive formulas to mathematically
of the The results
are_then .l]lphul to devise fast transient responses over the
e of add-on design at the input of the plant.
n'camples 0 o manufacturing conirol system are
ed, with simulation and experimental results that validate

he developed theoretical took.

on servo ml' n

Index Terms—Disturbance rejection, nonsmooth inputs,
transient control.

1. INTRODUCTION
LUG-IN or add-on control design is central for servo
enhancements in control engineering. In order to provide
a storage capacity in the terabyte scale, a moder hard disk
drive contains more than 900000 data tracks within I in of the
disk. Correspondingly, the width of each track, called track
pitch (TP), can easily fall below 30 nm. During read/write
operations, servo control must maintain a tracking error that
is below 10% TP while strong external disturbances can induce
tracking errors that are as large as 70% TP. Such large errors
can only be attenuated by adding plug-in control commands.
As another example, in high-speed wafer scanning for semi-
conductor manufacturing, [1] showed that 99.97% of the force
commands in the positioning system are contributions of add-
on feedforward control.
In feedback algorithms, add-on servo is central for a large
class of design schemes that require a baseline feedback

controller. Two examples are: disturbance observers [2] and
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Youla-parameterization-based loop shaping [3], [4]. Either for

eral low-frequency enhancement [5]-(7), or for the exten
sions to structured disturbance rejection [8]-[10], disturbance
observers usually update the commands at the input side of
the plant. Youla parameterization can be parameterized either
as an add-on compensation at the plant input side [11], [1
or a combined compensation at the plant input and controller
input [13], [14]. In feedforward-related control, adaptive or
sensor-based feedforward compensation [15]-[17] can be con
figured as add-on algorithms either at the plant input or at the
reference input (see more details in Section III).

Fundamentally, add-on control brings servo enhancement
by introducing new dynamic properties in closed-loop signals.
Such a process induces certain degrees of nonsmoothness in
the signals. For meeting future demands in high-precision
systems, it is essential to understand what types of systems and
add-on changes create large transient, and what are the math
ematical relationships between the signal nonsmoothness and
the induced transient. The importance of such considerations is
verified in simulation and experiments in [18] and [19], which
compared the transient performance in different feedforward
control algorithms. Still, a full theoretical solution to the prob-
lem is intrinsically nontrivial, except for simple discontinuities,
such as step and ramp signals. Despite the rich literature on
designs to achieve the desired steady-state performance, sparse
investigations on the transient in add-on compensation are
available, and a full understanding of the theoretical add-on
transient remains missing. This paper targets to bridge this gap.
The focuses are twofold. First, we develop theoretical results
about input-to-output discontinuity and reveal its practical
importance for the transient performance in control design
Second, new investigations are made to examine the transient
characteristics in different add-on control designs. We derive
an exact mathematical formula for computing the changes
in system outputs when the input and/or its derivatives have
discontinuities, and provide computation of the associated
transient response. One central result we obtain is that, the
common choice of performing add-on control at the input side
of the plant yields undesired long transients, if there are delays
during trning ON the compensation. Solution of the problem
is discussed in detail and verified on a precision motion control
platform in semiconductor manufacturing

The remainder of this paper is organized as follows
Section II describes the wafer scanner hardware on which
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Fig. 10 Experimental comparison of add-on vibration compensations

compensation turned ON at 0.1 s, 1o attenuate a S00-Hz external vibration

(the residual errors are from an intemal 18-Hz motor force ripple

rapidly with respect to time; and the obtained conclusions in
the paper are increasingly important for avoiding large servo
errors during controller implementation.

As a second example, we apply the developed tools to
analyze a switched control scheme. Let d = 0 in Fig. 2
Consider the case of t g a reference r as shown in the
top plot of Fig. 11(a), which consists of a 10-Hz periodic
signal and a 100-Hz signal that starts at around 0.6 s. r is
designed to contain no discontinuities itself. To track the more
aggressive 100-Hz reference signal, the feedback controlles
switches to a more aggressive mode C2 = 40000 x (1 +
3/5 +0.02 5/(18000 s + 1)) at around 0.75 s, resulting in
the improved tracking in Fig. 11(a). However, a detailed look
at the control output indicates a significant increase of [u(7)|
as shown in Fig. 11(b). As the saturation limits of the control
input are —10 and 10 V. such high-amplitude control inputs are
extremely dangerous for application in practice, despite that
the tracking error appears to be well controlled in simulation.
Applying Theorem 2 to analyze the overlooked danger, one
can find that due to the jump in the input to Ca. a significant
discontinuity occurs in the output of Cy: u(rf) — u(ty) =

991.2 Vs ir(1 ) ity ) = 1.76255 x 107 V/s. The calculated

991.2 V jump in the control command can be seen to match
well with the actual signal in Fig. 11(b). Furthermore, applyin
Proposition 5 gives the star-marked solid line in Fig. 11(c).
which shows that the transient induced from the discontinuity
in C2 indeed is the main contributor of the abruptness in the
overall control command,

With the prediction in Fig. 11(c), one can turn ON the input
to C first and slightly delay the engagement of the output of
C2, 10 avoid injecting the high-amplitude signals in the closed
loop. For instance, a 20-step delay in tuming ON the output
of C3 gives the servo results in Fig. 12, where in the top plot,
the control command is seen to be maintained well under the
saturation limits (actually no visual discontinuity or overshoot
is observable from the new control command); and in the

AL
A

position error (m) position (m)

4tme (s) ©°

‘m

00 in: ~20V~20V/

Detall during switch: 0.6s~0.85

02 4 [
time (s)
®)

ful control command
ransient due to discontinuty

0756 e (s) 07565
©

Fig. 11 Closed-loop signals with dircct controller switching. (a) Ref
ence and tracking error. (b) Corresponding control input. (c) Decomposition
of control command: the transient due (o discontinuity dominates in the
postswitching transient control command.

s
Ly

06 08 1

ontrol input (V)

i
i

position error (m)

04 06 08
time (s)

Closed-loop signals with smoothened switchin

bottom plot, the error remains to be controlled with a slight
0.05 s longer transient compared with Fig. 11(a).2

2Certainly, the transient can be further controlled using advanced switchin
mechanism. This paper focuses on providing the fundamental root ca
mathematical analysis tools.
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Laplace transform of the Dirac impulse

> L{5(t)} = [T e t(t)dt=e ¥ =1
> because [;° 0(t)f(t)dt = f{0)

Properties of Laplace transform

o,




Linearity

For any «, 8 € C and functions f(t), g(t), let

F(s) = L{f(1)}, G(s) = L{g(t)}

then

L{af(t) + Be(t)} = aF(s) + BG(s)

Differentiation

Defining
) = 19
Fls) = £{A19)
then

L{f(t)} = sF(s) — A0)

via integration by parts:
L{At)} = /Ooo e StAt)dt
_ /Ooo ded_tStf(t)dt-F {e_stf(t)}Z:Ooo
= 5/0 e *tf(t)dt — 0) = sF(s) — f{0)




Integration

Definin
: Fs) = (A1)}

then

z{ Otf(f)df} — ~F(s)

at

Multiplication by e~

Defining
F(s) = L{f(1)}
then
C{e D)} = F(s+ a)
Example:

1 —aty _ 1
Ly =3 Ll =
L{sin(wi)} = szj—au2 Llesin(we)} = (s+ a;; + w?
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Multiplication by t

Defining
Fis) = £}
then
£{tp) = -
Example: 1

Time delay 7

Defining
F(s) = L{f(t)}

then

L{ft—T7)}=¢e " F(s)




Convolution

Given f(t), g(t), and

(fxg)(t) = i it —7)g(T)dr = (g% )(t)

then

L{(fxg)(t)} = F(s)G(s)

hence we have

5(t) —={ G(s) —g(t) = L7 {G(s)}

because

1 —— G(s) |—= Y(s) = G(s) x 1

Initial Value Theorem

If 01) = limo, f(t) exists, then

f04+) = lim sF(s)

S—00




Final Value Theorem

If lims o0 f(t) exists,

then
lim f{t) = lim sF(s)

t—o00 s—0

Example: find the final value of the system corresponding to:

3(s+2 3
Yi(s) = 5(52—(|—2J;—|—)10)’ Yals) = s—2

Common Laplace transform pairs

ft)  Fs) (1) F(s)
sinwt = e L
2 + w? s+ a
S 1
coswt 520&%2) t %
s
tx(t) — 2 -
x(1) ds s3 .
itt) / X(s)ds te 5
s (S‘I‘ azd
o(t) 1 e ?sin (wt 5
(s+ a)° + w?
1
1(r) = e %' cos (wt) 5+23
J (s+ a)° + w?
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Overview of inverse Laplace transform: modularity and
decomposition

goal: to break a large Laplace transform into small blocks, so that we
can use elemental examples of Laplace transfer functions:

we will use examples to demonstrate strategies for common fractional
expansions

Real and distinct roots in A(s)

example 1

residues:

K1 = limg_sG(s) =1

Ky =lims_,_4(s+ 4)G(s) = -2
K; = lims,_g(s+8)G(s) =1



Coding partial fraction expansions

% MATLAB

syms s

G = 32/s/(s+4)/(s+8)
partfrac(G)

# Python

Sympy
s = sympy.symbols('s')
G = 32/s/(s+4)/(s+8)
print (sympy. apart(G))

Real and repeated roots in A(s)

example 2

2 K1

K> Ks

O = GiDs 127  s+1

K3 = lims_,_o(s+2)?G(s) = —2
Ki = Iims_>_1(5+ 1)G(S) =2

for K>, we hit both sides with (s-+ 2)2 then differentiate once w.r.t. s,

to get

K, = lim i(s—l— 2)2G(s) = —2

s——2ds

+5—|—2

e
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Coding partial fraction expansions

# Python

sympy
s = sympy.symbols('s"')
G = 2/(s+1)/(s+2) **2
print (sympy.apart(G))

Solution of a first-order ODE

example 1: Let a > 0,b> 0, y(0) = yp € R, obtain the solution to the
ODE:

H(t) = —ay(t) + b1(1)
where 1(t) = { é: :i 8
Laplace transform: L{y(t)} = sY(s) — y(0)

= solution in Laplace domain:

1 b 1 b [1 1
9= 0 = 0 ()

apply inverse Laplace transform: y(t) = L7 1{Y(s)} = ...

solution:

8/17



Solution of a first-order ODE

example 1: a>0,b> 0,y(0) = yo € R:

1 b

s+ ay(O) i s(s+ a)

A1) = —ay(t) + b1(t) = Y(s) =

HD) = e*(0) + 2(1(1) ~ &)

observations:
from the ODE, y(c0) = 2

using final value theorem,

lim y(t) = lim sY(s) = 1—;

t—o00 s—0

Solution of a first-order ODE

example 2: Let a > 0,b> 0, y(0) = yp € R, obtain the solution to the
ODE:
H(t) = —ay(t) + bi(t)
Laplace transform: L{y(t)} = sY(s) — v
= solution in Laplace domain: Y(s) = ;1‘3()/0 + b)
apply inverse Laplace transform: y(t) = £L71{Y(s)} = e 3 (yy + b)
Q: what's the initial value from initial value theorem? what does the
impulse do to the initial condition?

10/17



Connecting two domains

n-th order differential equation:

dny dn—ly _ d"u dm—l U _

e —l—an—lw-i—' eFaiytagy = bmwﬁ—bm—lw—l—' - +b1u+bou
n—1

where y(0) = 0, %ﬂtzo =0,..., %’\tzo =0

applying Laplace transform yields
(s"+ ap_15"" 4+ a0)Y(5) = (bms™ + bp_15""t + - 4 bo)U(s)

= V(s = bms™ + bp—15""1 + - + by U(s)
o s"4a, sl 4 g

Transfer functions

V) b b 4t b

A(s) = 0: characteristic equation (C.E.)
roots of C.E.: poles of G(s)
roots of B(s) = 0: zeros of G(s)

m < n: realizability condition
G(s) is called

proper if n> m

strictly properif n > m

examples: Gi(s) = K, Gu(s) = ?ka




Coding transfer functions in Python

control co
matplotlib.pyplot plt
AREORy np
num [1,2] # Numerator co-efficients
den [1,2,3] # Denominator co-efficients
sys_tf = co.tf(num,den)
print(sys_tf)
poles = co.pole(sys_tf)
zeros = co.zero(sys_tf)
print ('\nSystem Poles = ', poles, '\nSystem Zeros = ', zeros)

T,yout = co.step_response(sys_tf)
plt. figure(l,figsize = (6,4))
plt.plot(T,yout)

plt.grid(True)

plt.ylabel("y")

plt.zlabel("Time (sec)")
plt.show()

Coding transfer functions in Python

control co

matplotlib.pyplot plt

numpy np
num [1,2] # Numerator co-efficients
den [1,2,3] # Denominator co-efficients
sys_tf = co.tf(num,den)

T,yout = co.step_response(sys_tf)

ul = np. full((1,1len(T)),2) # Create an array of 2's

u2 = np.sin(T)

T,yout_ul co. forced_response(sys_tf,T,ul) # Response to input 1
T,yout_u2 co. forced_response(sys_tf,T,u2) # Response to input 2




The DC gain

_ Y(s)  bms"+ bm_1s"" 1 4+ -+ + by

G —
(S) U(S) sn 1 an—lsn_l + -4 ag

DC gain: the ratio of a stable system’s output to its input after all
transients have decayed

can use the Final Value Theorem to find the DC gain:

DC gain of G(s) = lim sY(s) = lim sG(s)1 = lim G(s)

s—0 s—0 S s—0

example: find the DC gain of Gi(s) = K and Gy(s) = ;ka Try (i)
solve the ODE and (ii) the Final Value Theorem

The DC gain in Matlab and Python

7% MATLAB

s = tf('s");

G = (2%s+3)/(4*s™2+3%*s+1);
dcgain(G)

# Python

control co
s = co.tf('s")
G = (2%s8+3)/(4xs**2+3*s+1) ;
print(co.dcgain(G))



The DC gain in Matlab and Python

find the DC gain of the system corresponding to Y»(s) = 225

# Python

control co
H = co.tf([O, 3],[1, -2])
print(co.dcgain(H))
T, yout = co.step_response(H)
print (yout)

exercise: verify the result in Matlab

is the result correct?
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The Z transform approach to Ordinary difference
Equations (OdEs)

/Z Transform

OdE Algebraic equation
: Easy
.7 Easy Arithmetic
' Easy
OdE solution Algebraic solution

Inverse Z Transform

analogous to Laplace transform for continuous-time signals




Definition

let x(k) be a real discrete-time sequence that is zero if k < 0
the (one-sided) Z transform of x(k) is

X(z) & Z{x(k)} = > x(k)z ¥
k=0

= x(0) + x(1)z7t + x(2)z° + ...

where z€ C

a linear operator: Z {af(k) + Bg(k)} = aZ {fk)} + BZ {g(k)}

the series 1 4+ v 4 2 + ... converges to 1% for |y| < 1 [region of

2]
convergence (ROC)]

1_,.)/N+1

(also, recall that ZLV:o VK = T ity # 1)

Example: geometric sequence {a*}°,

— 1
Z’yk—l_7
k=0
NGEES
1
Q- k_—k -4
Z{a}_ZﬁOaZ - 1 — g7 1 T z—a




Example: step sequence (discrete-time unit step function)

1
1—az1

Z{a"} =

1 I
]_(k): ? v )=
0, Vk=...,—1,0

210} = 2{aY,, = |7 | = &

Example: discrete-time impulse

k =
sy ={ v K0
0, otherwise
i

Z{6(k)} =1




Exercise: cos(wgk)

) F2) ROC
5(k) 1 All z
a1 (k) I }z—l 1z| > |4
—ak1(—k—1) [ o 1z| < |4
ka1 (K) ¥ —azazll)2 2l > a
—kak1(—k — 1) i 32321)12 1z| < |4
cos(wok) T 122_—1Zcosc((chE;ji) o 1zl > 1
Mok e 471
Feosloo) e g
ak sin(wok) az " sin(wo) |z| > |4

1 —2az 1 cos(wp) + a°z—2




Properties of Z transform: time shift

let Z{x(k)} = X(z) and x(k) =0 Vk <0

one-step delay:

Z{xk—1)} =D x(k—1)z7* =D x(k—1)z "+ x(-1)
k=0 k=1

= Zx(k— 1)z 1271 4 x(—1)
k=1

=7 1 X(2) + x(—1 = | 771 X(2)

analogously, Z{x(k+ 1)} = Yo x(k-+ 1)z { = 2X(2) — 2x(0)
thus, if x(k+ 1) = Ax(k) + Bu(k) and x(0) = 0,

zX(2) = AX(2) + BU(2) = X(2) = (zI — A)"BU(2)

provided that (z/ — A) is invertible
Solving difference equations

Solve the difference equation
y(k) +3y(k—1) 4+ 2y(k — 2) = u(k — 2)

where y(—2) = y(—1) = 0 and u(k) = 1(k).
Z{yk— 1)} = 7 Z{(K)} = 7 V(2)
Zik—2)} = 2 Z{k— 1)} = 2¥(2)
Z{U(k—2)} = z72U(2)
= (14+3z 1 +2272)Y(2) = z72U(2)

1
2 —|—3z—|—2U(Z)

= | Y(2)




Solving difference equations

Solve the difference equation
y(k) +3y(k—1) 4+ 2y(k — 2) = u(k — 2)

where y(—2) = y(—1) = 0 and u(k) = 1(k).

1 1
2 43z42 Uiz) = (z4+2)(z+ 1) Uz)
u(k) = 1(k) = U(z2) = 1/(1 — z71)
= Y(z) = (2_1)(;2)(2“) — %?21 + %;22 — %;21 (careful with the
partial fraction expansion)

inverse Z transform then gives
y(k) = 31(k) + L(—2)k = L(~1)*, k>0

From difference equation to transfer functions

general discrete-time OdE:

v(k)+ap—1y(k—1)+---+aoy(k—n) = bpu(k+m—n)+- - -+ bou(k—n)
where y(k) =0 Vk <0
applying Z transform to the OdE yields
(" + an1Z" P+ -+ a0) Y(2) = (bmZ" + bmo1Z" -+ o) U(2)
hence

bynz™ + bm_lzm_l <+ + b1z+ by

Y(z) = U(2)

2"+ a, 12" 4+ -+ a1z + ag

-

~
Gyu(z): discrete-time transfer function
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DC gain of discrete-time transfer functions

general discrete-time OdE and transfer function:

v(k)+ap—1y(k—1)+---+aoy(k—n) = bpu(k+m—n)+- - -+ bou(k— n)

bnz™ + bm_lzm_l <+ + bi1z+ by

Y(z) = U(z)

2"+ a, 12" 4.+ a1z4+ a

-

~"

Gyu(2): discrete-time transfer function

assuming constant input and convergent output, then at steady state,

YK = y(k—1) = - = y(k— n) £ ys, anc
uk+m—n)=uk+m—n—1)=---=ulk—n) £ ug
Yss + an—1Yss + -+ + aoyss = bmuss+"'+bouss

thus,

DC gain of Gy,(z) = 1 b a1t ta Gyu(2)|,_,

Transfer functions in two domains

y(k) + an—iy(k— 1)+ -+ + aoy(k — n) = bpu(k+ m —n) + --- + bou(k — n)
B(z)  bmZ" 4 bpm-1Z2""" -+ biz+ by

G,u(2) = —
= Gnl2) A(2) 2"+ ap_12" 1+ -+ a1z+ ao
V.S.
d"y(t) d"ty(t) o, d"u(t) d"tu(t)
T + an—1 g + + 30}/(1') = bmW + bm—lw + + bOU(t)
B . .
Gou(s) = (s) _ bns™ + -+ + bis+ bo
A(s) s"+a, 1"+ ...+ a15s+ ag
Properties Gyu(s) Gyu(2)
poles and zeros roots of A(s) and B(s) roots of A(z) and B(z)
causality condition n>m n>m

DC gain / steady-state
response to unit step G,,(0) Gyu(1)
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Additional useful properties of Z transform

time shifting (assuming x(k) = 0 if kK < 0):
Z{x(k—nq)} =z "X(2)

Z-domain scaling: Z {a*x(k)} = X (a7'2)
. . . dX(z

differentiation: Z {kx(k)} = —z#

time reversal: Z {x(—k)} = X(z71)

convolution: let (k) x g(k) £ Y"1 o f(k— j) g(j), then

Z{f(k) x g(k)} = F(2) G(2)

initial value theorem: f(0) = lim,_ F(2)

final value theorem: limy_, oo f(k) = lim,—1 (z— 1) F(2), if
limy_,~ (k) exists and is finite

Mortgage payment

image you borrow $100,000 (e.g., for a mortgage)
annual percent rate: APR = 4.0%

plan to pay off in 30 years with fixed monthly payments
interest computed monthly

what is your monthly payment?




Mortgage payment

borrow $100,000 = initial debt y(0) = 100, 000
APR = 4.0% = MPR = *%% —0.0033
pay off in 30 years (N = 30 x 12 = 360 months) = y(N) =0
debt at month k4 1:
y(k+1)=(14+ MPR)y(k) — b 1(k)
-

3 monthly payment

= Y(2) = 755/(0) + 7510

= Y() = 30 + 12 (e~ )
= y(k) = a(0) + 12

= p= 2O _ 447742

aN—1
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Why state space?

static/memoryless system: present output depends only on its present
input: y(k) = flu(k))

dynamic system: present output depends on past and its present
input,

e.g., Y(k) = Ru(k),u(k—1),...,u(k—n),...)
described by differential or difference equations, or have time delays

how much information from the past is needed?
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The concept of states of a dynamic system

> the state x(t) is the information you need at time t that together with
future values of the input, will let you compute future values of the

output y

» |oosely speaking:
> the “aggregated effect of past inputs”
» the necessary “memory” that the dynamic system keeps at each time

instance

Example

position: y(t)

k
( )

Sl
3

» to predict the future motion, we need to know

» current position and velocity
» future force

» = states: position and velocity




The order of a dynamic system

position: y(t)

k
( )

—— u=F

S i gy
3

» the number, n of state variables that is necessary and sufficient to
uniquely describe the system

» for a given dynamic system,

» the choice of state variables is not unique
» however, its order n is fixed
» i.e. you need not more than n but not less than n state variables

States of a discrete-time system

consider a discrete-time dynamic system:
(k) —— 2Ystem }—>y(k)
X1 9X24...4Xn

» the state at any instance k. is the minimum set of variables,

Xl(ko)a X2(ko), s 7Xn(k0)

that fully describe the system and its response for k > k, to any given
set of inputs

» loosely speaking, xi(ko), x2(ko), - , Xn(ko) defines the system'’s
memory
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Discrete-time state-space description

0 ——

general case

x(k+ 1) = f(x(k), u(k), k)
Y(K) = h(x(k), u(k), k)

u(k): input
y(k): output
x(k): state
(
(

x(k+1) =

y(k) =

fl-): state Eq
h(-): output Eq

Continuous-time state-space description

u(t) —
general case
P _ 1), u(). 1
( t) = h(x(t), u(t), t)

System

X1 9XDgeeey Xn

}—>y(k)

linear time-invariant (LTI) case

x(k+1)
y(k) = CX(

Ax(k) + Bu(
k) + Du(

-
~

k)

Y (A, B, C, D) denotes a
state-space realization

also written as > = AlB
W — ' CclD

System |y (o)
LTI case
dx(t)
— = Ax(t) + Bu(t)
y(t) = Cx(t) 4+ Du(t)



Example: mass-spring-damper

position: y(t)

k
( )

—— u=F

S i gy
3

‘mass position ]
=
p(t)
v(t)
~~~

mass velocity

Example: mass-spring-damper

position: y(t)

k
( )

— u=F

S 1
3




Coding a state-space system in MATLAB

A = [0,1;-3,-2];

B = [0;1];

c = [2,1];

D = 0;

sys_ss = ss(A,B,C,D)

[yout, T] = step(sys_ss);
figure, plot(T, yout)

Coding a state-space system in Python

control co

matplotlib.pyplot plt

numpy as np
np.array([[0,1],[-3,-2]])
np.array([[0],[1]1])
np.array([2,1])
np.array([0])

Sys_ss co.ss(A,B,C,D)
print (sys_ss)

T,yout co.step_response(sys_ss)

plt. figure(l,figsize = (6,4))
plt.plot(T,yout)
plt.grid(True)
plt.ylabel("y")
plt.zlabel("Time (sec)")
plt.show()




Modeling: Relationship Between State-Space
Models and Transfer Functions

Xu Chen

University of Washington

Continuous-time LTI state-space description

Syst
(6 T |y

E‘X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)




Recap: LTI input/output description

Syst
(6 M =y

let u(t) € R and y(t) € R, then

Y(t) = (g* u)(1)

~ /Otg(t—T)u(T)dT

where g(t) is the system's impulse response
Laplace domain:

Y(s) = G(s)U(s)
Y(s) = LIN(B)}, Uls) = L{u(t)}, G(s) = L{g(t)}

From state space to transfer function
given A€ R™" Bc R™! CeRY™" DeR,

Ax(t) + Bu(t

=1
~
X
—~~
N
I
—~
~

7 — (C(sl— A)IB+ D £: G(s)

—the transfer function between v and y




Analogously for discrete-time systems

for Ac R™*n Be R™1 Ce R DeR,

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

U

when x(0) = 0, we have

Y(2)

7 — z| — -1 é; Z
U = = A 1B+ D2 6(2)

—the transfer function between u and y

From state space to transfer function: Observations

el
th(t) = ApxnX(t) + Bnax1u(t)

Y(t) = Cixnx(t) + Du(t)

dimensions:
. -1
G(s)=_C (sI—A) B +D

1xn nxn nx1

uniqueness: G(s) is unique given the state-space model
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Matrix inverse

11
~ det(M)

where Adj(M) = {Cofactor matrix of M} "

Adj(M)

1 2 3 Ci1 Ci2 (13
eg:. M= |0 4 5], {Cofactor matrix of M} = |1 2 o3
1 0 6 C31 C32 C33
4 5 0 5 0 4
where ¢11 = 0 6‘ =24, c1p = — 1 6‘ =5 c3= 10 = —4,
2 3 1 3 1 2
== 6‘——12,C22—'1 6|—3,C23——‘1 O'_2'
2 3 1 3 1 2
C31—‘4 5'——2,C32——‘0 5|——5,C33—‘0 4‘—4

Mass-spring-damper

position: y(t)

k
( )

—> u=F

S 1
3

x(t) A ) (1) B
(1) Qgﬂlﬁﬂl




Mass-spring-damper




Mass-spring-damper

Putting the inverse in yields

s —11"
s+2 1770]
oty I
B P24 Loy K
namely
1
G(s) = AL

Numerical example in MATLAB

position: y(t)

k
( )

=1; k=2; b=1,;
[0 1; -k/m -b/m];
= [0; 1/m];

= [1 0];

D
sys = ss(A4,B,C,D)

[num,den] = ss2tf(A,B,C,D);
sys_tf = tf(num,den)
figure, step(sys)

figure, step(sys_tf)




Numerical example in Python

control co
numpy np

.array([[0,1], [-k/m,-b/m]])
.array([[0], [1/m]])
.array([1,0])
.array([0])
sys = co.ss(A,B,C,D)
print(sys)
sys_tf = co.ss2tf(sys)
print(sys_tf)

print (co.poles(sys))
print (co.poles(sys_tf))

Exercise
0
Given the following state-space system parameters: A = | —2
0
-6 0 -3
B=|-2 1 0], C= 0 1 O,D: 100 , obtain the
0 2 3 0 01 0 0 -1

transfer function G(s).
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Canonical Forms of State-Space Systems

Xu Chen

University of Washington

Goal

the realization problem:

9| AlB
oo - B [ef5]

existence and uniqueness: the same system can have infinite amount
of state-space representations: e.g.

X =Ax+Bu |x =Ax+3Bu
y =2Cx

y =Cx

canonical realizations exist

relationship between different realizations?

unit problem:

B ng2 + b1s+ by
N 3 4 axs? + a1s+ ag

G(s)




Recall

position: y(t)

k
( )

—— u=F

S i gy
3

_ 1
G(S) " ms>+bs+k
chose position y(t) and velocity y(t) as state variables

5/ 40

From spring mass damper to modules with unity numerator

1
u $3+ars?+ays+ag Y

choose similarly:

X1=Y, X0 =X1 =Y, X3=Xo =Y

=
d X1 0 1 0 X1 0
E’ X2 = 0 0 1 x |+ 0 |u
X3 —ag —di —az X3 1
X1
= [ 1 00 ] Xo
X3

6/40



Controllable canonical form (ccf)

. Ssiziiiljii’ao I Y
» choose x; such that
1 X1
Y 3 4+ a»s? + ars+ ag ‘ bys” + bis + bo }—>y
» the first part
] |

= x1)

3 + axs? + a;s+ ag ‘

is now familiar

Controllable canonical form (ccf)

1 X1
s3+aps?+ajstag b252 + b1s+ bo }—> y

U(s)

X () — N 25 303 _
1(s) 3+ aps? + a1s+ ao X1 aX A a0k = U
> let xo = X1, X3 = Xo = X3 = —apx3 — aiXo — agpX1 + U
> =
4 | xa(®) 0 1 0 x1(t) 0
o xo(t) | = 0 0 1 xp(t) | + | 0 | u(t)
X3(t) —ag —ai1 —a» X3(t) 1
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Controllable canonical form (ccf)

1 X1
3+aps2+a;s+ag }% b252 + b1s+ by }—>y

_ U(s)
S84+ a,s% 4+ a1s + ag

Xl(S) = X1+ axxy +aixy +agxy =u

let xo = X1, X3 =Xp = X3 = —apx3 — aixp — agx1 + U
for the output:

Y(S) = (b252 + bi1s+ bo) Xl(S) =y=0by x1 +b1 x1 +bpx1
~~— ~~

X3 X2

Xl(t

)
y(t) = [ bp b1 by ] XQ(t)
X3(t)

Controllable canonical form (ccf)

U ——

1 X1
s3+aps?+ajstag b252 + b1s+ bo }—> y

X2 :5(1, X3 :5(2

y=0by x1 +b1 x1 +boxy
—~— —~—
X3 X2

putting everything in matrix form:

d x1(t) 0 1 0 x1(t) 0
o Xg(t) = 0 0 1 Xz(t) + 10
X3(t) —ap —ai —ar X3(t) 1

x1(t)

y(t) = [ bp b1 bo ] Xg(t)

x3(1)




Block diagram realization of ccf

d x1(t) 0 1 0 x1(t) 0
p x(t) | = 0 0 1 xo(t) |+ | 0 | u(t)
X3(1.') —ap —ai —a X3(t) 1
Xl(t)
y( t) = [ bo b1 b ] Xz(t)
x3(t)
by
+
b
+
U(S) +O % X3 % X2 % X1 bo 4):
O a
Qﬁi ai
ao
General ccf
general single-input single-output transfer function:
b, 1s" 1 ...+ p b
5 [ S L N B
"+ ap—1""  + -+ a1s+ ao
the following realizes G(s)
[ 0 1 0 0
0 0
>, - [ Ac Bc] _ 0
Ce | De 0 0 0 1
—dp —ad1 —dp—2 —dp-1
bO bl bn—2 bn—l

this realization is called the controllable canonical form
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ccf example

P position: y(t)
(T
—— u=F
n
i
b m
gt _ [0 T i), |0
Ao, ~ 1 ) [ (2] w
—— —— =~
x(t) A x(t) B
y(t)]
t) =1|1 0
Ao =94
cC S
x(t)
a slightly modified form of the ccf =
1 1 1
G — =
(s) ms2—|-%s—|—§ ms? + bs + k

Observable canonical form (ocf)

b252 + b15—|— bo
Y(s) =
(s) 3+ axs2 + a1s+ ag °)

= Y(s) =

_%wg_gwg_gwg+%mg+%m@+%W@

in a block diagram, the above looks like

by

¥(s)

bo —’O

()
N\

+
| =
+

0=
+

0|

()
W/

ar

a1

4o

15 /40



Observable canonical form

by

+
0 [
X

)
/

by

0=
&
)
/

[N
R

ap

a0

a1

here, the states are connected by

Y(s) = Xi(s)
sX1(s) = —ax Xi(s) + Xa(s) + b U(s)
sXa(s) = —a1 X1(s) + Xsz(s) + b1 U(s) =
sX3(s) = —apX1(s) + boU(s)

Observable canonical form

(x1(t) = —apxa(t) + xo(t) + bou(t)
J x(t) = —aixi(t) + x3(t) + byu(t)
X3(t) :—agxl(t)erou(t)
(1) =xu(t)
—dan 1 0 b2
=x(t)=| —a1 0 1 | x(t)+ | b1 | u(t)
—a 0 O bo
R - L N
Ao Bo
y(t)zll 0 le(t)
Co

this is called the observable canonical form realization of G(s)

= —ayxq(t) + x3(t) + byu(t)
— —apx1(t) + bou(t)

(1)

x1(t) = —aox1(t) + xo(t) + bou(t)
(2)
(1)
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General ocf

general case for:

+d

G(S) B bn_lsn_l + -4+ b1s+ bg
__5”4—3n_15”_1%—"‘%-315%—30

observable canonical form:

—ap—1 1 0 ... O

—ap_o 0 :

ZO: [ /2_0 lB)O ] — . : . .0
° ° —al o --- 0 1

—2 0 --- 0 0

i 1 0 0 O

ocf in Python

control ct
Gs = ct.tf2ss([1,0,1],[1,2,10])
Gc, T = ct.canonical_form(Gs, 'observable')

ccf and ocf: no direct Matlab commands



Diagonal form

B(S) B b252 + b1s+ bg
A(s) B+ a8+ a1s+ ag
when the poles p; # p» # ps3, partial fractional expansion yields

G(s) =

ky ko k3 . B(s)
G(s) = —+ —+ ,k,'IllmS—,'—
() S—p1 S—pP2 S—p3 /pr( p)A(S)
+ OSXl % X1 kl .
+
p1 |
U(s) + Y(s)
+ OSX2 l X2 k2 _)(
+ +
p2 |
+ OSX3 % X3 k3 L]
1
p3
Diagonal form
+ sX X
O % Lk
+ J
p1
U(s) +| Ys)
+ sX X
O 2 55 ke PO—
+ J +
P2
+ sX X:
O= % 2o ks
+ J
P3
state-space realization:
P1 0 0 1

A= 0] P2 0 ,B: 1 ,C:[kl k2 k3],D:0
0 0 P3 1




Jordan form

if poles repeat, say,

B b2$2 + b1s+ by B b2$2 + b1s+ by
St amttasta (s—p1)(s— pm)

G(s)

2 Pl#PmER

then partial fraction expansion gives

ki = limsp G(s)(s— p1)
+ w/ ¢ ky =limg,,, G(s)(s— pm)?
ks =lims,p, dﬁs {G(s)(s— pm)z}

Jordan form

k k k
G(s) = —— + —2—
S—p1 (s—pm) S— Pm

has the block diagram realization:

i@ Ti a ki
+L J
P1
U(s) +| Y(s)
k3 O
+
RN X8 + 1| X k
) ) S 2
+ + J
pm < pm




Jordan form

i O 1| ki
+ J
p1
U(s) +| Ys)
S— ks O—
+
+ X3 + X:
O 1 O 1 oyl ke |
L T =
Pm < Pm

state-space realization (called the Jordan canonical form):

P1 0 0 1
A= 0 pn 1 |,B=1]0
0 0 pm 1

C=[k k k], D=0

Modified canonical form

if the system has complex poles, say,

G(S) B b252 + b1s+ by B kq as—+ [
S+ @mftasta s—p1 (s—0)? +w?
then
+ X
Q+ % : ki
Ml
u(s - NRC
+KJ
+ X: + X
Q+ % k w Q+ 71_ 2o ke
i— o L 0
T .

where k» = (B 4+ ag)/w and ka = o




Modified canonical form

g L%
o/ S
L p1
U(s)
+f\ 1 X3
o S w
+

= modified Jordan form:

pr 0 O 1
A= 0 o wil|,B=1]0
0 —w o 1




Transfer function State space

Easy

Continuous- and discrete-time state-space descriptions

System
Uu—> X19X2 5000y Xn .y
MO

x(t) = Ax(t) + Bu(t) x(k+ 1) = Ax(k) + Bu(k
y(t) = Cx(t) + Du(t y(k) = Cx(k) + Du(k
sX(s) = AX(s) + BU(s) zX(z) = AX(z) + BU(z)
Y(s) = CX(s) + DU(s) Y(z) = CX(2) + DU(z)

previous procedure applies to discrete-time systems
replace t with k, and Xx(t) with x(k+ 1)

replace s with z, and E‘ with | ,~1 ‘ in block diagrams
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DT controllable canonical form

B b222 + b1z+ by
73 + 3222 +a1Zz+ ag

G(2)

same transfer-function structure
= same A, B, C, D matrices as those in CT

controllable canonical form:

X1 (k—|— 1) 0 1 0 X1 (k)
X2 (k—|— 1) = 0 0 1 |: X2 (k)
X3 (k—l— 1) —ap —a1 —ar X3 (k)

x1 (k)

y(k) = [ bo b1 b2 } X2 (k)

x3 ()

DT controllable canonical form

b222 + b1z + by

G(Z) - 3+ 3222 + ai1z—+ ag
by
b
e O z ! % 1 % z1 o bo
O =

O @

a0




DT observable canonical form

B b222 + b1z+ by
A + 3222 +a1Zz+ ag

G(2)

observable canonical form:

X1 (k—l— ].) —a 1 0 X1 (k)
X (k—|— 1) = —a; 0 1 X2 (k)
X3 (k—|— 1) —a 0 O X3 (k)

x1 (k)

y(k)=[1 0 0] | x (k)

x3 (k)

DT diagonal form

b222 + b1z + by

G —
(2) 24 a2 + a1z + ag

diagonal form (distinct poles):

G(z2) = -+ -+
Z—p1r Z—p2 Z—pP3
x1 (k+1) pr 0 O x1 (k
x(k+1) | =] 0 p» O xo (k
x3(k+1) 0 0 p3 x3 (k




DT Jordan form 1

B b222 + b1z+ by
73 + 3222 +a1Zz+ ag

G(2)

Jordan form (2 repeated poles):

Kk ko
G(Z) T . p1 (Z— Pm)2

X1 (k—i— 1) pit O 0 X1 (
X2 (k+ 1) = 0 pmn 1 X2 (
X3 (k+ 1) 0 0 pm X3(
X1 (k)

y(k) = [ kl k2 k3 } X2 (k)

X3 (k)

DT Jordan form 2

b222 + b1z + by

G —
(2) 24 a2 + a1z + ag

Jordan form (2 complex poles):

x3 (k+1) 0 —w o X3
x1 (k)
y(k) = [ kl k2 k3 ] X2 (k)
X3 (k)

where ko = (8 + ao)/w, k3 = «a.




Exercise

obtain the controllable canonical form:
1 3

6(2) = it

Relation between different realizations

given one realization ¥ and a nonsingular T € R"*"
can define new states: Tx" = x
then

(t) = Ax(t) + Bu(t) = dﬂt(rx*(t)) — AT (8) + Bu(t).

T IATx*(t) + T 1Bu(t)
y(t) = CTx*(t) + Du(t)

™M
*
—N
s
—
N
I

namely

. [ T1AT| T'B
CT | D

also realizes G(s) and is said to be similar to ¥
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Relation between different realizations

verify that the following realize the same system




Xu Chen January 12, 2023

1 From Transfer Function to State Space: State-Space Canonical Forms

It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse
problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization

theory.
A single transfer function has infinite amount of state-space representations. Consider, for example, the two
models

{:'v = Az + Bu {x :Ax—l—%Bu

y =Cx ’ y =2Cz

which share the same transfer function C(sI — A)~!B.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan
form, using the following unit problem:

b282 +b1s + by
s34+ ass? +a1s+ag

G(s) = (1)

1.1 Controllable Canonical Form.

Consider first: )
Y = U (s). 2
(s) T ——. (s) (2)

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

$1:y7$2=$129a 333:3'32:?% (3)
which gives
d I 0 1 0 X 0
pn To | = 0 0 1 22 |+ | 0 |u (4)
I3 —ap —ai; —asg I3 1
Z1
Y= [ 1 00 ] T2
€3

For the general case in (1), i.e., ¥ + a2 + a1y + agy = baii + b1u + bou, there are terms with respect to the
derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose
(1) as

1
2 5
u $3 + az52 + a1 + ag bas® +bis+by —>Y (5)

The first part of the connection

1
3 +ags? +ai1s+ ag

looks exactly like what we had in (2). Denote the output here as §. Then we have

PR 0 1 0 T 0
— | x| = 0 0 1 xo |+ | 0 | u,
dt
I3 —agp —a; —az I3 1
where
1 =7, Ty =T1, T3 = L. (7)

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the
second part of (5) is nothing but

Tl —= b282+b1$+b0 =Y




Xu Chen 1.1 Controllable Canonical Form. January 12, 2023
So
T
Y = body + by + bowy = boxs +bywo +bowy = [ by b1 by | | @2
T3

The above procedure constructs the controllable canonical form of the third-order transfer function (1):

d .1?1(t) 0 1 0 Z‘1(t) 0
pr xa(t) | = 0 0 1 x2(t) |+ | 0 | u(t) (8)
’Ig(t) —ag —a; —ag zg(t) 1
z1(t)
y(t) = [ bo b1 bg ] 332(75)
z3(t)
In a block diagram, the state-space system looks like
[b2]
+
— +
U(s) + ~ 1| X 1 |[X2 1 X1 ™ S Y(s)
b s s s 0] ~
O
O (@]
o]
Example 1. Obtain the controllable canonical forms of the following systems
241
© Gls)= s34+ 2s+10
1 0
— Comparing the transfer function with the general form yields A = 11, B=|0]|, C =
—-10 -2 0 1
1 0 1]
bos? +b b
.« G(s) = — 05 4; 15 + by
$° +apgs® +a1s+ as
1 0
— Notice the difference in the coefficients. We have A = 1{,B=1|0]|,C= [bg by bo]
—a2 —ai; Qo 1
General Case.
For a single-input single-output transfer function
by18" 144 b b
G(s) = 15 -ﬁ; + 015+ bo td,
s" 4+ ap_18"" 4+ -+ ar1s+ag
we can verify that
0 1 0 0 0]
0 0 0 0 0
ZC:[AC Bc:|: : : : : (9)
Ce | De 0 0 0 1 |0
—ag —ap —Qp_2 —Gp_1 |1
| bo b1 bp—o  bp—1 | d |




Xu Chen 1.2 Observable Canonical Form.

January 12, 2023

realizes G(s). This realization is called the controllable canonical form.

1.2 Observable Canonical Form.

Consider again
b2$2 + b15 —|— bo

Yis) = Gle)Us) = 53 + azs? + a1s + ag

Expanding and dividing by s3 yield

1 1 1 1 1 1
<1 —ﬁ—agg —&—als—z —|—a083> Y(s)= (bgs —|—b15—2 +b033> U(s)

and therefore
1 1 1
Y(s) = 7(12;}/(5) - als—QY(s) — aos—gY(s)

1 1 1
+ bQ;U(S) =+ bl?U(S) + bOSfSU(S)

In a block diagram, the above looks like

2]
(1]
Y
Uls) (b | + 1+ X 1]+ A 1 (5)
190 | ) ) s ) s
2]
1]
o]
or more specifically,
i
1]
+ +
U('S) m + l X3 f& l X2 A 1 X1 Y(S)
190 | ) s ) s ) s
@]
1]
o |



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

Here, the states are connected by

Y(s) = Xi(s) y(t) = 21 (1)
sX1(s) = —axX1(s) + Xa(s) + b2U(s) Z1(t) = —agx1(t) + x2(t) + bau(t)
sXo(s) = —a1 X1(s) + X5(s) + b1U(s) = Z2(t) = —ar1x1(t) + x3(t) + byu(t)
sX3(s) = —apX1(s) + boU(s) &3(t) = —apx1(t) + bou(t)

or in matrix form:

—as 1 0 by
gt)=1| —a1r 0 1 |z@®)+ | by | u(t)
—ap 0 O bo
—_— ~——
A, B,
yt)=[1 0 0 ]x(t)
c

The above is called the observable canonical form realization of G(s).

Exercise 1. Verify that C,(sI — A,)" !B, = G(s).

General Case.

In the general case, the observable canonical form of the transfer function

bn_lsn_l + -+ bis+ by

G(s) = — +d
s"t+ap—18s" + - ta1s+tap
is _ _
—ap_1 1 -+ 0 O byp_q
—ap_2 0 -+ 0 0fby_20
B : : N :
Eo _ o o _ : : : : :
[Co Do] —a; 0 -+ 0 1| b
—ag 0 b
i 1 d |

Exercise 2. Obtain the controllable and observable canonical forms of

k1
G(s) = .
(5) = — o
1.3 Diagonal and Jordan canonical forms.
1.3.1 Diagonal form.
When
B(S) . 5282—|—b18+b0

A(s) s34 aps? +ays+ag
and the poles of the transfer function p; # ps # p3, we can write, using partial fractional expansion,
ky ko ks B(s)

- S _p )22
Gl 3—P1+8—p2+8—}?3’k1 Pl—’rgi(s pl)A(S)’

namely

(10)



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

+ SX1

o =R B NS
O s Ll
+
U(s) +1 Y(s)
+ SX2 1 X2
o5 e f—O—
+ +
+ _sX X
o= 5 1Ak
S
+
The state-space realization of the above is
P1 0 0 1
A= 0 P2 0 7B: 1 ,C:[kl kg kg],D:O
0 0 P3 1
1.3.2 Jordan form.
If poles repeat, say,
bys? +b b bys? +b b
Gls) = T8t %  _ Pa¥ £hIt %S, p1# pm ER,

$3 + ags? +ais + ag (s —p1)(s — pm)

then partial fraction expansion gives

where

ky = lim G(s)(s — pm)
S*}pm
d
k3 = gl_lglm s {G(s)(s — pm)*}
In state space, we have
+ X
) 1 ! ky
S
+T
7]
Ul(s) +| Y(s)
— ks O
X3 *
t~ 1 oy 1| X
N s L/ S 2
i |
[P | [P |
[ e



Xu Chen 1.4 Modified canonical form. January 12, 2023

The state-space realization of the above, called the Jordan canonical form,' is

pr 0 0 1
A= 0 Pm 1 ,BZ 0 ,Cz[kl kg kg},DZO
0 0 pm 1

1.4 Modified canonical form.
If the system has complex poles, say,

b282 + bi1s + by b282 + bi1s + by
Gls) = 2 ~s_ )2 1 2
Bt ass?+ars+ag (s—p1)[(s—0)?+ w?

then partial fraction expansion gives

k1 n as+ 0
s=p (s—o0) +w?

G(s) =

which has the graphical representation as below:

+/‘\ l X1 k}
7]
U(s) n Y(s)
— ks O
+
X3 ¥

T~ 1 W T~ 1 2k |

+ ] s T+ s

- 7

w

Here ko = (8 4 ao)/w and ks = .
You should be able to check that the block diagram matches with the transfer function realization.
The above can be realized by the modified Jordan form in state space:

P1 0 0 1
A= 0 (o} w ,B: 0 ,C:[k‘l k‘g k3},D:0
0 —w o 1

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms

The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only

difference is that we use
Z{z(k—n)}=2""X(2),

instead of

c {j;x(t)} = s"X(s),

assuming zero state initial conditions.
We have the fundamental relationships:

x (k) 21 x(k—1)

1The A matrix is called a Jordan matrix.



Xu Chen 1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms January 12, 2023

X (2) 21 271X (2)
z(k+n) 21 x(k+n-1)
The discrete-time state-space description of a general transfer function G(z) is
z(k+1)= Az (k) + Bu (k)
y (k) = Cx (k) + Du (k)
and satisfies G (z) = C (21 — A)"' B+ D.
Take again a third-order system as the example:

o b222 —+ blz —+ bo o 622’71 —+ 612’72 —+ boZiB
T B4 a2t az+ar l4aszl+az 2+ a9z 3
The A, B, C, D matrices of the canonical forms are exactly the same as those in continuous-time cases.

G (2)

Controllable canonical form:

xy (k+1) 0 1 0
zo(k+1) | =] 0 0 1
$3(k+1)
(
(
(

Observable canonical form:

X (k? + 1) —as 1 0 X1 k) bo
T2 (k‘ + 1) = —ay 1 T2 k) + 1 b1 |u (/f)
T3 (k‘ + 1) —ap 0 0 T3 k) bo

o

z1(k+1) pp 0 0 x1 (k) 1
zo(k+1) | =] 0 pm 1 zo (k) |+ | 0 |u(k)
z3 (k+1) 0 0 pm x3 (k) 1
1 (k)
y (k) = [ kl k/’g ]{?3 ] To (l{i)
3 (k)



Xu Chen 1.6 Similar Realizations January 12, 2023

Jordan form (2 complex poles):

k az+
G(S)_Z—Pl (z—0)* +w?
2o (k+1) | = 0 o w zo (k) |+ | 0 |u(k)
zg(k+1) 0 —w o x3 (k) 1
I (k)
Yy (k}) = [ kl kg k3 ] To (k)
3 (k)

where ks = (8 + ao)/w, ks = a.
Exercise: obtain the controllable canonical form for the following systems

-3

_ z T —z
® G(S) T 14221422

__ bgz%4biztbs
° G(s)= z23+aoz?+aiztasz

1.6 Similar Realizations

Besides the canonical forms, other system realizations exist. Let us begin with the realization ¥ of some transfer
function G(s). Let T' € C™*™ be nonsingular. We can define new states by:

Tz* = x.

We can rewrite the differential equations defining 3 in terms of these new states by plugging in x = Tx*:

d

= (Ta* (1) = AT (1) + Bu(®),

to obtain
T YATz*(t) + T~ Bu(t)
y(t) = CTz*(t) + Du(t)

I\
*
—N
-
*
—
I

This new realization

-1 -1
2*{T AT |T7'B (12)

cr | D |
also realizes G(s) and is said to be similar to X.

Similar realizations are fundamentally the same. Indeed, we arrived at X, from X via nothing more than a
change of variables.

Exercise 3 (Another observable canonical form.). Verify that

—a9 1 0 bz
o —ai 0 1 b1
x= —ap 0 0 bo
1 0 0|d
is similar to
0 0 —Qp bo
x 1 0 —Qaq bl
X = 0 1 —ao bg
00 1 |d



Solution of LTI State-Space Equations

Xu Chen

University of Washington

HUMAN HEIGHT GROWTH PER MONTH, UNITED STATES (50TH PERCENTILE)
STARTING TIME INTERVAL: 0.5-1.5 MONTHS. STATURE AT 0.5 MONTHS: 52.7 CM (BOYS), 51.7 CM (GIRLS).

Population dynamics

prokaryotic fission

» 71 hour / division with infinite resource

100 2" 200 2" 400 2" 800 M7




Population dynamics

c
o
=
£
=
=Y
£

prokaryotic fission
~1 hour / division with infinite resource

100 2" 200 2" 400 2" 800 M.

after 1 day:

100 "> 200 > 400 = ... 100 x 2% = 1.7B!

=




Population dynamics

Number of seals
I w
(4] o
=) S
o o

3500

2500
o

1500
1975 1980 1985 1990 1995 2000

Year

"Environmental limits to population growth: Figure 1," by OpenStax
College, Biology, CC BY 4.0.
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The exponential function and population dynamics

Exponential Growth Logistic Growth

Carrying capacity

Population size
Population size

more general population dynamics (w/ infinite resources)

dN -~ ~ N
= (birth rate — death rate) N = N (t) = "N (0)

logistic growth (w/ limited resources in reality)

dN K—-N KNpe™ K

— = N= N(t)= =

dt ' K = ( ) (K — No) + Nye™ 1+ —K;I(:VO et

6/69




The exponential function and the logistic S curve:
example

—— 20000/(1 + (20000 — 100)e~%-5¢/100)
0.5t

The logistic S curve

Kk
1+ K;/NO e—rt

0
can also be written as
K
1—|—e*"(t*to)

K: final value
r: logistic growth rate

t,: midpoint




The logistic S curve

K
K—Ngo .t
1+ o e

can also be written as
K
1—|-e—f(t—to)

K: final value
r: logistic growth rate

t,: midpoint

The logistic S curve

K
1+ K;INO e—rt
Y . — K=8000
can also be written as K=10000
K — K=12000
B ——— E——— —— K=14000
1+e—r(t—to)

K: final value
r: logistic growth rate

t,: midpoint




The logistic function in deep learning

transforms the input variables into a probability value between 0
and 1
represents the likelihood of the dependent variable being 1 or 0

11/69

General LTI continuout-time state equation

d
d—);:AerBu

Amen | B
Yy — nxn nxm
[ Cnyxn ‘ Dnyxm ]

to solve the vector equation x = Ax + Bu, we start with the
scalar case when x, a, b, u € R.

12/69



Introduction
The Solution to x = ax + bu

fundamental property of exponential functions

9,
dt

ie—at —at
dt

at at — _ze

= ae™",

x(t) = ax(t) + bu(t), a#0 =L’ eatx (1) — e *ax (t) =
e ?'bu(t)

namely,

% {e™x(t)} = e bu(t) & d{e x(t)} = e *bu(t)dt

t
—| e ¥x (t) = e x (ty) + / e “"bu(r)dr

to

The solution to x = ax + bu

t
e ¥x(t) = e x(to) + / e bu(r)dr

to

when t; = 0, we have

t
< (£) = ex(0) + / &7 by (7) dr
N—— 0

A\ .
free response ~~
forced response

4




About e

e=Y", Lk =271828...

n=0 n

also e = lim,_o (1 + %)n
Python demonstration:
import math
math.e
for ii in range(10):

print(sum(1/math.factorial(k) for k in range(ii)))
for ii in range(1,30):

print((14+1/ii)**ii)

The solution to x = ax + bu

Solution concepts of e?*x (0)

e = Z:ozo % -
2.71828. ..

e !~ 37%,

e 2 ~ 14%,

e 3 ~ 5%,

e 4 ~ 2%

time constant 7 =

L when a < 0: af-

1.5 . E]
— ter 37, e?x(0), the
transient has approx-

imately converged

)
o
=2
s

E
<
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The solution to x = ax + bu

Unit step response

When a < 0 and u(t) = 1(t) (the step function), the solution is
x(t) = 2(1 — e).

El

Amplitude

17 /69

* Fundamental Theorem of Differential Equations

addresses the question of whether a dynamical system has a unique solution or not.

Theorem

Consider x = f (x, t), x (to) = xo, with:
f (x, t) piecewise continuous in t (continuous except at finite
points of discontinuity)

f (x, t) Lipschitz continuous in x (satisfy the cone
constraint:||f (x,t) — f (y,t) || < k(t) ||x — y|| where k (t) is
piecewise continuous)
then there exists a unique function of time ¢ (-) : Ry — R” which is
continuous almost everywhere and satisfies

¢ (to) = xo

o(t)="~f(o(t),t), Vt € R.\D , where D is the set of
discontinuity points for f as a function of t.




The solution to nt"-order LTI systems

general state-space equation

] x(t) = Ax(t) + Bu(t) _ .
Y { (B = Cx(t) + Du(t) x(tp)) =x €R", AecR

solution

t
x(t) = A=)y, +/ A=) Bu(r)dr
N —

to

free response —~ <

forced response

t
y () = CeAltt—t)y 4 C / A=) By(7)dr + Du (1)
to

t

in both the free and the forced responses, computing et is key

eAlt=1). c3lled the transition matrix

The state transition matrix e”t

scalar case with a € R: Taylor expansion gives

1 1
eat:1+at+§(at)2+---+—I(at)”+...
n!

the transition scalar ®(t, tp) = e?(!~%) satisfies

d(t,t) =1 (transition to itself)
O(t3, t)P(t2, t1) = D(t3, t1) (consecutive transition)
O(ty, t1) = (11, 1) (reverse transition)

20/ 69



The state transition matrix et

matrix case with A € R"™":

1 1
eAt:I,,—|—At+§A2t2—i—---—i——|A”t”—|—...
n!

as |, and A’ are matrices of dimension n x n, et must € R™"

the transition matrix ®(t, ty) = e*(*=%) satisfies

e™ =1, o(t,t) = I,
eAtightz — pAltitt2) O(t3, t)P(tr, t1) = P(t3, 11)
e =[] ot t) = 71 (1.2)

note, however, that e*teBt = e(A+B)t if and only if AB = BA
(check by using Taylor expansion)

21/69

Computing a structured e via Taylor expansion

convenient when A is a diagonal or Jordan matrix

A1 0 0
the case with a diagonal matrix A= | 0 X, O
0 0 A3

A0 0 A0 0

A2=10 X 0 |,..., A= 0 XN 0

0 0 X3 0 0 A

all matrices on the right side of
At 1 2,2 1 nyn
n!

are easy to compute

22 /69



Computing a structured e via Taylor expansion

convenient when A is a diagonal or Jordan matrix

A1 0 0
the case with a diagonal matrix A= | 0 X, O
0 0 M3

1 1
eAt:/+At+§A2t2+---+—IA”t”+...
n!

(1 0 0 Mt 00 IN32 0 0
=10 1 0[+]| 0 Xt 0 |+ 0 X2 0 +...
| 0 0 1 0 0 Ast 0 0 INr
[ 1+ Mt+ A2+ 0 0
= 0 1+ Xt + 5M5t2 4. .. 0
i 0 0 1+ Ast 4+ 3A382 + ...

23 /69

Computing a structured e via Taylor expansion

A 0O
decompose A= | 0 A O
0 0 A

eAt _ e()\/3 t+Nt)

also, (A\kt) (Nt) = ANt? = (Nt) (Alst) and hence

e(>\l3 t+Nt) _ e/\/teNt

thus
.eAlt:eAtl \t Nt

At _ e()\l3t—|—Nt) _ At NE eMe

e e ¢

24 /69



Computing a structured e via Taylor expansion

N 010 QAL AN
A=10 X 0|+ 0 01
0 0 A 0 00
Ns N
N is nilpotent': N3 = N* = ... = 03, yielding
. . 0 1t &
eNt—l3—|—Nt+§N2t2—|—}—A)4’3t/3—l—/0 =10 1 ¢t
' 0 0 1
thus
Mt et ﬁe/\t
et=1 0 eM i‘e”
0 0 e

nil” ~ zero; “potent” ~ taking powers.
25 /69

Computing a structured e via Taylor expansion

Example (mass moving on a straight line with zero friction
and no external force)

aln]-Loo][x]

A

x(t) = e**x(0) where

SRR N IO O I O O O PR I O
- 00 2110 0[]0 0 T lo 1|

A\ 7

oo

26 / 69



A

Computing low-order e”f via column solutions

At

an intuition of the matrix entries in e”*t: consider:

. 0 1
XZAX:[O 1]X, x(0) = xo

o | st column | 2nd column 0
x(t) = e™"x(0) = 3'1/(?) :;2/(?) ] [ x(0)

= a1(t)x1(0) + a»(t)x2(0)

observation

I 11 1
_ O O M
L ] L 1

A

Computing low-order e”* via column solutions

: 0 1
X—AX—[O _1]X, x(0) = xo

hence, we can obtain e”t from:

write out x1(t) =xz(t) N x1(t) =e%x1(0) +/ %= o (7)d T
)-<2(t) :—Xz(t) 0

[ 1] t) =
let x(0) = (1) then th; N namely x(t) = [ (1) ]
let x(0) = 2 , then xo(t) = e " and x1(t) =1 — e, or more

1—et
compactly, x(t) = ot

1 1—¢t
0 et

using (1), write out directly et = {

28/ 69



A

Computing low-order e”f via column solutions

Exercise

Compute e*t where

Recall: population dynamics

prokaryotic fission
» 71 hour / division with infinite resource
> after 1 day:

100 "> 200 —> 400 ="~ ... —> 100 x 2** = L.7B!
an_

> or: N(k+1)=2N (k)= N (k) =2*N(0)




Discrete-time LTI case

discrete-time system:
x(k 4+ 1) = Ax(k) 4+ Bu(k), x(0) = xo,
iteration of the state-space equation gives:

u (ko)

u(lko +1
X(k) — Ak—koX (ko) s [Ak_ko_lB,Ak_ko_zB, . ,B] ( 0. )

u(k:— 1)

S x (k) = A ox (k +2Ak I Bu (j

free response

\ g
Ve

forced response

Discrete-time LTI case

k—1
x (k) = AFHox ( k)+ZA" =/ Bu ()

=ko
\ _J/
TV

forced response

free response

®(k, j) = A< the transition matrix:

d(k, k) =1
P(ks, ka)P(ko, k1) = P(ks, ki) ks > ko > ki
®(ko, k1) = ® ki, ko) if and only if A is nonsingular

32/69



The state transition matrix AX

similar to the continuous-time case, when A is a diagonal or Jordan
matrix, AX is easy

diagonal matrix A= | 0 X, 0 |: AA=| 0 X

Computing a structured A* via Taylor expansion

Jordan canonical form

o = O

A0
=10 A
0 0

> O O
\
_|_
y
o O O

2<OO|—l

A

@

= (Mz + N)¥

= (M) + k (AB)* " N + ( X ) (M3)<2 N2 4 ( /3‘ ) (M) 3N 4.

\ 7
~"

2comb|nat|on N3=N4=...=0/3

0 1 0 0 0 1
L kN0 0 1 +k(k2_1)A’<—2 0 0 0
0 0 0 0 0 0
kk)\kll >\k2
21
{o MK k)\" ]

0 0 MK

N
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Computing a structured A* via Taylor expansion

Exercise
Recall that ( g ) = 5k (k—1)(k—2). Show
A 1 0 0]
O A1 0
A= 0O 0 N 1
000 X
" Ak k)\"k—l Lk (k —k12Ak—2 %k(lk—(l)(k)—f)z)\"3 l
P KAk~ Lk (k— 1) A
A= 09 0 Ak KAk
0 0 0 Ak




Explicit computation of a general e

why another method: general matrices may not be diagonal or
Jordan

approach: transform a general matrix to a diagonal or Jordan
form, via similarity transformation

Computing e via similarity transformation

principle concept:

given
X(t) — AX(t) + BU(Z’)7 X(to) = Xg € R”7 A e RN

find a nonsingular T € R"*" such that a coordinate
transformation defined by x(t) = Tx*(t) yields

d
(T (£) = AT (1) + Bu(t
d * s -1 * —1
—x(t) = TIAT  x*(t)+ T 'Bu(t)
2£A: diagonal or Jordan B~
x*(0) = T 'x
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Computing e via similarity transformation

when u(t) =0

. i x=Tx* i * i -1 %
x(t) = Ax(t) = e (t) = T AT x*(t)

2A: diagonal or Jordan

A1 0
0 X

co-evm- [ ][ 38]- 58]
x(t) = Tx*(t) then yields

x(t) = TeMx*(0) = TeM T 1x

now x*(t) can be solved easily: e.g., if A = [

] then

on the other hand, x(t) = e*'xy =

eAt — Te/\t T—l

Similarity transformation

existence of solutions: T comes from the theory of eigenvalues
and eigenvectors in linear algebra
if Aand B € C™" are similar: A= TBT~!, T € C"™", then

their A” and B" are also similar: e.g.,
A2 =TBT 'TBT 1=71B?T!
their exponential matrices are also similar
eAt — TeBt T—l
as
1
TeB T~ = T(I,+ Bt + §B2t2 +..)T 1
1
= TLT P+ TBtT !+ 5 TB??T 1+ ...
1
:I+At+§A2t2+--- = M
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Similarity transformation

for A€ R™", an eigenvalue \ € C of A is the solution to the
characteristic equation

det (A— M) =0 (3)

the corresponding eigenvectors are the nonzero solutions to

At=Xt o (A=X)t=0 (4)

Similarity transformation

The case with distinct eigenvalues (diagonalization)

recall: when A € R"*" has n distinct eigenvalues such that

AXl = )\1X1
AX, = A\pX,
or equivalently X\ 0 ... 0
A
A1X17X27---7Xn]/:[X17X2>°'°7X”] O _2 : 0
a7 0 0 A,
A
[x1, %2, ..., X,| is square and invertible. Hence

A=TAT L, AN=T1AT



Example (Mechanical system with strong damping)

alel=1% 518

A

Cy —A 1
» find eigenvalues: det(A — A/) = det [ 5 _)\_3 ] =

A+2)(A+1) =N =2 =-1

» find associate eigenvectors:

> A\ = —2: (A—)\ll)t1:0:>t1: _12

> )\ = —1: (A_)\Ql)t2:O:>t2: _11

: 1 1
> define Tand A: T=[t t | = 5 1|

S e S

Example (Mechanical system with strong damping)
i X1 i 0 1 X1
dt | | | =2 -3 X2
A
1 1 ] -2 0
'T[—z —1_'/\[0 —1]

- ~1
1 1 -1 -1
-1 _ _
» compute T = 2 1] [2 1]

» compute et = TeMT 1 =T [ 0 e-lt ] T 1=

_e—2t +2e—t _e—2t _+_ e—t
Qe %t —De7t Qe _ ot




Similarity transform: diagonalization

Physical interpretations

diagonalized system:

|0 [HO ][ o)
Lo e |0 | T | etg(0)

x(t) = Tx*(t) = eM'x;(0)t; + e*2'x;(0)t, then decomposes the

state trajectory into two modes parallel to the two eigenvectors.

Similarity transform: diagonalization

Physical interpretations

if x(0) is aligned with one eigenvector, say, t;, then x3(0) =0
and x(t) = eMix}(0)t; + e*2x;(0)t, dictates that x(t) will stay
in the direction of t;

e., if the state initiates along the direction of one eigenvector,
then the free response will stay in that direction without “making
turns”

if Ay <0, then x(t) will move towards the origin of the state
space; if Ay =0, x(t) will stay at the initial point; and if
positive, x(t) will move away from the origin along t;

furthermore, the magnitude of \; determines the speed of
response
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Similarity transform: diagonalization

Physical interpretations: example

-

-1.5

E\ x, &
Oﬂge-ttz
L, x(0)
\ 0L1€-2tt1 \

0 0.5 1.5

Similarity transformation

The case with complex eigenvalues

consider the undamped spring-mass system

dix| | 0 1 X1 \2,1 o
a[)@][_l O][X2],det(A—)\l)/\—|—10=>)\1,2,iJ-

\ e
Ve

A

the eigenvectors are

>\1:jZ(A—jl)t1:Ojt1: 1]

—J

M=—j: (A+j)t,=0=t, = ] ] (complex conjugate of t7).

hence
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Similarity transformation

The case with complex eigenvalues

A
A2 = %
1 1 1 -
T = Tl
[J —J] 2[1 J ]
we have
et 0 cost sint
At T At—1 _ ~1_
en = Tem T _T[O eft]T [—sint cost]'

Similarity transformation

The case with complex eigenvalues

for a general A € R?*2 with complex eigenvalues o & jw, by using
T = [tr, t;], where tg and t; are the real and the imaginary parts of
t1, an eigenvector associated with \; = 0 + jw , x = Tx* transforms

x = Ax to
o w

()= |

and

o w
—w O e’tcoswt  e%tsinwt
e = ) .
—e%tsinwt et coswt
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

1 2

consider A = [ 0 1

]: two repeated eigenvalues A\ (A) = 1, and

(A—/\/)tl_lg g]tl—Oétl—[é].

No other linearly independent eigenvectors exist. What next?
A is already very similar to the Jordan form. Try instead

Alt b]=[t tz}[g\ i]

which requires At, = t; + Aty i.e.,

(A—Al)tz—t1<:>[8 S]fz_lcl)]:”?_lo%l

t, is linearly independent from t; = t; and t, span R2. (t, is called a
generalized eigenvector.)
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

for general 3 x 3 matrices with det(A/ — A) = (A — \,)3, i.e.,
A= X = A3 = )\, we look for T such that

A= TJT!

where J has three canonical forms:

Am 0 0 Am 10

N, | 0 Am 0 |,iil), | 0 An 1
0 0 Am 0 0 Ap |
Am 10 Am 0 0 ]

i), | 0 Am O |or| 0 Ap 1
0 0 Am 0 0 Ap |
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 0 0
i), A=TJT', J=| 0 X, O
0 0 M\,

this happens

when A has three linearly independent eigenvectors, i.e.,
(A— \,)t =0 yields t;, t,, and t3 that span R3.

mathematically: when nullity (A — A,,/) = 3, namely,
rank(A — A\,/) = 3 — nullity (A — X, /) = 0.

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 1 0 Am 0 0
i), A=TJT Y, J=1] 0 X, O [or | 0O Apn 1
0 0 An

this happens when (A — \,,/)t = 0 yields two linearly
independent solutions, i.e., when nullity (A — A1) =2

we then have, e.g., A, 1 0
Alti, b, 3] =[t1, o, 5] | 0 A O
0 0 A\,

S [Amt1, Bt + Amta, Ants] = [Aty, Aty Ats]

t; and t3 are the directly computed eigenvectors.
For t,, the second column of (5) gives

(A=At =1t

(5)
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 1 0
i), A=TJT Y, J=1 0 X, 1
0 0 An

this is for the case when (A — \,,/)t = 0 yields only one linearly
independent solution, i.e., when nullity(A — A,,/) =1

We then have Am 1 0
Alty, b, t3] = [t1, o, 8] | 0 Ap 1
0 0 M\,

= [)\mtla t1 + Amts, b + )\mt3] = [Atl, Aty At3]

yieIding(A At =0
(A— Anl) to = t1, (t : generalized eigenvector)
(A— Anl)ts = tp, (t3: generalized eigenvector)

Example

o [-11 Y . Jo1
A_ll 1],det(A—)\l)_)\ :>)\1_)\2—O,J—[0 0]

two repeated eigenvalues with rank(A — 0/) = 1 = only one

linearly independent eigenvector:(A—0/)t; =0=t; = [ 1 ]

generalized eigenvector:(A—0/)t, =t; = t, = [ (1) ]

coordinate transform matrix:

R R

1 0 elt  telt 1 0 1—t
At __ Jt—1 __ _
er =Tt _[1 1”0 eOt”—1 1]‘[4 1—|—t}
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ENIE

—1 1
observation:

’)\1_0,1'1_[1

A—[_l 1],det(A—>\l)—)\2:>)\1—>\2—O.

1
response is characterized by €% =1

] implies that if x;(0) = x2(0) then the

> ie., x1(t) = x1(0) = x2(0) = x2(t). This makes sense because
x1 = —x1 + Xo from the state equation.

Example (Multiple eigenvectors)
Obtain the eigenvectors of
-2 2 =3

A=| 2 1 —6| (M=5 A=2X=-3).
~1 -2 0




Generalized eigenvectors

Physical interpretation.

Amp 10
when x = Ax, A= TJT 1 with J = O )\m 0 |, we have
Am
emt
MO OEREE
0
ermt  tetm
=T| 0 e\t o 2730 ©
0 0 et

if the initial condition is in the direction of t;, i.e.,
x*(0) = [x{(0),0,0]" and x;(0) # 0, the above equation yields
x(t) = x;(0)t; et

Generalized eigenvectors
Physical interpretation Cont'd.

Am 1 0
when x = Ax, A=TJT twithJ=| 0 )X, 0 |, wehave
0 0 M\,
e’mt  ternt
x(t)=eMx(0)=T 1| 0 e 0 | T 'x(0)
0 0 et
e?mt  ternt |
=T| 0 e 0 |FTx(0)
0 0 et

if x(0) starts in the direction of t,, i.e., x*(0) = [0, x5(0),0]",
then x(t) = x3(0)(t te** + t,e*t). In this case, the response
does not remain in the direction of t, but is confined in the

subspace spanned by t; and t,
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Example

Obtain eigenvalues of J and e’ by inspection:

-1 0 0 0 0
0 -2 1 0 0
J=| 0 -1 =2 0 0
0 0 0 -3 1

0 0 0 0 -3]

Explicit computation of AX
everything in getting the similarity transform applies to the DT case:
A= TNT tor AK=TJT .

J JK

A1 0 A0
oo T ]

A1 0 AR Lk (k= 1) Ak
{0 A 1] {o Ak k k-1 ]
0 0 X\ 0 0 Ak
A1 0 DU Lt S
{o A0 1 { 0 Ak 0 ]

0 0 X3 0 0 A

| coskf  sin kO

o w r [—sink@ cosk@]
[—w O’] r=+vo? + w?

0 =tan 1 ¥
g
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Example

-1 0 0
Write down J* for J=| 0 —1 1 | and
0 0 -1
[ 10 1 0 0 0
0 —-10 O 0 0
= 0 0 -2 0 0
0 0 0 -—100 1
0 0 0 -1 -100

5. Transition Matrix via Inverse Transformation




Transition matrix via inverse transformation

Continuous-time system

state eq. x(t) = Ax(t) + Bu(t), x(0) = xo
t
solution MO —|—/ A= Bu(r)dr
f < g
ree response N~

forced response

transition matrix et

On the other hand, from Laplace transform:

x(t) = Ax(t) + Bu(t) = X(s) = (sl — A" x(0)+ (sl — A) " BU(s)
free r;srponse forced:ersponse

Comparing x(t) and X(s) gives

e =L (sl - A7} (6)

Example
Example
A_[ o w]
—WwW O
eAtIL_l S—0 —W i
w S—0

El{(s—0;2+w2 [5_—w0 Sf(’”
e‘”[ cos (wt)  sin(wt) ]

—sin (wt) cos (wt)



Transition matrix via inverse transformation (DT

case)

Discrete-time system

state eq. x(k +1) = Ax(k) + Bu(k), x(0) = xo
(k—1)
solution x(k) = Ax(0) + )  AkBu())
~—— .
free response \J_O .,
forced ?gsponse
transition matrix transition matrix A*

On the other hand, from Z transform:
X(z) = (21 — A" zx(0) + (zI — A BU(s)

Hence

A= Z7H (2l — A) 7'z}

Example

-1

z—0 W
(z—o0) —|—w2 —Ww Z—=0

z —rcosft rsind
—2rcos@z+r2 —rsinf)  z—rcosb

W
r=vo2+4+w? 0=tan 1=

o
o | coskf sinkf
| —sink® cos k6

H
/—/H/—/H/—/H
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Example

0.7 0.3

Consider A = [ 0.1 05

]. We have

(zIl —A) "z

_ | (z-08)(z—04) (z-08)(z-04)

01z _ 2(z=07)
(z—0.8)(z—0.4) (z—0.8)(z—0.4)
[ 0.75z e 0.25z 0.75z 0.75z ]

z—0.8 z—04 z—08 z—0.4
0.25z 0.25z 0.25z + 0.75z

z—0.8 z—04 z-0.8 z—0.4
o[ 075 (0.8) +0.25(0.4)* 0.75(0.8)" — 0.75 (0.4)"
| 0.25(0.8)" — 0.25(0.4)* 0.25(0.8)" 4 0.75 (0.4)"




Xu Chen

January 25, 2023

1 Solution of Time-Invariant State-Space Equations

1.1 Continuous-Time State-Space Solutions

1.1.1 The Solution to & = ax + bu

To solve the vector equation & = Az + Bu, we start with the scalar case when z,a,b,u € R. The solution can be
easily derived using one fundamental property of exponential functions, that

and

Consider the ODE

4
dt

at

— aeat7

() = ax(t) + bu(t), a # 0.

Since e~ # 0, the above is equivalent to

e i (t) — e ax (t) = e “bu(t),

namely,

d —at __ _—at
%{e z(t)} =e "bu(t),
& d{e ™z (t)} =e “bu(t)dt.

Integrating both sides from t to ¢; gives

ty
e Mg (ty) = e g (tg) —|—/ e bu (t) dt.

to

It does not matter whether we use t or 7 in the integration j;tgl e~ %bu (t) dt. Hence we can change notations and

get

t
ey (t) = e "ox (tg) + / e~ Tbu (1) dr,

¢
&z (t) = ety () + / e by (1) dr.

Taking ty = 0 gives

to

to

x(t) =

ez (0)
———

free response

¢
Jr/ ey (1) dr
0

forced response

(1)

where the free response is the part of the solution due only to initial conditions when no input is applied, and the
forced response is the part due to the input alone.

Solution Concepts.

Time Constant. When a < 0, e* is a decaying function. For the free response e*'z (0), the exponential

function satisfies e™! ~ 37%, 72 ~ 14%, =3 ~ 5%, and e~* ~ 2%. The time constant is defined as

la’

After three time constants, the free response reduces to 5% of its initial value. Roughly, we say the free response

has died down.

Graphically, the exponential function looks like:
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Impulse Response
25 T

a>0

Amplitude

a=20

051 4

a<O

. . . L L
0 0.5 1 15 2 25 3
Time (sec)

Unit Step Response. When a < 0 and u(t) = 1(¢) (the step function), the solution is

x(t) b

= m(l—ea ).

Step Response

Q|
~

0.6 4

Amplitude
~

041 7 4

021 B

L
0.5 1 15 2 25
Time (sec)

1.1.2 * Fundamental Theorem of Differential Equations
The following theorem addresses the question of whether a dynamical system has a unique solution or not.
Theorem 1. Consider & = f (z,t), x (to) = xo, with:
e f(x,t) piecewise continuous in ¢
e f(x,t) Lipschitz continuous in x
then there exists a unique function of time ¢ (-) : Ry — R™ which is continuous almost everywhere and satisfies
o ¢ (tg) =xo
o ¢(t)=f(p(t),t), vVt € R,\D , where D is the set of discontinuity points for f as a function of ¢.
Remark 1. Piecewise continuous functions are continuous except at finite points of discontinuity.
e example 1: f(t) = |¢]

e example 2:
Alx, t S tl
AQiL’, t>11

f(x’t) :{
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Lipschitz continuous functions are those that satisfy the cone constraint:

1f (@) = f (. 0) | <k (2) [l —yll
where k (t) is piecewise continuous.
e example: f(x) = Az + B
e a graphical representation of a Lipschitz function is that it must stay within a cone in the space of (x, f (x))

e a function is Lipschitz continuous if it is continuously differentiable with its derivative bounded everywhere.
This is a sufficient condition. Functions can be Lipschitz continuous but not differentiable: e.g., the saturation
function and f (z) = |z|.

e A continuous function is not necessarily Lipschitz continuous at all: e.g., a function whose derivative at x = 0
is infinity.
1.1.3 The Solution to ntP-order LTI System

Consider the general state-space equation

[ #(t) = Ax(t) + Bu(t) - § .
o { y(t) = Cx(t) + Du(t) x(tp) =x0 €R™, A€R

Only the first equation here is a differential equation. Once we solve this equation for z(t), we can find y(t) very
easily using the second equation. Also, f (z,t) = Az + Bu satisfies the conditions in Fundamental Theorem for
Differential Equations. A unique solution thus exists. The solution of the state-space equations is given in closed
form by

t
a(t) = ety 4 / A7) Bu(r)dr (2)
N——

to

free response

forced response

Derivation of the general state-space solution. Since e™4* # 0, i(t) = Az(t) + Bu(t) is equivalent

o () A (1) = B 1)
namely
% (e=4a (t)) = e **Bu (t)
- d(e—Atx (t)) = e MBu(t)dt

Integrating both sides from tg to t; gives
ty
e~ Ay (ty) = e=Mog (to) + / e M Bu (t) dt
to
Changing notations from ¢ to 7 in the integral yields
t
e Atx (t) = e ox (1)) +/ e A7 Bu (1) dr
to

t
ez (t) = e (1) + / A=) Bu (1) dr

to

In both the free and the forced responses, computing the matrix e is key. eA(*~%) is called the transition

matrix, and can be computed using a few handy results in linear algebra.
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1.1.4 The State Transition Matrix e4?

For the scalar case with a € R, Tylor expansion gives

1 1
e =14 at+ —(at)> + -+ = (at)" +
2 n!
The transition scalar ®(t,ty) = e*(*=%) satisfies
O(t,t) =1 (transition to itself)
D(t3,t2)P(ta,t1) = P(ts,t1) (consecutive transition)
D(ty,t1) = D' (t1,t2) (reverse transition)
For the matrix case with A € R™*"
At 1 242 1 nyn
e :I+At+§At +"'+5At + ...

As I and A? are matrices of dimension n X n, we confirm that et € R?*".

The state transition matrix ®(t,t) = eA(*~%0) satisfies

A=,
e At pAt2 _ LA(t1+t2)
oAt _ [eAt]*l )
Similar to the scalar case, it can be shown that
O(t,t)=1

D(tg,t1) = D7 (t1,12).

Note, however, that e4teB! = ¢(A+B)t if and only if AB = BA. (Check by using Tylor expansion.)

At.

When A is a diagonal or Jordan matrix, the Tylor expansion formula readily generates e":

A0 0 A0 0
Diagonal matrix A=| 0 Xy 0 In thiscase A =] 0 A3 0 is also diagonal and hence
0 0 Xs 0 0 A}
At 1 242 1 nyn
e =I+At+§At +"'+jAt +...
n!
1 0 0 Mt 00 Iz 0 0
=10 1 04| 0 Xt 0 |+ 0 X% 0 +..
| 0 0 1 0 0 Ast 0 0 IA3¢?
[ 1+ Mt + 2A3% + 0 0
= 0 1+ Xt + 5A382 4 ... 0
i 0 0 L+ Ast+ $A382 4 ...
et 00
= 0 e 0
0 0 eMst
A1 0
Jordan canonical form A= | 0 A 1 |. Decompose
0 0 A
A0 O 010
A=(0 X 0 |+]0 0 1
0 0 A 0 00
Al3 N
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Then

At — ((Mst+Nt)

As (Mt) (Nt) = ANt? = (Nt) (Mt), we have et = eMteNt = NNt Also, N has the special property of
N3 = N* = ... =013, yielding

t2
Nt L \rag0 Lt
e =T+ Nt+ §N t“=10 1 ¢
0 0 1
Thus 2
AL et At
At MG oAt
e’ = 0 e te 9)
0 0 M
Remark 2 (Nilpotent matrices). The matrix
01 0
N=|0 01
0 0 0

is a nilpotent matrix that equals to zero when raised to a positive integral power. (“nil” ~ zero; “potent” ~ taking
powers.) When taking powers of N, the off-diagonal 1 elements march to the top right corner and finally vanish.

Example. Consider a mass moving on a straight line with zero friction and no external force. Let x; and x2 be
be the position and the velocity of the mass, respectively. The state-space description of the system is

alnl-lo]ln]

Columns of the state-transition matrix. We discuss an intuition of the matrix entries in the et matrix.
Consider the system equation

a'c:Ax:[O 1 }n z(0) = z,

with the solution

w0 = | g | =20 = a0,

2(0) = [ 01 S 2(t) = an(t).
Hence, we can obtain e from the following, without using explicitly the Tylor expansion,

L write out a:cl(t) =xa(t) N x1(t) =e% 21 (0) —|—/0 O gy (1) dr = %21 (0) —|—/0 e Txo(0)dr
T2 (t) =22 (t) (t) _—t (0)
X9 =€ T2
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2. let 2(0) = [ (1) }, then v , namely z(t) = { (1) }

ot
3. let x(0) = [ (1) }, then z5(t) = e % and x1(t) = 1 — e~ *, or more compactly, z(t) = [ 1 ,et }

4. using the property of (10), write out directly
1 1—et
A
Exercise. Use the above method to compute e”* where

A:

o O X
S > =
> = O

1.2 Discrete-Time LTI State-Space Solutions

For the discrete-time system
x(k+1) = Az(k) + Bu(k), z(0) = zo,

iteration of the state-space equation gives

z(k+1) = Az (k) + Bu (k) )
u (ko)
(k) = AF oy (k) + [ Ab—ko-lp  pk—ko=2p ... B ] u(k0:+ 1) 12
u(k’.— 1)
k—1
el (k) = Ao (k) + Y AT Bu() )
—_——

free response J=ko

forced response

where the transition matrix is defined by ®(k,j) = A*~7 and satisfies

Ok, k) =1
P(ks3, ko) (k2, k1) = P(ks, k1) ks > ko > k1
(ko k) = D71 (1, 10) if and only if A is nonsingular

1.2.1 The State Transition Matrix A*

Similar to the continuous-time case, when A is a diagonal or Jordan matrix, the Tylor expansion formula readily
generates A*. We have

M 00 Moo
e Diagonal matrix A= | 0 X 0 |[:AF=| 0 X 0
0 0 A | 0 0 N
A1 0 A 0 0 010
e Jordan canonical form A= | 0 A 1 | =0 X 0 [+ | 0 0 1 |: With the nilpotent N and the
0 0 A L0 0 A 000
A3 N
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commutative property (A3) N = N (AI3), we have

AF = (AI3 + N)F = (\L)" + k(ML) N + < F > (ML) 2 N2 + < g ) (ML) P N3 4

2
2 combmatlon N3=N4=...=0I3
01 0 0 0 1
- OAk +k>\’“1001+%/\’“2000
0 Ak 000 00 0
k )\k: 1 % )\k 2
=10 Ak kAk
0 0 Ak
Exercise. Show that
A1 00 NoRARTL S Sk (k= 1) A2 Lk (k= 1) (k—2) AF3
o x 10 k| 0 AR EAk—1 2k (k—1)AF2
A=lo o0 r1|74= 0 o AF kAR
00 0 X 0 0 0 AP

1.3 Explicit Computation of the State Transition Matrix e

General matrices may have structures other than the diagonal and Jordan canonical forms. However, via similar
transformation, we can readily transform a general matrix to a diagonal or Jordan form under a different choice of
state vectors.

Principle Concept.

1. Given
z(t) = Ax(t) + Bu(t), x(tp) = zo € R", A € R**"

we will find a nonsingular matrix 7' € R™*™ such that a coordinate transformation defined by z(t) = Tz*(¢)

yields
d .
% (Tx*(t)) = ATz*(t) + Bu(t)
%x*(t) =T AT 2*(t) + T~ 'Bu(t), z*(0) = T 'z

LA B>

where A is diagonal or in Jordan form.

2. Now z*(t) can be solved easily, and the free response is 2*(t) = e2*(0). For example, when A = [

At * et p*
we would readily obtain z*(t) = [ eO e’(\)ﬁ } { iigg; } [ Aot *Egg ]
2

3. As z(t) = Ta*(t), the above implies
z(t) = TeMT 1y

4. From the original state-space description, x(t) = e4*xy. Hence

’eAt — TeAtTfl

Existence of Solutions. The solution of T' comes from the theory of eigenvalues and eigenvectors in linear
algebra.
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More generally If two matrices A, B € C"*" are similar: A = TBT~!, T € C"*", then
o their A" and B” are also similar: e.g., AA =TBT 'TBT~' = TB?>T~!

e their exponential matrices are also similar
€At — TeBtTfl

as
1 1
TeP'T=!' = T(I + Bt + 53%2 +. )T =TIT ' 4+ TBT™ + §TBQt2T_1 +...

1
:I+At+§A2t2+-~-:e““’

Eigenvalues and Eigenvectors. The principle concept of computing e? in this section relies on the similarity
transform A = T~ 'AT, where A is structurally simple: i.e., in diagonal or Jordan form. We already observed
1t %

At *(0) eg. |: e)x .fl(O)

the resulting convenience in computing z*(t) = ez Moty (0) } Under the coordinate transformation
2

defined by z(t) = T'z*(t), we then have

M (0)

_ At, % e.g.
x(t) = Te™z"(0) = [t1,12] [ eXat i (0)

] =Mzt (0)t) 4 223 (0)ty

in other words, the state trajectory is conveniently decomposed into two modes along the directions defined by ¢4
and ts, the column vectors of T

In practice, A and T are obtained using the tools of eigenvalues and eigenvectors.

For A € R™*" an eigenvalue A € C of A is the solution to the characteristic equation

|det (A= \I) =0] (14)

The corresponding eigenvectors are the nonzero solutions to
At=X& (A-XHt=0 (15)
The case with distinct eigenvalues (diagonalization). When A € R™*™ has n distinct eigenvalues such
that

A.’L’l = )\1:171

ASCQ = )\21‘2

Ax,, = Ao

we can write the above as

A O 0
0 A
Alxy, 2o, ... xn] = [M121, Ao, ..., A\nZp] = [21, X2, . .., Ty 2
SR
A
- 0 0 An
A
The matrix [z1, Z2, . . ., Z,] is square. From linear algebra, the eigenvectors are linearly independent and [x1, x2, . . ., Z,]

is invertible. Hence
A=TAT ', A=T7'AT

Example 1. Mechanical system with strong damping
Consider a spring-mass-damper system with m = 1, £k = 2, b = 3. Let z; and x5 be the position and velocity of
the mass, respectively. We have

—s o —
To+2x1+3x2 =0 dt | x2 -2 -3 o
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-A 1

Find eigenvalues: det(A — AI) = det [ 9 _)_3

:| :()\+2)()\+1):>)\1:—2,>\2:—1

Find associate eigenvectors:

— A= -2 (A*/\lf)t1:O:>t1: |: _12:|

-\

—1: (A—)\gl)t220$t2: |: 11:|

o |1 1 A0 | -2 0
DeﬁneTandA.T—[tl t2]—|:2 1},A—[O )\2}_[ 0 1]
117" 1 -1

—1 . _ - -

Compute T+ = { 9 4 } = { 9 1 }
-2t -2t —t -2t | —t

At _ o At—1 e 0 | e 42 —e %t te

Compute e =TeMT— =T { 0 e-lt } T = { 9e—2t _ 9p—t  9p—2t _ o=t }

Physical interpretations Let us revisit the intuition at the beginning of this subsection:

x(t) = eMtzi(0)t; + e2tx}(0)t, decomposes the state trajectory into two modes along the direction of the
two eigenvectors ¢ and to.

The two modes are scaled by x7(0) and x5(0) defined from z(0) = Tx*(0), or more explicitly, z(0) =
[t1,t2][x%(0), 25(0)]T = 23(0)t; + 23(0)t2. This is nothing but decomposing x(0) into the sum of two vec-
tors along the directions of the eigenvectors; and x7(0) and z3(0) are the coefficients of the decomposition!

t] xz

aze-ttz
l, x(0)

~ x,

If the initial condition z(0) is aligned with one eigenvector, say, t1, then z3(0) = 0. The decomposition
x(t) = eMtai(0)t; + e 223(0)ty then dictates that x(t) will stay in the direction of ¢;. In other words, if the
state initiates along the direction of one eigenvector, then the free response will stay in that direction without
“making turns”. If A; < 0, then z(¢) will move towards the origin of the state space; if A\; = 0, x(¢) will stay
at the initial point; and if positive, 2(t) will move away from the origin along ¢;. Furthermore, the magnitude
of \; determines the speed of response.
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T1

L]
—]
—

-0.5

1.5 \ \\
-15 - -0.5 0.5 15
e~ 2t

//—\\
L

The case with complex eigenvalues Consider the undamped spring-mass system

d |z | 0 1 T ) _ — 4
a0 L[ ] a1 20 g =

A

The eigenvectors are
. . 1
Al =7: (A—j[)t1=0=>t1: |: ] :|
do=—j: (A+jDta=0=ty = [ jj ] (complex conjugate of t1).

Hence

T_ 1 1 T*lzl 1 —j At _ pAtp=1 _p eIt 0 p-1_ | cost sin t
i =5 |’ 211 4 | 0 et —sint cost |’

As an exercise, for a general A € R?*2 with complex eigenvalues o + jw, you can show that by using T' = [tg, t1]
where tp and ¢; are the real and the imaginary parts of ¢1, an eigenvector associated with Ay = o + jw , z = Tz*

transforms & = Az to
i o w "
ro=| 7, ¢ e
and

o ow |,
N e“tcoswt e sinwt
—etsinwt etcoswt |-

10
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A m())

X
><
X

@
—

>~
N—r

O =

The case with repeated eigenvalues, via generalized eigenvectors. Consider A = { 1 ] , which has

two repeated eigenvalues A (A) = 2 and
1
(A—)\I)t1:0:>t1: |: 0 :| .

No other linearly independent eigenvectors exist. How do we go further? As A is already very similar to the Jordan
form, we try instead

Al
Alty =]t t2][0 /\},
which requires Aty = t1 + Ao, i.e.,
0 2 1
0
:>t2_[0.5}

to is linearly independent from ¢1. Together, ¢; and to span the 2-dimensional vector space. As such, ¢ is called a
generalized eigenvector.

For general 3 x 3 matrices with det(A\] — A) = (A — \;,)3, i.e., A1 = Ao = A3 = A\, we look for 7" such that

A=TJT !

11
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where J has three canonical forms:

Am 00 Am 10 Am 0 0 Am 10
D, 1 0 Am 0 |,d), | 0 An O [or | 0O An 1 |,id), | 0 An 1
0 0 Am 0 0 Am 0 0 Am 0 0 Am

e Case i): this happens when A has three linearly independent eigenvectors, i.e., (A — A, I)t = 0 yields t1, t,
and t3 that span the 3-d vector space. This happens when nullity (A — A\,,I) = 3, namely, rank(4 — \,,,1) =
3 — nullity (A — A\, 1) = 0.

e Caseii): this happens when (A—\,,,I)t = 0 yields two linearly independent solutions, i.e., when nullity (A — A\, 1) =

2. We then have, e.g.,

Am 1 0
A[t17 t27 td] = [tla t27 td] 0 )\m 0 < [)\mtlv tl + )\mt27 )\mt?)] = [At17 AtZ; At3]
0 0 An

t; and t3 are the directly computed eigenvectors. For the generalized eigenvector ¢35, the second column of the
equality gives
(A=A Dta =1ty

e Case iii): this is for the case when (A — \,;,I)t = 0 yields only one linearly independent solution, i.e., when
nullity (A — A, 1) = 1. We then have,

Am 1 0
Alty,to, t3] = [t1,ta,t3] | 0 Ay 1 & [Amti,t1 + Amta, ta + Apts] = [Aty, Ato, Ats]
0 0 A\

yielding

where t5 and t3 are the generalized eigenvectors.

Example 2. Consider
-1 1 )
A= 11 ydet (A=A =A+1)(A=1)—1=X =X =X =0.

Two repeated eigenvalues with rank(A — 0I) = 1 =-only one linearly independent eigenvector:
1
(A—Ol)tlz():}tl: 1 .

Generalized eigenvector:

(A—01>t2:t1:>t2:|:(1):|.

B [t 0] 0 [ 1 0
T[t17t2]|:1 1:|?T |:_1 1:|3

At g1 [ 1071 ¢ 1 0] [1-t ¢
A PR I Y | Rty

The first eigenvector implies that if 21 (0) = x2(0) then the response is characterized by €* = 1, i.e., z1(t) = x1(0) =
x2(0) = x2(¢). This makes sense because &1 = —x1 + z2 from the state equation.

Coordinate transform matrix:

0
0

O =

J:T*AT:[

12
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Example 3 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 —6
-1 -2 0

Analogous procedures give that
A1 =05, g = A3 =—-3.

So there are repeated eigenvalues. For A\; = 5, (A — 51)t; = 0 gives

-7 2 =3 1 0 1 1
2 -4 -6 [t1=0=> 01 2 |t1=0=1t= 2
-1 -2 -5 1 0 1 -1
For Ay = A3 = —3, the characteristic matrix is
1 2 -3
A+31= 2 4 -6
-1 -2 3

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the characteristic
matrix has only rank 1. The characteristic equation

(A=XI)t=0
has two linearly independent solutions
-2 3
1 , | 0 |.
0 1
Then
1 -2 3 5 0 0
T= 2 1 0)],J=]0 -3 0
-1 0 1 0o 0 -3
Am 1 0
Physical interpretation. When & = Az, A =TJT ! with J = 0 XAn O [, wehave
0 0 An
Amt  permt A

e mt t6>\7nt

0
et 0 | 2FHTE(0)

e 0
r(t)=eMz(0)=T| 0 et 0 |Tlz0)=T]| o0

0 0 et 0
If the initial condition is in the direction of t1, i.e., 2*(0) = [2%(0),0,0]" and 27}(0) # 0, the above equation yields
z(t) = z5(0)t1ert. If 2(0) starts in the direction of t5, i.e., *(0) = [0,23(0),0]T, then x(t) = z3(0)(tter*t +
tae*mt). In this case, the response does not remain in the direction of #5 but is confined in the subspace spanned
by t; and to.

Exercise 1. Obtain eigenvalues of .J and e’ by inspection:

-1 0 0 0 O
0o -2 1 0 0
J = 0o -1 -2 0 O
0o 0 0 -3 1
o 0 o0 0 =3

13
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1.4 Explicit Computation of the State Transition Matrix A*
Everything in computing the similarity transform A = TAT~! or A = TJT~! applies to the discrete-time case.

The state transition matrix in this case is

| AF = TAPT or AP = TR

You should be able to derive these results:

| J \ Jr
MO AP0
0 X 0 M
Al P
0 A 0 AP
A1 0 RN Lk (R — 1) AF2
0 X 1 0 AF EAF-T
0 0 A 0 0 \F
A1 0 NENFT 0
0 X 0 0 Ak 0
0 0 A3 0 0 M
‘ 0w & co§k9 sin k6 r = VoT TR, 0= tan—l ¥
—w o —sinkf cosk6 o
-10 1 0 0 0
[ -1 0 0 0 —-10 0 0 0
Exercise 2. Write down J* for J = 0o -1 1 and J = 0 0 -2 0 0
0 0 -1 0 0 0 —100 1
i 0 0 0 -1 -100
Exercise 3. Show that
AT [ e g
k a1 -
T=loorx1 |77 =0 o AR RS
00 0 A 0 0 0 AF

1.5 Transition Matrix via Inverse Transformation

We have now

Continuous-time system Discrete-time system

state equation z(t) = Az(t) + Bu(t), (0) = zg z(k + 1) = Az(k) + Bu(k), z(0) = zg
t (k—1)
solution z(t) = eMz(0) +/ AT Bu(r)dr  xz(k) = AFz(0) + Z A®=179) By(4)
——— 0 —— =
free response free response
forced response forced response
transition matrix eAt Ak

We also know from Laplace transform, that

&(t) = Ax(t) + Bul(t)
X(s) = (sI — A) "' z(0)+ (sI — A) "' BU(s)

free response free response

Comparing z(t) and X (s) gives

et =71 {(sI—A)~"} (16)
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g

Example 4. Consider A = [ ‘: } We have

At _p-1| 570 W ’lzﬁ_l 1 [s-0
w s—0 (s—a)2+w2 —w

—ot[ oslen) sntan)

Similarly, for the discrete time case, we have X (z) = (zI — A)~" 22(0) + (21 — A)~" BU(s) and

AF =zt {(zI —A)" "2}

g

Example 5. Consider A = [ ZJ } We have

Ak z1 Z[z—a —w ]_1 _ g 22 {z—o
w  z—o0 (-0l +uw?| —w

:ZI{ z [z—rcos@ 7 8in }}’ = o Wl 0 — tan-1%
o

22 — 2rcosfz + r2 —rsind  z—rcosf

k| cosk® sinkd
T —sink® coské

0.7 0.3

Example 6. Consider A = [ 01 05

} . We have

z

il

0.75z 0.75z

0.1z (2=0.7) 0.252 _ 0.25z

2—0.8 z—0.4
0.25% 0.75z

z(z—0.5 0.3z 0.752 0.25z

(21— A) 1z = | GOBG-0D) GomG—0D | _ { 208 T 204
(2—08)(2—0.4) (2—0.8)(2—0.4) z=0.8  2-04

k

. [ 0.75 (0.8)" +0.25 (0.4)F  0.75(0.8)* — 0.75 (0.4)
k

= A% =
0.25 (0.8)" — 0.25 (0.4)*  0.25(0.8)" +0.75 (0.4)

15
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Discretization of State-Space System Models
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Inherent sampling in practice

1

ANt= —M8M —
(rpm/60) x sector number

Practical control systems

Measurable

) Unmeasurable
disturbance

disturbance

Feedback Control A 4
Feedforward Controller
State Estimation Controlled Plant
Noise Filtering

Identification/adaptation

A/D [« sSensors [«

A/D: analog to digital converter
Computer !
works as a sampler
. D/A: digital to analog converter
works as a data holder

Discrete time domain : Continuous time domain




Sampler

sampler: converts a time function into a discrete sequence,

y (1) s VK £ y(te) = y(Atk)

-
LAt T
e.g., =
Signal holding

Zero-order Hold (ZOH): converts a sequence into a “stair-case” time
function, e.g.,

u[] u(t)

0 1 2 3 k 0 At 2At 3At t

u(t) = u[k] for t € [kAt, (k+ 1)At)

6/12



Signal holding

more faithful presentation with fast sampling
ulK] u(t)

| |

k ——{zoH]}—

Problem definition

continuous-time system preceded by a ZOH:
u(tk)

Zero Order Hold dx/dt = Ax+ Bu

u(ty): discrete-time input

x(t): continuous-time output

x(tx): sampled discrete-time output

At: sampling time

goal: to obtain the model between u(tx) and x(tx)




Solution

u(ti) x(t)
Zero Order Hold dx/dt = Ax+ Bu

starting from ty, the solution of x = Ax -+ Bu at time tyy1 is

ti1
X(tk+1) = eA(tk+1_tk)X(tk) +/ eA(tk+1_TO)BU(TO)dTO
tk
JAN n

——N— k1 ——N—
— Akt = W (1)) + u(ty) / Mkt = To) Byr,
tk

A . 4
Vo

— [ €1 Bd(—n)=— [, " B

noting — fgteA"Bdn = fOAteATBdT and denoting t; as k yield

JAN
X[k + 1] = Agx[k] + Bgu[k], Aq= e*?t, By = / e\ Bdr
0

Mapping of eigenvalues

At
X[k + 1] = Agx[k] + Bgu[k], Ag= e*?t, By = / e\ Bdr
0

diagonalization / Jordan form: A= TIAT

et has the same eigenvalues as €\t

N AT

= eigenvalues of Ay = e*2f are e s where ); is an eigenvalue of A

10/12



discretization at a sampling time of At =

At At
Ad — eAAt _ [1 At] 7 Bd _ / eATBdT — /
0 1 0 0

Cqg=C

control
numpy
m 1
dt 0.1
[[o, 1], [0, 0]]
[fol, [11]
[[1/m, 0]]
0

G_s control.ss(A, B, C, D)
G_z control.c2d(G_s, dt, 'zoh')
print (G_z. 4)

# eigenvalues of continuous-time system
eigh, eigvecA = numpy.linalg.eig(A)

print (eigh)

# eigenvalues of discretized system
eighAd, eigvecAd = numpy. linalg.etg(G_z.4)
print (eigAd)




Spectral mapping theorem

> eigenvalues of Ay = €7 are €""'s where ); is an eigenvalue of A

» more generally: take any X € C"™" and a polynomial function f(-)
(more generally, analytic functions)

> eg.:
X
———
99.8 2000 0 1

A= [ 2000 998 ] = 99.8/+ 2000[ 1 0 ]

» then
eig (f(X)) = f(eig (X))

> eg.:

—2000 99.8

99.8 2000
o= S

] :99.8/—|—2000[ 0 1 ]

0 1

A(A) = 99.8 + 2000 { [ 1o

] } = 99.8 + 20001

A 99.8 2000
~ | —2000 99.8

numpy
A = [[99.8, 2000], [-2000, 99.81]

eigh, eigvecA = numpy.linalg.eig(A)
print (eigh)

[99.8+2000.j 99.8-2000.j]



Essentials of Control Systems

Discretization of Continuous-time
Transfer-function Systems

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) TF discretization 1/8

Overview

» Consider the discrete-time controller implementation scheme

AT
ulk] —ZoH 2 6 (s) 10— yik]

where u[k]| and y[k] have the same sampling time.

» for this note, we use [k] to distinguish DT signals from their CT
counter parts

v

Goal: to derive the transfer function from u[k] to y[k].

» Solution concept: let u[k] be a discrete-time impulse (whose Z
transform is 1) and obtain the Z transform of y[k].

UW Linear Systems (X. Chen, ME547) TF discretization

2/8



Solution

u(t)

ulk] — ZOH L 6 (s) 2

o —— ylk]

» ulk] is a DT impulse = after ZOH

1(t)-1(t—AT) = U(s) =

1, 0<t<AT 1— e sAT
U(t) — ) = B
0, otherwise s

» Hence

UW Linear Systems (X. Chen, ME547) TF discretization 3/8

Solution

ulk] —ZoH 2 6 () 1o 4]

1 — e—sAT

e—sAT
s ]

y(t) = £ [G(s) ] - [G(s)ﬂ = [G(s)

» Sampling y(t) at AT and performing Z transform give:
( )

S

7(t) ?(t—AA T)

7 N\

Gz)=2! [G(s)g y~ [G(s) SAT]

. t=kAT t=kAT,

{ 29[k] =y[k—1]!!! J

_z {/:—1 [6(5)1]

S t:kAT} - Z_lz {E_l [G(S)él t:kAT}

UW Linear Systems (X. Chen, ME547) TF discretization 4/8




Solution

ulk] —[ZOH G (s)

The zero order hold equivalent of G(s) is

G(z)=(1-zNHz { £ [G(s)ﬂ

where AT is the sampling time.

UW Linear Systems (X. Chen, ME547) TF discretization 5/8

Obtain the ZOH equivalent of

a
G(s) =
s+a
Following the discretization procedures we have &8 — _a 1 _ 1
g P s  s(sta) s  s+a

and hence

£t {@} = 1(t) — e '1(t)

Sampling at AT gives 1[k] — e~ @A T1[k], whose Z transform is

z z z(1 — e 3AT)

z—1 z-—e BT (z—1)(z— e A7)

Hence the ZOH equivalent is

Z(]. . e—aAT) 1 — e—aAT

(1- Z_l)(z 1)z _eAT) 7 _e-aBT

UW Linear Systems (X. Chen, ME547) TF discretization

6/8



Matlab command

In MATLAB, the function c2d.m computes the ZOH equivalent of a
continuous-time transfer function, as well as other discrete equivalents. For

and AT =1, the following script
T=1,;

numG=1; denG=[1 0 0];

G = tf(numG,denG) ;

Gd = c2d(G,T);

produces the correct ZOH equivalent.

UW Linear Systems (X. Chen, ME547) TF discretization 7/8

Exercise

Find the zero order hold equivalent of G (s) = e s OAT < L <3AT,
where AT is the sampling time.

UW Linear Systems (X. Chen, ME547) TF discretization

8/8



Linear Systems: Stability

Xu Chen

University of Washington

1. Definitions in Lyapunov stability analysis




Finite dimensional vector norms

Let v € R". A norm is:

a metric in vector space: a function that assigns a real-valued
length to each vector in a vector space

e.g., 2 (Euclidean) norm: |[v|; = VvTv = /VvZ + 3+ -+ v2
default in this set of notes: || - || = || - ||2

Equilibrium state

For an n-th order unforced system
x=f(x,t), x(to) = xo

an equilibrium state/point x. is one such that

f(xe,t) =0, Vt

the condition must be satisfied by all t > 0

if a system starts at equilibrium state, it stays there




Equilibrium state of a linear system

For a linear system
x(t) = A(t)x(t), x(to) = xo

» origin x, = 0 is always an equilibrium state

» when A(t) is singular, multiple equilibrium states exist

Lyapunov's definition of stability

» The equilibrium state 0 of x = f(x, t) is stable in the sense of
Lyapunov (s.i.L) if for all € > 0, and ty, there exists 6 (e, ty) > 0
such that ||x (to) |2 < 0 gives ||x (t) ||2 < € for all t > t,

@

=
&

4

Figure: Stable s.i.L: ||x (tp) || < 6 = ||x(t) || < € Vt > to.

6/77



Asymptotic stability

The equilibrium state 0 of x = f(x, t) is asymptotically stable if
» it is stable in the sense of Lyapunov, and

» for all € > 0 and to, there exists d (¢, to) > 0 such that
|x (to) |[2 < 0 gives x(t) — 0

-4%
&

t — od

Figure: Asymptotically stable i.s.L: [[x (tp) || < 0 = [|x(t)] — O.

2. Stability of LTI systems: method of eigenvalue/pole locations

8/77



Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for x = Ax or
x(k + 1) = Ax(k) can be concluded immediately based on A (A):

the response e”fx(ty) involves modes such as e't, te't,
e’f coswt, e’ sinwt

the response A*x(kg) involves modes such as A%, kAK—1,
rk cos k@, r*sin k6

et 5 0ifoc<0; e =0ifA<0
M= 0if [N <1 k= 0if |r] = [Vo? +w?| =) < 1

Stability of the origin for x = Ax

stability Ai(A)
at 0

unstable  Re{\;} > 0 for some \; or Re {\;} <0 for all \;’s but

for a repeated A, on the imaginary axis with
multiplicity m, nullity (A — A,,/) < m (Jordan form)
stable Re{A;} <0 for all \;'s and V repeated A,, on the
i.s.L imaginary axis with multiplicity m,
nullity (A — A\,,/) = m (diagonal form)
asymptotically Re{\;} < 0 V\; (A is then called Hurwitz stable)

stable

10/77



Example (Unstable moving mass)

> )\1:)\2:0,m:2,

nullity (A — A;1) = nullity [ 8 é ] =1<m

> i.e., two repeated eigenvalues but needs a generalized
eigenvector = Jordan form after similarity transform

» verify by checking et = [ Lt

0 1 ]: t grows unbounded

Example (Stable in the sense of Lyapunov)

X—AX,A—lg 8]

’ )\1:)\2:O,m:2,

nullity (A — A\;1) = nullity [ 00

0 O]Zm

» verify by checking et = [ (1) (1) ]




Routh-Hurwitz criterion

the Routh Test (by E.J. Routh, in 1877): a simple algebraic
procedure to determine how many roots a given polynomial

A(s) = aps" +ap_18" 1+ -+ a5+ ag
has in the closed right-half complex plane, without the need to

explicitly solve for the roots

German mathematician Adolf Hurwitz independently proposed in
1895 to approach the problem from a matrix perspective

popular if stability is the only concern and no details on
eigenvalues (e.g., speed of response) are needed

Routh-Hurwitz criterion

the asymptotic stability of the equilibrium point 0 for x = Ax
can also be concluded based on the Routh-Hurwitz criterion

simply apply the Routh Test to A(s) = det (sl — A)

recap: the poles of transfer function G(s) = C (sl — A) "B+ D
come from det (s/ — A) in computing the inverse (s/ — A)™

14 /77



The Routh Array

for A(s) = a,s" + a,_15" ' + -+ + a;5 + ap, construct

dn
dp—1
dn—2
dn—3

X5
Xo

dp—2
dp—3
dn—4
dn—5

dp—4
dp—5
dn—6
dn—7

dn—6
dn—7

first two rows contain the coefficients of A(s)

third row constructed from the previous two rows via

a b X
c d %
bc —ad xc — ay

Cc c

The Routh Array

for A(s) = a,s" + a,_15" ' + -+ + a;s + ag, construct

n

S
Sn—l

Sn—2

All roots of A(s) are on the left half s-plane if and only if
all elements of the first column of the Routh array are

positive.

dp
dp—1
dn-2
dn—3

X5
Xo

dp—2
dp—3
dn—4
dn—5

dpn—4
dp—5
dn—6
dn—7

dn—6
dn—7




The Routh Array

Example (A(s) = 2s* + s° 4 3s? + 55 + 10)

4 2 3 10
3 1 5 0
21325 __7 10 0
1 5_1><10 0 0
0

—7

10 0 0

nh 1 0 »O u

two sign changes in the first column

unstable and two roots in the right half side of s-plane

The Routh Array

special cases:

If the 1st element in any one row of Routh’s array is zero, one
can replace the zero with a small number ¢ and proceed further.

There are other possible complications, which we will not pursue
further. See, e.g. "Automatic Control Systems", by Kuo, 7th
ed., pp. 339-340.

18 /77



Stability of the origin for x(k + 1) = f (x(k), k)

> stability analysis follows analogously for nonlinear time-varying
discrete-time systems of the form

x (k+1) = f(x(k), k), x (ko) = Xo
» equilibrium point x,:
f(Xe, k) = Xe, Vk

» without loss of generality, 0 is assumed an equilibrium point

Stability of the origin for x(k + 1) = Ax(k)

stability Ai(A)
at 0
unstable |Ai| > 1 for some A; or [\;| <1 for all A\;'s but for a

repeated A, on the unit circle with multiplicity m,
nullity (A — Am/) < m (Jordan form)
stable |Ai| <1 for all A\;'s but for any repeated A, on the unit
i.s.L circle with multiplicity m, nullity (A — A\p,/) = m
(diagonal form)
asymptotically |);| < 1 VA; (such a matrix is called Schur stable)
stable

20/77



Routh-Hurwitz criterion for DT LTI systems

» the stability domain | ;| < 1 is a unit disk
» Routh array validates stability in the left-half plane

» bilinear transformation maps the closed left half s-plane to the
closed unit disk in z-plane

Imaginary Imaginary

Routh-Hurwitz criterion for DT LTI systems

» Given A(z) = z"+ a;z" ' + -+ + a,, procedures of
Routh-Hurwitz test:

» apply bilinear transform
A s = (B2) o (1) b= 4
z=7" 1-s 1-s n (1—s)"

» apply Routh test to
A*(s) = als"+af s+ + 3l = A(2)]

=

z:% (1 i S)
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Routh-Hurwitz criterion for DT LTI systems

Example (A(z) = z° + 0.82° + 0.6z + 0.5)

> AY(s) = A(2)| 1 (L—5)° = (1 +5)° +0.8(1+5)° (L —s) +
06(1+5s)(1—5)°+05(1—5)=03s3+3.1s2+1.75s+2.9
» Routh array

s3 0.3 1.7
s2 3.1 2.9
s|17-0229 140
s9 2.9 0

> all elements in first column are positive = roots of A(z) are all
in the unit circle

3. Lyapunov's approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case




Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for x = Ax or

x(k + 1) = Ax(k) can be concluded immediately based on A (A):

the response e”fx(ty) involves modes such as e't, te't,
e’f coswt, e’ sinwt

the response A*x(kg) involves modes such as A%, kAK—1,
rk cos k@, r*sin k6

et 5 0ifoc<0; e =0ifA<0
M= 0if [N <1 k= 0if |r] = [Vo? +w?| =) < 1

Lyapunov's approach to stability

The direct method of Lyapunov to stability problems:
no need for explicit solutions to system responses

an “energy’ perspective

fit for general dynamic systems (linear/nonlinear,
time-invariant/time-varying)




Stability from an energy viewpoint: Example

Consider spring-mass-damper systems:

X1 = Xo (xq: position; x, : velocity)
Xp = —ﬁxl — Exz, b>0 (Newton's law)
m m
A(A)'s are in the left-half s-plane=- asymptotically stable
total energy
1 1,

£ (t) = potential energy + kinetic energy = Ekxf + 5> M

energy dissipates / is dissipative:
E(t) = kxyXi + mxpXe = —bxz <0

E=0 only when xo = 0. As [x;, x2] " = 0 is the only equilibrium,
the motion will not stop at x, = 0, x; # 0. Thus energy will
keep decreasing toward O which is achieved at the origin.

27 /77

Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

x(t) = f(x(t),t), x(to) = xo
x(k+1)="f(x(k), k), x(ko) = xo

assume the origin is an equilibrium state

energy function = Lyapunov function: a scalar function of x
and t (or x and k)

goal is to relate properties of the state through the Lyapunov
function

main tool: matrix formulation, linear algebra, positive definite
functions
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Relevant tools

Quadratic functions

intrinsic in energy-like analysis, e.g.

1, , 1 5, 1[x] [k 0 X1
EkX1+§mX 5[)@] 0 m X

convenience of matrix formulation:

1, 1 Il TE L.
§kx1 + imx2 + X1 X0 = [X2 ] % G "
T
1 1 X1 g % 0 X1
Ekx12+§mx22—|—x1x2—|—c: X2 20 X2
1 0 0 c 1

general quadratic functions in matrix form

R(x)=x"Px, PT =P

Relevant tools

Symmetric matrices

recall: a real square matrix A is
symmetric if A= AT
skew-symmetric if A= —AT

examples:
1 2 1 2 0 2
2 1 (7| -2 11| -220

Any real square matrix can be decomposed as the sum of a
symmetric matrix and a skew-symmetric matrix:

. 1 2]_[1 25), [0 -05
& 13 4|7 |25 4 05 0
P+PT+P—PT
2 2

general case: P =
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Relevant tools

Symmetric matrices

a real square matrix A € R™*" is orthogonal if ATA = AAT = |

meaning that the columns of A form a orthonormal basis of R”

A= | a a ... a,
ala; al a aj a, 10
T T T
aya a,a ... a,a
2d1 a, & 2 an 0 1
ATA=| ~ _ =
T T T .
| @81 a,a ... a,a, | |0 ... O

namely, a’a; = 1 and a/ a,, = 0 Vj # m.

Theorem
The eigenvalues of symmetric matrices are all real.

Proof: V: A € R™" with AT = A.

Eigenvalue-eigenvector pair: Au= \u = u"Au= M\t u, where T is
the complex conjugate of u. T" Au is a real number, as

m — u' Al
—u'Au - ACR™"
:ZUTATU 'QA::AT
—x'T (AT = ()’
=Xo'u cu'ueR
— T Au - Au=\u

_ —T
Also, 7" u € R. Thus A = LAY must also be a real number.

ulu
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Example

A= £2

| 1 0 0 2
|- [8 ]+ [3 3] 2o

import numpy as np #larger-scale Python example
N = 100

P = np.random.randint(-200,200,size=(N,N))

P _symm = (P + P.T)/2

lambdas, = np.linalg.eig(P__symm)
print(lambdas)

>

=N O N
L |

I 1 T 1
N = N O

Theorem

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

0 2 :
- =
[ 5 O]' A= 12

Import numpy as np

N = 100

P = np.random.randint(-200,200,size=(N,N))
P _symm = (P-P.T)/2

lambdas, = np.linalg.eig(P_symm)
print(lambdas)
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Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

1 2 10 0 2 .
g [—2 1]_[0 1]*[—2 o]“‘lizf

Import numpy as np
from scipy.linalg import qr

n=3
H = np.random.randn(n, n)
Q. _ = qr(H)

print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))

Important properties of symmetric matrices

Theorem
The eigenvalues of symmetric matrices are all real.

Theorem
The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure analogy in complex plane

symmetric real line
skew-symmetric imaginary line
orthogonal unit circle
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The spectral theorem for symmetric matrices

When A € R"*" has n distinct eigenvalues, we can do diagonalization
A = UANU7. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

V:AcR™ AT = A, there always exist \; € R and u; € R", s.t.

A= Nuul = UNUT (1)
i=1

A;'s: eigenvalues of A

u;: eigenvector associated to \;, normalized to have unity norms
U = [uy, uz, -+ ,up] is orthogonal: UTU = UUT = |
N = diagonal( A1, A2, ..., Ap)

Elements of proof for SED

Theorem

V: A€ R™ with AT = A, then eigenvectors of A, associated with
different eigenvalues, are orthogonal.

Proof.

_ _ TA,y — T . T
Let AU,‘ = )\,‘U,‘ and AUJ' = )\J'Uj. TThen u; AUJ‘ = Uu; )\J'UJ' = )\J'U,- uj.

T TAT T T T
Also, u/ Au; = u A" u; = (Au;) " uj = Ny up. So \iuf uj = \ju!' u;.
But \; # \;. It must be that u/u; = 0.

SED now follows:
If A has distinct eigenvalues, then U = [uy, up, - -+ , up] is
orthogonal after normalizing all the eigenvectors to unity norm.
If A has r(< n) distinct eigenvalues, we can choose multiple
orthogonal eigenvectors for the eigenvalues with none-unity
multiplicities.
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Rethinking symmetric matrices

With the spectral theorem, next time we see a symmetric matrix A,
we immediately know that

A;j is real for all i
associated with \;, we can always find a real eigenvector

3 an orthonormal basis {u;}7_;, which consists of the
eigenvectors

if Ac R?*2 then if you compute first A1, A\» and u;, you won't
need to go through the regular math to get u,, but can simply
solve for a u, that is orthogonal to vy with ||u,|| = 1.

Example: A = \% \f

Computing the eigenvalues gives

det[5\;§)\ 7{1] =35 -122 0+ X -3=(\1—-4)(A=8)=0

=1 =4, A\, =38

first normalized eigenvector:

(A—)\ll)tl—O:>[\}§ \f]tl_oz,»tl_[?]

A is symmetric = eigenvectors are orthogonal to each other:

] . No need to solve (A — \y/) t, = 0!

l\)|§ll\)ll—\
w

choose t, = [
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Theorem (Eigenvalues of symmetric matrices)

If A= AT € R™" then the eigenvalues of A satisfy

T
A

)\max = MmaX . (2)
xeR" x#£0 HXH2
xTA

)\min — min . (3)

xeRn, x#0 || x||3

Proof.

Perform SED to get A=Y _", A\ju/ u; where {u;}]_; spans R". Then
any vector x € R” can be decomposed as x = > i, a;u;. Thus

xT Ax (3 o))" Z iU doiAar _

= max = max
20 [|Ix3 e ;0F L

Positive definite matrices

> eigenvalues of symmetric matrices are real = we can order the
eigenvalues

» a symmetric matrix P is called positive-definite if all its
eigenvalues are positive

» equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix P € R"*" is called positive-definite, written
P =0, if x"Px > 0 for all x(#0) € R".

P is called positive-semidefinite, written P > 0, if x" Px > 0 for
all x € R”

» P =0 (P >=0)< P can be decomposed as P = NT N where N
is nonsingular (singular)
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Negative definite matrices

Definition

A symmetric matrix @ € R"" is called negative-definite, written
Q<0,if —Q=0,ie, x"Qx <0 forall x(#£0) € R".

Q is called negative-semidefinite, written @ < 0, if x” @x < 0 for
all x € R”

When A and B have compatible dimensions, A = B means
A— B > 0.

Positive definite matrices

positive-definite matrices can have negative entries:

Example

P = [ _21 _21 ] is positive-definite, as P = PT and take any

v=[x,y]", we have

x ' 2 1 X

Tp, _ - . 2

vPv—[y] [1 2][y]—2x—|—2y 2xy
=x"+y*+(x—y)’ >0

and the equality sign holds only when x =y = 0.
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Positive definite matrices

conversely, matrices whose entries are all positive are not
necessarily positive-definite:

Example

A= [ L2 ] is not positive-definite:

A [3 3] [ ])e

Positive definite matrices

Theorem

For a symmetric matrix P, P = 0 if and only if all the eigenvalues of
P are positive.

Proof.

Since P is symmetric, we have

)(7F/4)<
P) =
Amax (P) = M3 X

TA
Amin (P) = min X ;
xeRn, x#0 || x||3

which gives x"Ax € [Aminl|X||3, Amax||[x||3]. Thus
xTAx >0, x # 0 < Amin > 0.
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Relevant tools

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to
check positive (semi-)definiteness:

P >0 (P > 0) < the leading principle minors defined below are
positive (nonnegative)

Definition
P11 P12 P13

The leading principle minors of P = | po1 po» po3 | are defined as
P31 P32 P33

P11 P12
det ~det P.
pu [ P21 P22 ]

Relevant tools

Checking positive definiteness of a matrix.

Example

None of the following matrices are positive definite:

o AR



Relevant tools

Definition (Positive Definite Functions)
A continuous time function W : R” — R, called to be PD,
satisfying

» W(x) >0 for all x#0

» W(0)=0

» W(x) — oo as |x| — oo uniformly in x

In the 3D space, positive definite functions are “bowl-shaped”, e.g.,
W (x1, %) = xf + x5 .

Relevant tools

Definition (Locally Positive Definite Functions)
A continuous time function W : R” — R, called to be LPD,
satisfying

» W(x) >0 forall x#0and |x| <r

» W(0)=0
In the 3D space, locally positive definite functions are “bowl-shaped”
locally, e.g., W (x1,x) = xZ + sin® x, for x; € R and x| <

il
-

sl
!\\\\n\\‘\\\'
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Relevant tools

Exercise

Let x = [x1, x2, x3] . Check the positive definiteness of the following
functions

V(x) = +x +x5 (PD)
V(x) = x2 + x2 + 3x2 — x4 (LPD for |xs| < v/3)

Relevant tools

Lyapunov stability theorems
Instability theorem
Discrete-time case




Lyapunov stability theorems

recall the spring mass damper example in matrix form
d X1 X1 0 1 X1
p) X2 - = X2

energy function is PD:

& (t) = potential energy + kinetic energy = 1kx? + 2mx3

and its derivative is NSD:
o0& 08] [)’(1

E(t) = [8_x1’ 5% )-(2] = kixix1 + mxpxp

( k b ) [ o0& o0& ]
== k1X1X2 +MmMx | ——X1— —Xo | = |—, —
m m

_ 2

The notion of derivative along state trajectories

Generalizing the concept to system x = f (x): let V (x) be a
general energy function, the energy dissipation w.r.t. time is

f
dV(x) [V oV oV 100

dt [ 0x 0x’ T Ox,

f, (x)

also denoted as LsV/(x), the Lie derivative of V(x) w.r.t. f(x).

We concluded stability of the system by analyzing how energy
will dissipate to zero along the trajectory of the state.
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Theorem
The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is stable in
the sense of Lyapunov if there exists a locally positive definite

function V(x, t) such that V (x,t) < 0 for all t > to and all x in a
local region x : |x| < r for some r > Q.

» such a V(x,t) is called a Lyapunov function

> ie., V(x)is PD and V(x) is negative semidefinite in a local
region |x| < r

Theorem
The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is locally
asymptotically stable if there exists a Lyapunov function V(X)Tuch
that V (x) is locally negative definite.

Theorem
The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is globally
asymptotically stable if there exists a Lyapunov function V(x) such
that V/(x) is positive definite and V(x) is negative definite.
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Lyapunov stability concept for linear systems

» for linear system x = Ax, a good Lyapunov candidate is the
quadratic function V (x) = x" Px where P = PT and P = 0

> the derivative along the state trajectory is then

V(x) = x"Px + x" Px
= (Ax)" Px 4+ xT PAx
— x' (ATP + PA) X

» such a V (x) = x" Px is a Lyapunov function for x = Ax when
ATP+ PA=<0

» and the origin is stable in the sense of Lyapunov

Theorem (Lyapunov stability theorem for linear systems)

For x = Ax with A € R"*", the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q > 0, the
Lyapunov equation

ATP+PA=—Q

has a unique positive definite solution P = 0, PT = P.

Proof.
- T AQ) .
B R %: V(t)<e @V (0). Q>0 and
P max
P>0= (\g), >0 and_()\p)max > 0. Thus a > 0; V/(t) decays

exponentially to zero. V/(x) > 0 =V(x) =0 only at x =0.
Therefore, x — 0 as t — 00, regardless of the initial condition. ]

58 /77



Proof.

<" it 0 of x = Ax is asymptotically stable, then all eigenvalues of
A have negative real parts. For any Q, the Lyapunov equation has a

unique solution P. Note x (t) = e*xy — 0 as t — oo. We have
0

W— xT (0) Px (0) = /Ooo %XT (t) Px (t) dt = /OOO xT (t) (ATP n PA) x (t) dt

= x(0)7 Px(0) = /OOOXT (t) @x(t)dt = /OOOX(O) eATthAtx (0) dt

If @ = 0, there exists a nonsingular N matrix: @ = NTN. Thus

x(0)7 Px (0) :/0 |Ne®x (0) ||2dt > 0

x(0)" Px(0) =0 only if xo =0

Thus P = 0. Furthermore
P = / et Qe dt
0

Lyapunov stability theorems

Example
. -1 1 L
x = Ax, A= 10| The Lyapunov equation is
T
[—11] [Pll P12]+[P11 P12][—1 1]:_[1
-1 0 p12 P22 p12 P22 -1 0 0
iy ) -~
P Q
WERIE
—2p11 — 2p12 = —1 p11 =1
—pi2—p2+pi1=0 = ppn=3/2
2p12 = —1 p12 = —1/2

Leading principle minors: p1; > 0, p1ipos — pir > 0
= P > 0 =-asymptotically stable
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Essense of the Lyapunov Eq.

Observations:
ATP + PA is a linear operation on P: e.g.,

21 a
A= | 2 Q=g ¢ |,.P=|p p
do1 do ‘ ‘ ‘

ATPl + a11p1 + a1 = —q1
ATPz + a12p1 + anp2 = — g2

Essense of the Lyapunov Eq.

Observations: with now

ATp + anpr + anpr = —q

ATP+PA=Q& ¢
A" po 4 aiap1 + anpr = —q

can stack the columns of ATP + PA and Q to yield
[AT 0][P1]+[311/ 321/]_P1-_ i
- — _
0o A p2 arel axnl | | p
AT 0 aitl  axnl [ p1 |
T | T = —
0 A anl  axol | P2 |

Vo

La




The Lyapunov Eq.: Existence of solution

La(P)= ATP + PA
L is invertible if and only if A\; + \; # 0 for all eigenvalues of A:
let ATU,' = \;u; and ATUJ' = )\J'Uj
LA (u,-ujT) = u,-uJ-TA + ATu,-uJ-T = u; (Ajuj)T + )\,-u,-ujT =
()\,' + )\j) U,'UJ-T
so Aj + Aj is an eigenvalue of the operator L4 (-)
if A +\j # 0, the operator is invertible

The Lyapunov operator: eigenvalues

o AT 0 alll 321l
LA _ [ 0 AT ] + [ 312I 322l

can simply write Ly = | ® AT+ AT ® | using the Kronecker

mirror symmetric

b11C b11C Ce b11C
b1C bypC ... by,C
product notation B® C = 2_1 2_2 2.
| b C by C o by C
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The Lyapunov operator: eigenvalues

o AT 0 alll 321l
LA _ [ 0 AT ] + [ 312I 322l

-1 1
> =
eg., A [ 10 ]

T
LA_I®AT—+—AT®I_[A +311/ 32]_I ]

312l AT + 322/

-1-1 -1 |-1 07 [-2 —-1|-1 0]
B 1 0-1[0 —-1| | 1 —-1|0 -1
- 1 0 |—-1 —1| | 1 0 |-1 -1

0 1 |1 0| |0 1]1 0|

-1 1

Example: A = [ 10

], A2 =—0.5+iV3/2

[ -2 —1]-1 0
1 -1 0 -1
1 0 |—-1 -1
0 1 1 0

a=1AT + AT @I =

The eigenvalues of L4 are —1, —1, —1 — /3, —1 + /3, which are
precisely )\1 + )\1, )\1 + )\2, )\2 + )\1, )\2 + )\2.

Import numpy as np

A = [[-1,1],[-1,0]]; 12=np.eye(2); AT=np.transpose(A)

L _A=np.kron(12,AT)+np.kron(AT,I2)

eigLA, =np.linalg.eig(L A)

eigA, =np.linalg.eig(A)

print(eigLA)

print(eigA)
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Procedures of Lyapunov's direct method

Given A, select an arbitrary positive-definite symmetric matrix @
(e.g., I).

Find the solution matrix P to the Lyapunov equation

ATP 4+ PA=—Q.

If a solution P cannot be found, the origin is not asymptotically
stable.

If a solution is found:

if P is positive-definite, then A is Hurwitz stable and the origin
is asymptotically stable;

if P is not positive-definite, then A has at least one eigenvalue
with a positive real part and the origin is an unstable equilibrium.

It suffices to select @ =/

For linear systems we can let @ = / and check whether the resulting
P is positive definite. If it is, then we can assert the asymptotic
stability:
take any Q > 0. there exists @ = N" N, where N is invertible,
yielding
ATP+ PA=—|
)
NTATN- T NTPN+NTPNNTAN = —N"N
N -~ N~ Y —

AT P P A

A= N"1AN and A are similar matrices and have the same
eigenvalues.

P = NTPN and P have the same definiteness. If we can find a
positive definite solution P then the P will also be positive
definite. Vise versa.
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Instability theorem

for nonlinear systems, Lyapunov function can be nontrivial to
find

failure to find a Lyapunov function does not imply instability

Theorem

The equilibrium state 0 of x = f (x) is unstable if there exists a
function W (x) such that

W(x) is PD locally: W(x) > 0V |x| < r for some r and
W(0) =0

W(0) =0

there exist states x arbitrarily close to the origin such that
W(x)>0

Discrete-time case: key concept of Lyapunov

For the discrete-time system
x(k+1) = Ax(k)
we consider a quadratic Lyapunov function candidate
V(x)=x"Px, P=P" =0
and compute AV (x) along the trajectory of the state

V (x(k+1)) = V(x(k)) =x" (k) [ATPA— P] x (k)

A\ g

2-Q

Asymptotic stability desires AV (x) to be negative.
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DT Lyapunov stability theorem for linear systems

Theorem

For system x (k + 1) = Ax (k) with A € R"™*", the origin is
asymptotically stable if and only if 3 Q > 0, such that the
discrete-time Lyapunov equation

ATPA—P=—-Q@

has a unique positive definite solution P = 0, PT = P.

The DT Lyapunov Eq.

ATPA—P=-Q

Solution to the DT Lyapunov equation, when asymptotic
stability holds (A is Schur stable), comes from:

V(b)) V (x(0)) = > AT () [ATPA - P x (4

:—ZX )" QA (0)
= P:Z(AT)kQAk

can show that the DT Lyapunov operator Ly = ATPA— P is
invertible if and only if Vi,j (Aa); (Aa); # 1
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DT Lyapunov analysis with MATLAB

Example
0 1 0
x(k+1) = Ax(k), A= 0 0 1
0.275 —-0.225 —-0.1
% MATLAB
A=[010;00 1; 0.275 -0.225 -0.1]
Q = eye(3)

P = dlyap(A’,Q) % check function definition in Matlab help
eig(P)

DT Lyapunov analysis with Python

Example
0 1 0
x(k+1) = Ax(k), A= 0 0 1
0.275 —-0.225 —-0.1
#Python

import control as ct

import numpy as np

from numpy.linalg import eig

A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]])
Q = np.identity(3)

P = ct.dlyap(A.transpose(),Q)

w,v = eig(P)

print(w)




Recap

Internal stability

Stability in the sense of Lyapunov: €, § conditions
Asymptotic stability

Stability analysis of linear time invariant systems (x = Ax or
x(k +1) = Ax(k))
Based on the eigenvalues of A

Time response modes
Repeated eigenvalues on the imaginary axis

Routh's criterion

No need to solve the characteristic equation

Discrete time case: bilinear transform (z = =)

Recap

Lyapunov equations
Theorem: All eigenvalues of A have negative real parts iff for
any given @ >~ 0, the Lyapunov equation

ATP+ PA=—-Q

has a unique solution P and P = 0.

Given Q, the Lyapunov equation AT P 4+ PA = —Q has a unique
solution when A\a; + Aa; # 0 for all / and J.

Theorem: All eigenvalues of A are inside the unit circle iff for
any given @ >~ 0, the Lyapunov equation

ATPA—P=-Q

has a unique solution P and P = 0.
Given Q, the Lyapunov equation AT PA — P = —Q has a unique
solution when Ag;Aa; # 1 for all 7 and .
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P is positive definite if and only if any one of the following
conditions holds:

All the eigenvalues of P are positive.

All the leading principle minors of P are positive.
There exists a nonsingular matrix N such that P = NT .




Controllability and Observability

Xu Chen

University of Washington

The concept of controllability and observability

Controllability:
» inputs do not act directly on the states but via state dynamics:

x(t) =Ax(t)+ Bu(t) or x(k+1) = Ax(k)+ Bu(k) (1)

» can the inputs drive the system to any value in the state space
in finite time?
Observability:
> states are not all measured directly but instead impact the
output via the output equation:

y = Cx+ Du

» can we infer fully the initial state from the outputs and the
inputs? (can then reveal the full state trajectory through (1))
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The concept of controllability and observability

X1, X2 X3, Xa
P 7«
—VVVVWAV— —VVVWW\— X1 = Xo

. | m Y] m . | X3 = Xa
b b

floating force source

assume x (0) =0

because of symmetry, we always have

x1(t) =x3(t), x2(t) =x4(t), YVt >0

state cannot be arbitrarily steered = uncontrollable

Controllability definition in discrete time

Definition
A discrete-time linear system x (k + 1) = A(k)x (k) + B(k)u (k) is
called controllable at kK = 0 if 3 a finite time k; such that V initial
state x (0) and target state x;, there exists a control sequence
{u(k); k=0,1,..., k} that will transfer the system from x (0) at
k:OtOX1 atk:kl.
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Controllability of LTI systems

x(k+4+1) = Ax (k) + Bu(k) = x(n) = A"x(0) + Zz;é A—1=kBy (k)

[ u(n—1)

u(ln—2

= |x(n) — A"x(0) = [B,AB, A®B, ... A"1B] (n=2)
Pa I u (0) |

given any x (n) and x (0) in R", u, can be solved if the columns
of Py span R”

equivalently, system is controllable if P, has rank n (full row
rank)

Controllability of LTI systems Cont'd

x(k+1) = Ax (k) + Bu (k) =

u(n—1
, . u(n—2

x(n) — A" (0) = [B,AB,A%B, ..., A" 1B] |
v - u(0)

also, no need to go beyond n: adding A"B, A"*1B, ... does not
increase the rank of Py (Cayley Halmilton Theorem):

| U(kl — ].) ]
U(kl — 2)
x(ki)—ARx(0)=[ B AB ... A"1B|... Ak~lB] :
rank::::nk(Pd) u (O)
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Theorem (Cayley Halmilton Theorem)
Let A€ R"™". A" s linearly dependent with {I, A, A% ... A"t}

Proof.

Consider characteristic polynomial

p(A) ="+ A" )+ o = det (M — A)
= ()\ - )\]_)ml ... ()\ - )\p)mp

= p(A)=A"+c, A" 4 A+ ol
:(A—)\ll)ml...(A—Ap/)mp, my+my—+---+mp=n

V eigenvector or generalized eigenvector t;, say, associated to \;:
p(A)ti= (A= D)™ .. (A=, )™t =

(A=XD™ . (A=2D" " (it = 2pt) = (A= A)™ ... (A= A)™ =0

> therefore p (A) [t1, t2,...,ty] =0

» but T = [t1,ts,...,t,] is invertible. Hence p(A) =0
= A" = —Col — ClA — s — Cn_lAn_l

Arthur Cayley: 1821-1895, British mathematician

» algebraic theory of curves and surfaces, group theory, linear
algebra, graph theory, invariant theory, ...

» extraordinarily prolific career: 71,000 math papers
William Hamilton: 1805-1865, Irish mathematician

» optics and classical mechanics in physics, dynamics, algebra,
quaternions, ...

» quaternions: extending complex numbers to higher spatial
dimensions: 4D case

i°=j°=k*=ik=—1
now used in computer graphics, control theory, orbital

mechanics, e.g., spacecraft attitude-control systems
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Theorem (Controllability Theorem)

The n-dimensional r-input LTI system with
x(k+1)=Ax (k) + Bu(k), Ac R™", B € R™" s controllable if
and only if either one of the following is satisfied:

1. the n x nr controllability matrix

P, = [B,AB,A’B,..., A" 'B]

has rank n

2. the controllability gramian

k1
Wy =Y ABBT (AT)"

k=0

is nonsingular for some finite k;

Proof: from controllability matrix to gramian

Recall

x(n) — A"x (0) = [B,AB,A’B, ..., A" 'B] u, (2)

Py

> Py is full row rank=P4P] = ZA"BBT (AT)k is nonsingular
k=0

7

-~

Weq at k1=n

» a (least-square) solution to (2) is

up = PJ (PaP]) " [x(n) — A" (0)]
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Example

0 0 0
Pi=10 1 X+ X | = rank(Py;) =2 < 3 =-uncontrollable
1 X A3

Intuition: x; = A1xy is not impacted by the control input at all.

Example
X1, X2 X3, X4
P T« |
m m 2 zf(i
b 5
floating force source
x1(k +1) 04 04 O 0 xa (k) 0.3
(k+1) | | =09 —007 0 0 xe(k) | , | 04
- B AB A%B A3B ]
/-/\r - \ 7~ - \ 7~ - N
0.3 0.28 —0.0072 —0.0953
0.4 —-0.298 —0.2311 0.0227
rank (P4) = rank 0.3 0.28 0.0072 —0.0953 | = 2 = uncontrollable
0.4 —-0.298 —0.2311 0.0227

12/52



Example

ko]
m = x
b
floating force source
x(k +1) 04 04 0 0 xa (k) 0.3
xolk+1) | | =09 —007 0 0 (k) |04
xa(k +1) 0 0 —0.9 —0.07 || xa(k) 0.4

import numpy as np
import control as ct
A = np.array([[0.4, 0.4, 0, 0], [-0.9, -0.07, O, O], [0, O, 0.4, 0.4], [0, O, -0.9,
-0.07]])

B = np.array([[0.3], [0.4], [0.3], [0.4]])
P = ct.ctrb(A,B)
print(np.linalg.matrix _rank(P))

Example

1/m —b/m?* b*/m’ — ky/m? — ky/m?
P = 0 ky/m —bky /m? = rank(P) = 2
0 k2/m —bkz/l'l’l2

—=uncontrollable




Analysis: controllability and controllable canonical
form

0 1 0 0
—dgp —di1 —ar 1

controllability matrix

0O O 1
Pd = 0 1 —dar
1 —a —a;+a5

has full row rank
system in controllable canonical form is controllable

Recap

General LTI state-space models:

x (t) = Ax(t) + Bu(t) or x(k +1) = Ax (k) + Bu (k)

y = Cx+ Du
continuous time discrete time
Lyapunov Eq. ATP 4+ PA=—-Q ATPA— P =—-Q
unique sol. Ai(A)+ Ai(A) #0 Ai(A)|A(A)] < 1
cond. Vi,j Vi,j
[ ATt AL _ @ T\K N Ak
solution .P . Jo e . Qe dt P._ Z.kzo (AT)” QA
(if Ais Hurwitz stable) | (if A is Schur stable)
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Analysis: controllability gramian and Lyapunov Eq.

k1
We =) ABBT (AT)"
k=0
If Ais Schur, k; can be set to oo
- k
Wy = kZAk BBT (AT)
=0 Q

which can be solved via the Lyapunov Eq.

AW AT — Wy =—BB"

Analysis: controllability and similarity
transformation

A B
X = AX u x=Tx* T 1A
e e S S ) =T AT 0+ T Bk
y (k) = CTx* (k) + Du (k)

——

controllability matrix
P = [B,Aé,...,l\"—lé]
= [T'B, T 'AB,..., T 'A"'B] = TP,

hence (A, B) controllable < (T~*AT, T~!B) controllable

The controllability property is invariant under any
coordinate transformation.
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* Popov-Belevitch-Hautus (PBH) controllability
test

the full rank condition of the controllability matrix

Ps= [B,AB,A’B, ..., A" 'B]

is equivalent to: the matrix [A — A, B] having full row rank at
every eigenvalue, )\, of A

to see this: if [A — A/, B] is not full row rank then there exists
nonzero vector (a left eigenvector) such that

vI[A— X B] =0
sSvlA= )\
viB=0

i.e., the input vector B is orthogonal to a left eigenvector of A.

19/52

Example
[A — M/, B] =
0 0 0 0
0 X — )\ 1 0 | not full row rank =uncontrollable

0 0 A —A 1
Intuition: x; = A1xy is not impacted by the control input at all.
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Observability and observable canonical form

Observability of LTI systems

Definition
A discrete-time linear system

x(k+1)=A(k)x(k)+ B (k) u(k)
y (k) = C (k) x (k) + D (k) u (k)

is called observable at kK = 0 if 3 a finite time k; such that V initial
state x (0), the knowledge of input {u(k);k=0,1,...,k} and
{y(k); k=0,1,..., ki } suffice to determine the state x (0).
Otherwise, the system is said to be unobservable at time k = 0.
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Observability of LTI systems
let us start with the unforced system

x(k+1)=Ax(k), AecR"
y (k) = Cx(k), y e R™

x (k) = Akx (0) and y (k) = Cx (k) give

[y | [ ¢ ]
y(zl) _ C:A < (0)

yin-1) | |t

T e

if the linear matrix equation has a nonzero solution x (0), the
system is observable

Observability of LTI systems

generalizing to
x(k+1) = Ax (k) + Bu(k), (k) Cx (k) + Du (k):

x (k) = ) + ZA" 1=/ Bu (j
k—1
y (k) = CA*x(0)+ C Y A JBu(j) + Du (k)
0]
.yfree(k) G J -~ i
onrced(k)
[ y (O) — Yforced (O) | [ C ]
1) — orce 1 CA
y (1) ):/f a (1) _ | < (0)
y (n — 1) — VYforced (n — 1) | i CAn_l |

—. / (& J/
-~ -~

Yn: available from measurements and inputs Qg:nmxn




Observability of LTI systems

y (O) — Yforced (O) C
1) — Veorced (1 CA
y (1) % a (1) _ _ < (0)
i y (n — 1) — VYforced (n — 1) | i CAn_l |
s s

x (0) can be solved if Q, has rank n (full column rank):

if Qq is square, x (0) = Q. 'y,
if Qg is a tall matrix, pick n linearly independent rows from Qg

Observability of LTI systems Cont'd

y (O) — Yforced (O) C
1) — orce 1 CA
y (1) % a (1) _ . < (0)
I y(n—1) = Veorced (n — 1) | ] CA"1 |
9 Qs

also, no need to go beyond nin Q: adding CA", CA"*!, ...

does not increase the column rank of Q4 (Cayley Halmilton
Theorem)
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Theorem (Observability Theorem)

System x (k + 1) = Ax (k) + Bu (k) , y (k) = Cx (k) + Du (k),
A e R™" C e R™" s observable if and only if either one of the

following is satisfied:

C
CA
1. the observability matrix Q, = : has full column rank

CA.nfl

(mn)xn

2. the observability gramian

ky L
W,y = Z (AT> C " CA¥ | is nonsingular for some finite kq
k=0

3. * PBF test: The matrix [ A _C)\l ] has full column rank at

every eigenvalue, \, of A.

Proof: from observability matrix to gramian

C
CA a
Q= | Woy =Y (AT)" CTCA*
oAt .

> Qq is full column rank=Q] Q4 = Z (AT)k CTCA" is

=

g

~~

W,4 at ki=n
nonsingular




Observability check

Analogous to the case in controllability, the observability
property is invariant under any coordinate transformation:

(A, C) is observable <= (T 'AT, CT) is observable

If Ais Schur, k; can be set to oo in the observability gramian
Woy =Y (AT)" CTCA*
k=0

and we can compute by solving the Lyapunov equation
ATWo4A — Wy =—-C'C

The solution is nonsingular if and only if the system is
observable. In fact, W, 4 = 0 by definition = “nonsingular’ can
be replaced with “positive definite”.

29 /52

Observability and observable canonical form

—3210
A=| -a 01|, C=[10 0]
—3000

observability matrix

C 1 0 O
Qs=| CA | = —a 1 0
CA? as—a —a 1

has full column rank

system in observable canonical form is observable



* PBH test for observability

A— Al

The matrix [ C

] has full column rank at every eigenvalue, A, of A.

if not full rank then there exists a nonzero eigenvector v:

Av = \v
Cv=0
= CAv =)\Cv =0

CA"™ vy =0
the reverse direction is analogous

C
CA

CAn-!

v = 0 = unobservable

interpretation: some non-zero initial condition x; = v will

generate zero output, which is not distinguishable from the

origin.




Theorem (Controllability of continuous-time systems)

The n-dimensional r-input LTI system with x = Ax + Bu, A € R™",
B € R"*" is controllable if and only if either one of the following is
satisfied

1. the n x nr controllability matrix
P = [B,AB, A’B, ..., A”_lB]

has rank n
2. the controllability gramian

t
W., = / eA"BBT A Tdr
0]

is nonsingular for any t > 0

Theorem (Observability of continuous-time systems)

System x = Ax + Bu, y = Cx+ Du, A€ R™", C € R™" s

observable if and only if either one of the following is satisfied
1. the (mn) x n observability matrix

C

CA
Q= ] has rank n (full column rank)

CAn—l

2. the observability gramian

t
W,. = / e TCTCe?dr | is nonsingular for any t > 0
0
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Summary: computing the gramians

Controllability Gramian Observability Gramian

continuous time fot e""BBT (e"7) T dr fot (e47) T CcTcermdr

Lyapunov eq.

ift—o00& AW, + W.AT = —BBT ATW, + W,A=—-C'C

A is Hurwitz stable

discrete time f AKBBT (AT)" ' (AT)XCT CAX

Lyapunov eq.

if k1—>OO& AWCdAT— Cd:—BBT ATWOdA— Wod:—CTC
A is Schur stable

> duality: (A, B) is controllable if and only if (A, C) = (AT,BT)
is observable

Exercise
-2 00 1
A=| 1 02|,B=1]0
0 0O 1
C=[10 1]
> exercise: show that the system is not observable.
1 00
» in fact, by similarity transform x = | 0 0 1 | x, we get
010
) —2 010 ) 1
A=| 0 0/0]|,B=|1
1 2|0 0
C=[11|0]

where the third state is not observable
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The degree of controllability

consider two systems

S - x(k—I—l)::g é]x(k)+[(1)]u(k)
S, X(k+1):_8 O'fllx(k) [Hu(k)

both systems are controllable:

01 0 0.01
Pdl‘[lol’ Pd2_[1 1 ]
however, Py, is nearly singular = S, not “easy” to control

e.g., to move from x(0) = [0,0]" to x(1) =[1,1]" in two steps:

S1:{u(0),u(1)} ={1,1} S> :{u(0),u(1)} ={100,—99}

= more energy for S,!
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The degree of controllability: multi-input case

consider two systems

S - X(k+1)::8 é]x(k)+[$ é]u(k)
S, x(k+1)::8 O'in]x(k) [(1) é]u(k)

both systems are controllable:

0110 0 0.01 0.01 0
Pd1[1ooo]’ Pd2[1 1 1 o]

degree of controllability reflected in the controllability Gramian:

2 0 2 x 0.012 0.02

W42 is almost singular (eigenvalues at 0.0001 and 3.0001)

The degree of controllability: multi-input case

for general stable and controllable systems ¥ = (A, B, C, D),
W_4 is computed from the Lyapunov Equation

AW AT — W4y =—BBT

if W,y have eigenvalues close to zero, then the system is more
difficult to control in the sense that it requires more energy in
the input to steer the states in the state space
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The degree of observability

consider two systems

51:x(k+1):_8 é]x(k) y(K)=[1 0]x(k)
5¢xw+1y__é°gllqm y(K)=[1 0]x(k)

both systems are observable:

10 1 0
le_[o 1]’ Qd2_[1 0.01]

however, @y, is nearly singular, hinting that S; is not “easy” to
observe

e.g., to infer x(0) = [2,1]", the two measurements y(0) = 2 and
y(1) = CAx(0) = 2.001 are nearly identical in S,!

41 /52

The degree of observability: multi-output case

for general stable and controllable systems ¥ = (A, B, C, D), the
observability matrix Q4 is not square

the degree of observability is reflected in the eigenvalues of the
observability Gramian W4

for stable systems, W, is computed from the Lyapunov
Equation AT W, 4A — W,y = —CTC

if W,4 have eigenvalues close to zero, then the system is more
difficult to observe
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Balanced state-space realizations

we know now

the controllability and observability Gramians represent the
degrees of controllability and observability

easily controllable systems may not be easily observable
easily observable systems may not be easily controllable

= there exists realizations that balance the two degrees of
controllability and observability

Balanced state-space realizations

consider a stable system ¥ = (A, B, C, D) in a minimal® realization
minimal realization = ¥ is controllable and observable
stable = can compute the Gramians from Lyapunov Equations

if W,y and W,4 are equal and diagonal, then ¥ is called a
balanced realization

i.e., there exists a diagonal matrix M = diag (o1, 02,...,0,),
o1 > 09 > -+ > 0, > 0 such that

M= AMAT + BBT
M=A"TMA+C'C

li.e., dim A is the minimal order of the system
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Transforming single-input controllable system into
cct

Let x = MX, where M= | my my, ... m, |, then

.
X=M7"1x=M71(Ax+ Bu) = M AM% + M~'Bu

B
If system is controllable, we show how to transform the state
equation into the controllable canonical form.

goal 1: B be in controllable canonical form<

0 0
M-1B = O = B =[my,my, ..., my] 0 = m,
1 1
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Transforming Sl controllable system into ccf

Let x = MX, where M = [my, m,, ..., m,], then

X=M"1x=M"1(Ax + Bu) = M_lNAM>“< + M™'Bu
A

goal 2: A be in controllable canonical form<

Almy, my, ... omy| =
[ 0 1 0
o . 0
[my, mo, ... 5 mp] ; o1
0 ... 0 0
| —do —ai1 —dp-1

Transforming S| controllable system into ccf
Let x = MX, where M = [my, m,, ... m,], then
X=M"1x=M"1(Ax+ Bu) = M AM% + M~ Bu
solving goals 1 and 2 yields

m, =B
mp—1 = Amn + ap_1m,
mp_> = Amn—l + apn_omy

mi_1 = Am,-+a,-_1m,,, = n,...,2

when implementing, obtain ag, aj, ..., a,_1 first by calculating
det(sl —A) =s"+a,_1s" 4+ -+ a15 + ag
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Transforming single-output (SO) observable system
into ocf

. T, .
Let x = R7!%, where R=[r,r),...,r]]" (ri is a row vector).

X = Rx = R(Ax + Bu) = RAR"' X + RBu
A
y=Cx=CR %
——
C
If system is observable, we show how to transform the state equation
into the observable canonical form.

goal 1: C be in observable canonical form<

CR"'=[1 0 ..0=C=n

Transforming SO observable system into ocf

L1 T,
Let x = R7'X, where R = [r", 1), ...,r]|" (i is a row vector).

> n

X = Rx = R(Ax + Bu) = RAR" X + RBu

A

goal 2: A be in observable canonical form<

_ . —dp—1 1 0 ... 0 _ _
I IR T

A= 0 0 .
rn —a; 1 rn
- | —a3 0 . o 0]~ -~

50 /52



Transforming SO observable system into ocf

Let x = R7!%, where R=[r/, 1), ..., 1] ] ! (r; is a row vector).
X = Rx = R(Ax + Bu) = RAR"' % + RBu
A

solving goals 1 and 2 yields
rn==C
rp=rA+ap_1n
= nA+a,_on

riv1 =riA+ap_in, i=1,...,n—1

when implementing, obtain ag, a;, ..., a,_1 first by calculating
det (sl — A)

51/52

Transforming SO observable system into ocf

Example: x (k + 1) = [(1) e ] x(K)y(k)=[1 0]x(k)

det (A—A)=X - A= a; =1, 3y =0

rn = C = [1,0]
rnh = F1C +aih = [1,0]/4 + (—1) [1,0]

1 0 L [1 o0
R[o 0.01]’R [o 100]

C = CR™' =[1,0] <= ocf!

11

- e
A = RAR _[O 0

] +—— ocfl
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ME 547: Linear Systems

Controllable and Observable Subspaces
Kalman Canonical Decomposition

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) Kalman decomposition

1. Controllable subspace

UW Linear Systems (X. Chen, ME547) Kalman decomposition



Controllable subspace: Introduction

Example

- [(1) 8] B — [(1)] @{22213 igl(k)w(k)

A-[3 1] e (o] e {hry) et

» there exists controllable and uncontrollable states: x
controllable and x, uncontrollable

» how to compute the dimensions of the two for general systems?
» how to separate them?

UW Linear Systems (X. Chen, ME547) Kalman decomposition

3/31

Controllable subspace: Assumptions

Consider an uncontrollable LTI system

x(k+1)=Ax(k)+ Bu(k), AecR™"
y (k) = Cx (k) + Du (k)

Let the controllability matrix
P = |B, AB,A’B, . .. ,A”_lB}

have rank n; < n.

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Controllable subspace

» The controllable subspace x¢ is the set of all vectors x € R”
that can be reached from the origin.

» From

x(n) — A" (0) = [B,AB, AB, ..., A" 'B]

A\ g
-~

P 4 (0)

Xc is the range space of P: x¢c = R (P)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 5/31

2. Observable subspace

UW Linear Systems (X. Chen, ME547) Kalman decomposition 6/31



Observable subspace: Introduction

Example
] xi(k+1) = xqy(k)+ u(k)
A= 1 (” B:[é],@ olk+1) = (k) + x(k)
] y(k) = x1(k)
C=[1 0]

» exists observable and unobservable states: x; observable and x,
unobservable

» how to separate the two?

» how to separate controllable but observable states, controllable
but unobservable states, etc?

UW Linear Systems (X. Chen, ME547) Kalman decomposition 7/31

Observable subspace: Assumptions

Consider an unobservable LTI system

x(k+1)=Ax(k)+ Bu(k), Ae R™"
y (k) = Cx (k) + Du (k)

Let the observability matrix

CA

CAn—l

have rank n, < n.

UW Linear Systems (X. Chen, ME547) Kalman decomposition 8/31



Unobservable subspace

» The unobservable subspace x,, is the set of all nonzero initial
conditions x (0) € R" that produce a zero free response.

» From ) ) ) )
y(0) ¢
1 CA
y( ) | _ A )

y(n—1) CA—1
v Q

Xuo 1S the null space of Q: xuo =N (Q)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 9/31

3. Separating the uncontrollable subspace
Discrete-time version
Continuous-time version
Stabilizability

10/31
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Separating the uncontrollable subspace
» recall 1: similarity transform x = Mx* preserves controllability

x (k + 1) = Ax (k) + Bu (k) N x*(k+1) = M~TAMx* (k) + M~1Bu (k)
y (k) = Cx (k) + Du (k) y (k) = CMx* (k) 4+ Du (k)

» recall 2: the uncontrollable system structure at introduction

~ 11 = 1 x1(k+1) =x1(k)+ x2(k) + u(k)
A — B =
[0 1]’ {0]@{XQ<k+1> = xa(k)
» decoupled structure for generalized systems

(5 )[4

X, impacted by neither u nor X..

UW Linear Systems (X. Chen, ME547) Kalman decomposition 11/31

Theorem (Kalman canonical form (controllability))

Let x € R", x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
uncontrollable with rank of the controllability matrix,

rank(P)=m <n. Let M= | M. M, |, where

M. = [my, ..., my,] consists of ny linearly independent columns of P,
and M, = [mp, y1,...,m,| are added columns to complete the basis
and yield a nonsingular M. Then x = MXx transforms the system
equation to

EIBEEAIEAE R

Xuc(k +1) 0 A || Xuc(k) 0
y(k)=[ C Cuc ] [ )f:c((l;()) ] + Du(k)

Furthermore, (A., B.) is controllable, and
C(zl —A)'B+D = C.(zl —A) *B.+ D

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Theorem (Kalman canonical form (controllability))

Re(k+1) ] _ [ A A | [ (k) /_éj
et |75 a2 [ L6 |

intuition: the “B" matrix after transformation
» columns of B € column space of P, which is equivalent to
R (M)
» columns of M,. and M, are linearly independent = columns of
B &R (M)
» thus

denote as B, —
B=[M. Mc.]| = jmlg—[%]
0

UW Linear Systems (X. Chen, ME547) Kalman decomposition 13 /31

Theorem (Kalman canonical form (controllability))

BB A B R

intuition: the “A” matrix after transformation
» range space of M. is “A-invariant’:

columns of AM, € {AB,A237 L 7A”B} e R (M)

where columns of A”B € R (P) = R (M,) (-.- Cayley Halmilton

Thm) ) )
» ie., AM. = M.A. for some A.=

2 A5
=~ AN A A
A [MC7 Muc] = [MC7 Muc] Ac A;E\ = M_IAM - [ /L(\)C ﬁ\_\lz ]
uc uc
0 *
i

14 /31
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Theorem (Kalman canonical form (controllability))
M-1B

M~1AM
se(k+1) 1 T A Ap [ (k) B,
[fq,c(kJrl) ] - [ 0 AUC] [fq,c(k) Tl o |ulk)
(A, B.) is controllable
» controllability matrix after similarity transform
p_'éc A.B. An-1B | ... A1B.

R 0 0

[ P.| AmB, Ar-1B,
| 0 0 0

> similarity transform does not change
controllability=- rank(P) = rank(P) = m

» thus rank(P.) = n; = (A, B.) is controllable
UW Linear Systems (X. Chen, ME547) Kalman decomposition 15 /31
Theorem (Kalman canonical form (controllability))
X(k+1) 1 [ A A X-(k) B,
[xuc(k+1) ] 1o AUC] [xuc(k) 1 o |4k
— [ C = )?C(k)
y(k) =] C Cuc [ %oc(K) ] + Du(k)
C(zl —A) B+ D= C(zl —A)'B.+D
we can check that
- - -1 —_
= = zl — AC —A12 BC
LG G ]| T z/—Z\UC] [o]“)
_ [ | — A ) 1 * B
(G G| WA __[C]D
[ ]_ 0 (2 — Aue) 1] o |7
1 B.+D
16 /31

:CC (ZI - Ac)
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Matlab commands

M=1AM M-1B

hk+1) 1 T A An 1T %K) B

)_<c + L c /112 )_<c c
[iuc(k+1) ] a [ 0 Au ] [%uc(k) ] i [ 0 ] (k)

x = Mx where M = [ M. M, }
» M. =[my,..., mp,] consists of all the linearly independent
columns of P: Mc = orth(P)
» M, = [my1,...,m,] are added columns to complete the basis

and yield a nonsingular M
» from linear algebra: the orthogonal complement of the range
space of P is the null space of PT:

R" =R (P) &N <PT)

» hence Muc = null(P’) (the transpose is important here)

17 /31

UW Linear Systems (X. Chen, ME547) Kalman decomposition

The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be uncontrollable with the rank of the controllability matrix

rank(P) =n < n. Let M = [ M. M, } where

M. = [my, ..., my,] consists of ny linearly independent columns of P,
M, = [mp, 41, ..., m,] are added columns to complete the basis for
R"™ and yield a nonsingular M. Then the similarity transformation

x = MXx transforms the system equation to

i )_<c _ _Ac 412 )_<c + éc
di | Fue | | 0 Auc || Fuc 0 |”

y=[ ¢ C_'uc][i_(C]—l—Du

uc

18/31
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Example

4 | vm —b/m —1/m —1/m Vi 1/m
a Fi, = ki 0 0 Fi, | + 0 F
Fu, ko 0 0 Fu, 0
let m=1,b=1
1 -1 1—k —ko 1 -1 0 1 1/kk 0
P=1]0 Kk —k1 ,M=10 Kk 0|, Mt*=]0 1/k O
0 ky —k; 0 k 1 0 —ko/ky 1
0 —(ki+ko)|1 1
A=MTAM= | 1 ~1 0|,B=M"'B=|0
0 0 |0 0

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Stabilizability

[;C(k+1) ] A 2\12] [5C(k) ]+[EC

Xoe(k+1) |

(k) =[ € Cu | [ %e(K) ] + Du(k)

The system is stabilizable if
» all its unstable modes, if any, are controllable

» j.e., the uncontrollable modes are stable (/_\UC is Schur, namely,
all eigenvalues are in the unit circle)

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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4. Separating the unobservable subspace
Discrete-time version
Detectability
Continuous-time version

UW Linear Systems (X. Chen, ME547) Kalman decomposition 21 /31

Separating the unobservable subspace
» recall 1: similarity transform x = O~1x* preserves observability

x (k + 1) = Ax (k) + Bu (k) x* (k 4+ 1) = OAO~1x* (k) + OBu (k)
y (k) = Cx (k) + Du (k) y (k) = CO~1x* (k) 4 Du (k)

» an unobservable system structure

xi(k+1) =xu(k)+ u(k)
A— [ , H B — [ é] o dsolk+1) = (k) + x(k)
y (k) = x1(k)

C=[1 0]

» decoupled structure for generalized systems
Xo(k+1) ] _[ A O (k) B,
[ )?uo(k_'_ 1) ] B | A21 Auo ] [ )_(uo(k) + Buo U(k)

v =16 0| 20 |+ oue

the “observed” X, doesn't reflect X,c (%o(k + 1) = Ao%o (k) + Bou (K))

22/31



Theorem (Kalman canonical form (observability))

Let x € R", x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
unobservable with rank of the observability matrix,

rank(Q) =n, < n. Let O = [ OO°
linearly independent rows of Q, and O,, = [O,Z;+1, e o,ﬂ " are
added rows to complete the basis and yield a nonsingular O. Then
X = Ox transforms the system equation to

[ Ro(k +1) ] :Z%\\'zol A'?Jo] [200((?) ] . [ gz ] k)

Xuo(k + 1)
Xo(k)
0] [iuo(k) ] + Du(k)

] where O, consists of n,

I
oﬁl

y(k)

Furthermore, (/_\o, (_)o) is observable, and
C(zl —A)'B+D = Cy(zl —A,) B, + D

UW Linear Systems (X. Chen, ME547) Kalman decomposition 23 /31
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Theorem (Kalman canonical form)

Case for observability
%(k+1) 1 [ A 0 Xo (k) B,
[ )?uo(k+ 1) ] N i /2\21 Auo ] [ )?uo(k) ] * [ éuo ] U(k)

y(k)y=[ C 0] [)_(uo(k) ] + Du(k)

v.s. case for controllability

ERINAIEAR

Xye(k + 1) 0 A Xuc (k) 0
y(k)=[ & Cu ] [ )fu‘-‘c((’;)) ] + Du(k)

Intuition: duality between controllability and observability
(A, B) unconrollable < (A", B") unobservable
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Detectability

[ 2)0((12111)) ] - /%1 A?,o ] [ 200((?) ] + [ §°O ] u(k)

y=[6 0] ]

The system is detectable if
» all its unstable modes, if any, are observable

> i.e., the unobservable modes are stable (A, is Schur)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 25 /31

Continuout-time version

Theorem (Kalman canonical form (observability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be unobservable with the rank of the observability matrix
rank (Q) = ny < n. Then there exists similarity transform x = Ox
that transforms the system equation to
B,
RS

JONEE
e[

Furthermore, (A, C,) is observable, and
C(sl —A)"'B+ D = Cy(sl —A,)"'B, + D.

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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5. Transfer-function perspective

UW Linear Systems (X. Chen, ME547) Kalman decomposition 27 /31
Transfer-function perspective
uncontrollable system: C(zI — A)'B+ D = C.(zl — A.)'B.+ D

unobservable system: C(zI — A)™*B+ D = Co(zl — A,) B, + D

where A € R™" A e Rm*xm A ¢ RMxm
» Order reduction exists

_ - _ B(#) _ .
G(z)=C(zl —A)'B+D = AZ)’ A(z) = det(zl — A) order : n

PN T S
G(z) = Ce(zl—A)1BA4D = A(2) Ac(z) = det (zI — Ac) order : ny

» =A(z) and B(z) are not co-prime | pole-zero
cancellation exists

» same applies to unobservable systems

Kalman decomposition 28 /31
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Example
Consider

» The transfer function is

G(S): S+ S+

2+3s5+2 (s+1)(s+2)

» System is in controllable canonical form and is controllable.
» observability matrix

Q:[ a 1 ],detQ:(cl—l)(c1—2)

=-unobservable if c; =1 or 2

UW Linear Systems (X. Chen, ME547) Kalman decomposition

6. Kalman decomposition

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Kalman decomposition

an extended example:

Al 0 [As]| 0 B,

_ A21 A22 A23 A24 o BZ

A=l 0T [Asl0 |"%7 |0
0 | 0 | Ass| A 0 |

» A;, G and B; are nonzero

» The A;; mode is controllable and observable. The A,, mode is
controllable but not observable. The A3 mode is not
controllable but observable. The A4, mode is not controllable
and not observable.

UW Linear Systems (X. Chen, ME547) Kalman decomposition 31/31




State Feedback Control

Xu Chen

University of Washington

Motivation

» At the center of designing control systems is the idea of

feedback.

» In such transfer-function approaches as lead-lag and root locus
methods, the primal goal is to achieve a proper map of
closed-loop poles with output feedback.

Key questions:
» How much freedom do we have for state-space systems?

» Are there fundamental system properties that yield higher
achievable performance?

» How to implement the design algorithms?




General feedback structure

Consider an n-dimensional state-space system

| x(t) = Ax(t)+ Bu(t) B
> { y(t) — CX(t) + Du(t) X(to) =

where x ¢ R”, u € R", and y € R™.

state-feedback law:

V. new input
K € R™*": n-number of states, m-number of inputs

Goal

v o x=Ax+ Bu,y = Cx+ Dut——=y

closed-loop system:

d:{xm = (A-BK)x()+BU(t)

y(t) (t) + Du(t)

[
L

key closed-loop property: eigenvalues of A — BK.
How freely can we place the eigenvalues of A, = A — BK?

4/16



Eigenvalue placement by state feedback

Fact: If ¥ = (A, B, C, D) is in controllable canonical form, we
can completely change all the eigenvalues of A — BK by
choice of state-feedback gain matrix K.

Problem setup: single-input single-output system in c.c.f.

nil o ..
s"+ap—15""t + -+ a1s + ao C|D

0] 1 0] 0] T [ 0 T
0] 0] 1 0
A: 7B:
. . . 0 .
0] 0] 1 0]
| —a0 ... ... —Qp_2 —Qp_1 | | 1 ]
C:[Bo 61 ... ... Bn_l],D:d

det (s/ — A) = s" +a,_18" '+ - + a5 +

Eigenvalue placement by state feedback: c.c.f.

Goal: achieve desired closed-loop eigenvalue locations
P1,-, Pn, i€

det (s/ — (A= BK)) = (s = p1)(s = p2) - (s — pn) (4)
=s"+ 15" s+ (5)
Let K = [ko, k1, ..., kn_1]. The structured A and B give

S 0] 0] 0] 0]
0 0o 0 0 0
BK = . [ko,kl,...,k,,_l] = . )
; oo
1 0] 0] 0]
- - ko kn—2 kn-1
0] 1 0 0]
0] 0] 1 0]
A— BK = )
. 0
0 0] 1
—ap — ko —0p_2 — kn—2 —op—1— kn—1

6/16



Eigenvalue placement by state feedback: c.c.f.

A
0 1 0
: 1
0 0 1
—Qp ... ce —Op—1
det (sl — A)

S" 4+ op_15" T - ars + ag

Eigenvalue placement by state feedback: c.c.f.

A A — BK
0 1 0 0 0
: 1 : & 0
0 0 1 0 0 1
—Qp ... N —0Op_1 —QQ — ko —Op_1 kn—l
det (sl — A)

S" 4+ oy 18" 4+ Fags + ag
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Eigenvalue placement by state feedback: c.c.f.

A A — BK
0 1 0 e 0 1 0
1 : ' 0
0 0 1 0 0 1
—Qp ... ce —Op—1 —QQg — ko “e ce —Qp—1 — kn—l
det (s/ — A) det (s/ — (A — BK))

"o 15" - Fagstag "+ (o1 kao1)s" -+ (o + ko)

Eigenvalue placement by state feedback: c.c.f.

Goal (recap): achieve desired closed-loop eigenvalue locations
P, Pp, i€
det(s/ — (A= BK)) = (s — p1)(s = p2) - -~ (s — pn)
= 5"+ 018" T 4+ 75 + 70

det (s/ — (A — BK)) = s" + (ap_1 + kn_1)s" 1+ - + (a0 + ko)
~ TV - v
target: vp—1 target: o

» hence

Ko = Yo — Qo

kn—l = Yn—1 — Op_1

10/16



Eigenvalue placement by state feedback: c.c.f.

Eigenvalue-placement Algorithm

1 | determine desired eigenvalue locations py,-- - , p,

2 | calculate desired closed-loop characteristic polynomial
(s=pi)(s—p2) (s =pn) =5"+Yn18""" + -+ 715+ 70
3 | calculate open-loop characteristic polynomial

det(s/ — A) =s"+a,_1s" 1+ + 15+ ag

4 | define the matrices:

K= [70 —Qp, ..., Yn-1— an—l]

Powerful result: if the system is in controllable canonical form, we
can arbitrarily place the closed-loop eigenvalues by state feedback!

General eigenvalue placement by state feedback

What if the given state-space realization ¥ = (A, B, C, D) is not
in the required form?

We can then transform it to c.c.f. via a similarity transformation.

Powerful fact: if system ¥ = (A, B, C, D) is controllable, then
we can arbitrarily place the closed-loop eigenvalues via state

feedback.

12/16



Discrete-time case

the eigenvalue assignment of discrete-time systems is analogous:

system dynamics:

x (k +1) = Ax (k) + Bu (k)
y (k) = Cx (k)

controller: u (k) = —Kx (k) + v (k)
closed-loop dynamics:

x(k+1) = Ax(k)—BKx (k)+Bv (k) = (A — BK) x (k)+Bv (k)

arbitrary closed-loop eigenvalue assignment if system is
controllable

Numerical example

1 1 -2 1
x(k+1)= (0 1 1 |x(k)+ |0 u(k)
0 0 1 1
v =2 0 0]x(k
%MATLAB 4Python
A =111,-2;0,1,1,0,0,1]; |import control as ct
B = [1,0;1]; import numpy as np
p = [0;0.1;0.2]; A = np.array([[1,1,-2],[0,1,1],[0,0,1]])
K = place(A, B, p) B = np.array([[1],[0],[1]])
p =[0,0.1,0.2]
K = ct.place(A, B, p)
print(K)
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The case with output feedback

if the full state is not measurable, state feedback control is not
feasible

consider output feedback

x = Ax+ Bu
y = Cx = x =Ax — BFy + Bv = (A— BFC) x + Bv
u =—Fy+v

A — BFC not as structured as A — BK

arbitrary closed-loop eigenvalue assignment not feasible

The case with output feedback

Example

Controllable mass-spring-damper system

dix | _ 0 1 X1 0

][5 - .
=40 )] ] Hk

— e i

arbitrary closed-loop eigenvalue assignment if u* = —kix; — koxo,
namely U*(s) = —ki X1(s) — ko Xao(s) = — (ki + kas) Xi(s)= a
proportional plus derivative (PD) control law

!

if with only proportional control, u* = —kyx;, arbitrary
closed-loop eigenvalue assignment is not possible
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Observer and Observer State Feedback

Xu Chen

University of Washington

Introduction

full state feedback is usually not available

the state estimation problem

deterministic case: observer design
stochastic case: the most frequent option is Kalman filter




Open-loop observer

d
—X
dt

conceptually simplest scheme to estimate x:

%f((t) — AR(t) + Bu(t), R(k + 1) = AR(K) + Bu(k)

(t) = Ax(t) + Bu(t), x(k + 1) = Ax(k) + Bu(k)

with a best guess of initial estimate £(0) =" 0.

error dynamics: e = x — X:
é(t) = Ae(t), e(k+ 1) = Ae(k), e(0) = xo — X(0)

sensitive to input disturbances
if A is not Hurwitz/Schur stable, the error diverges

open-loop observers look simple but do not work in practice

Luenberger (closed-loop) observer concept

given system dynamics

x = Ax + Bu, x(0) = x5, A€ R™" B € R™"
y =Cx, y € R™"

in contrast to open-loop observers, the Luenberger observer adds
correction based on output differences

4/24



Luenberger (closed-loop) observer algorithm

observer concept

plant:

x = Ax + Bu, x(0) = xo
y = Cx

observer realization:

X

AR+ Bu+L(y—9)=AR+Bu+L(y — CX), £(0) =0
(A= LC)&R+ Ly + Bu

5/24

Luenberger (closed-loop) observer error dynamics

system dynamics
X = Ax + BU, X(O) = Xp, A = Rnxn, B c Ran
y = CX, % c Rmxn

Luenberger observer with correction:

AR+ Bu+L(y—§) =A%+ Bu+L(y — CX), %(0) =0
(A= LC)% + Ly + Bu

X

error dynamics: e = x — X:
é=Ae—LCe=(A—-LC)e, e(0) = x(0)

if all eigenvalues of A — LC are on the left half plane, then the
error dynamics can be made asymptotically stable

6/24



Luenberger (closed-loop) observer

Theorem

If (A, C) is an observable pair, then all the eigenvalues of A— LC can
be arbitrarily assigned, provided that they are symmetric with respct
to the real axis of the complex plane.

we show the SISO case when A and C are in observable
canonical form (if not, a similarity transform can help out):

—Qp—1 1 0 Bn—l
—Q " 1 61
| —ag 0 ... 0 | fo |
C:[l o ... ... 0|,D=d
det(sl — A) =s"+ Qp1S" V- ags + ag

Observer eigenvalue placement: o.c.f.

Luenberger observer with correction:

$=AR+Bu+L(y—9)=A%+Bu+L(y —C&), £(0)=0
— (A—LC)%+ Ly + Bu

Goal: place eigenvalues of the observer at locations py, -« - , p,:

det (sl — (A~ LC)) = (s = P1)(s = F2) - (s — Pn)
=" +7,18" "+ TS + 7o

8/24



Observer eigenvalue placement: o.c.f.

Goal: place eigenvalues of the observer at locations py, - - - , p,:

det(s/ = (A= LC)) = (s —P)(s—P2) -~ (s —Pn)
="+ T, 8" TS + T

Let L = [ly, K, ..., /,,_1]T. The unique structures of A and C give

Io lo 0 0]
LC = (1 0 o]=| - °
;n_z In—2 0
n— Ih— 0 0
T —anp_1—Ilp 1 0] ce 0 T
—an—2—1 O
A—LC = 0 0
—1 — In—2 . 0 1
L —ag—1Ilh-1 O 0 0 4

Observer eigenvalue placement: o.c.f.

A and A — LC have the same structure:

—Qp—1 1 0 “ o —Qp—1 — /0 1

a=| Y asic= : |
—a; .1 —ay1 — 2

— Q0 0o ... 0 —Qo — /n—l 0

Recall: det(s/ — A) = s" + a,_15" 1+ - + a;5 + ap.

Thus

det(s/ — (A—LC)) = 5"+ (ap1+ 1) s" "+ + (g + r-1)
targeﬁ%n_l targgg Yo

Hence

/0 — 7n—1 — Op—1

/n—l — 70 — Op

10/ 24



General observer eigenvalue placement

What if (A, B, C, D) is not in the observable canonical form?
We can transform it to o.c.f. via a similarity transform:

' = RAR™! RB
X=Ax+Bu  x=R—x, Xob =[AN Xob+ B U
y = Cx — Ao Bo

3% = CoXop = CR ™ 1x,p

use previous formulas to design L in:
Rop = (Ao — ZCO> Rop + Ly + Bou (analysis form)
correspondingly in the original state space (via X,, = RX):
R% = (RAR—l . ZCR—l) R% + Ly + RBu
L
: ~
= %x=(A—R'LC)X+ Ly + Bu (implementation form)

Powerful fact: if system ¥ = (A, B, C, D) is observable, then

we can arbitrarily place the observer eigenvalues.
11/24

Luenberger observer summary

observer dynamics: & = A% + Bu+ L(y — C&), %(0) =0
block diagram




Luenberger observer summary

system dynamics

X = Ax + BU, X(O) = Xp, A = Rnxn, B c Ran
= CX, y € Rmxl

observer dynamics

$=AR+Bu+L(y —C&), £(0)=0
— (A= LC)% + LCx + Bu

augmented system

)= Lic alie|[F] 5]

Luenberger observer summary

augmented system

1= Lie alie|[F] 4[5 ]

y = Cx

to see the distribution of eigenvalues, note the error dynamics
e=(A—LC)le=

NPT

=-eigenvalues are separated into: A (A) and observer eigenvalues

underlying similarity transform: [)e< ] — [ fh 0 ] [ X ]

I, —I1, X

14 /24



Discrete-time observers: Introduction

full state feedback is usually not available
often observers are implemented in the discrete-time domain

the discrete-time observer design

basic form: analogous to the continuous-time Luenberger

observer
predict and correct form:

direct DT design
leverages discrete-time signal properties

Discrete-time full state observer

standard discrete-time observer:
x(k+1) = Ax (k) + Bu (k)
X(k+1)=Ax(k)+ Bu(k)+ L(y (k) — Cx(k))
y (k) = Cx (k)
error dynamics:e (k) = x (k) — X (k),
e(k +1) = Ae(k) — LCe(k)

overall dynamics

)8 e [ [ 8 e
)/(k+1)[C,O][ ’;:]

Powerful fact: the error dynamics can be arbitrarily assigned if
the system is observable.
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DT full state observer with predictor

motivation: X (k + 1) = AX (k) + Bu (k) + L(y (k) — CX (k))
doesn’t use most recent measurement y(k + 1) = Cx(k + 1)
discrete-time observer with predictor:

predictor: X (k + 1|k) = AX (k|k) + Bu (k)
corrector: X (k+1lk+1)=Xx(k+1lk)+ L(y(k+1)— CX(k + 1]k))
X(k|k): estimate of x(k) based on measurements up to time k
X(k|k — 1): estimate based on measurements up to time k — 1
e(k) = x (k) — % (k|k): estimation error
error dynamics
Rk+1k+1)=(—-LC)R(k+1|k)+ Ly (k+1)
=(/ — LC) A% (klk)+ (I — LC) Bu (k) + Ly (k + 1)
e(k+1)=x(k+1) — Ly(k +1) — (I — LC)A%(k|k) — (I — LC)Bu(k)
= (A— LCA) e (k)

DT full state observer with predictor

e(k+1)=A-L C~A e(k), e(0) = (I — LC)x

¢
the error dynamics can be arbitrarily assigned if the pair
(A, C) = (A, CA) is observable

9{’
observability matrix c 1 T ¢ 71
) CA CA
Qs = : = : A
 Cant | | cAT

if A'is invertible, then Q  has the same rank as Qy
(A, é) is observable if (A, C) is observable and A is

nonsingular (guaranteed if discretized from a CT system)
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Example

X1 (k + ].) —daj 1 0 X1 (k) b2
X2 (k+1) = —d1 0 1 X2 (k) + bl U(k),
X3 (k + ].) —dp 00 X3 (k) bo

y (k) = x1(k). Place all eigenvalues of an observer with predictor
at the origin.

_—32 1 0 /1
A—LCA=|-a 0 1|—|h|[—-a 1 0]
00

= /232 — a1 —/2 1
| /382 — dag —/3 0

(/1—1)32 1—/1 O]

det(A—LCA— M) = ((h —1)a — \) (b + M)A+
(1 — /1) (/333 — ao) + /3 ((ll — ].) dy — )\) -+ A (]. — /1) (/232 — 31)
roots must be all 0 =4 =1, L = LK = 0.

4. QObserver state feedback



Observer state feedback

given system dynamics:

x = Ax + Bu
y = Cx

state feedback control: arbitrary eigenvalue assignment if system
controllable

observer design: arbitrary observer eigenvalue assignment for
state estimation if system observable

when full states are not available, what's the performance if we
combine both?
u=—-KxXx+v

Closed-loop dynamics

full closed-loop system

x = Ax + Bu

y = Cx
=A%+ Bu+ L(y — CR)
u=—Kx+v

:>i x| | A —BK X n B
dt| 2| | LC A—-LC—-BK % B

. . X I, O
using again similarity transform e | T

|
o= AT NS




Block diagram

$=AR+Bu+L(y—CR), u=—-K&+v

The separation theorem

closed-loop dynamics

MR A IR AT

powerful result: separation theorem: closed-loop
eigenvalues consist of

eigenvalues of A — BK from the state feedback control design
eigenvalues of A — LC from the observer design

can design K and L separately based on discussed tools

if system is controllable and observable, we can arbitrarily assign
the closed-loop eigenvalues

rule of thumb: assign observer dynamics to be faster than
state-feedback dynamics
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ME 547: Linear Systems
Linear Quadratic Optimal Control

Xu Chen

University of Washington

1/32

Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

» the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence
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Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

» the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator
(or LQR):
» no need to specify closed-loop poles

» performance is explicit: a performance index is defined ahead of
time

2/32

1. Problem formulation
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Goal

Consider an n-dimensional state-space system

x(t) = Ax(t) + Bu(t), x(to) = xo

(1)
y (t) = Cx(t)
where x € R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index
1 7 L [/ 1 T
J = oxT(t)Sx(tr) + 5/ (x () Qx(t) + u (t)Ru(t)) dt
to
4/32
Goal
Consider an n-dimensional state-space system
x(t) = Ax(t) + Bu(t), x(to) = xo 1)

y (t) = Cx (1)

where x €¢ R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /: (xT(0)@x(1) + u" (1) Ru(z) ) ot

» S >0,Q > 0,R > 0: for a nonnegative cost and well-posed
problem
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Goal

Consider an n-dimensional state-space system

X(t) :AX(t)+BU(t), X(to) = Xo (1)
y (t) = (1)

where x € R", u € R", and y € R™.

LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /tf (xT(0)@x(1) + u" (1) Ru(2) ) ot

to

» S$>0,Q > 0,R > 0: for a nonnegative cost and well-posed
problem

> 1x7(tr)Sx(tr) penalizes the deviation of x from the origin at t
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Goal

Consider an n-dimensional state-space system
x(t) = Ax (t) + Bu(t), x(tp) = xo (1)
y (t) = Cx(t)

where x €¢ R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /: (xT(0)@x(1) + u" (1) Ru(z) ) ot

» S >0,Q > 0,R > 0: for a nonnegative cost and well-posed
problem

v

2xT(tr)Sx(tr) penalizes the deviation of x from the origin at t;
xT(t)Qx(t) t € (to, tr) penalizes the transient

\4
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Goal

Consider an n-dimensional state-space system
x(t) = Ax(t) + Bu(t), x(to) = xo
y (t) = Cx(t)

where x € R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

1

J = 5xT(t0)Sx(tr) + % /t:f (xT(0)@x(1) + u" (1) Ru(2) ) ot

» S$>0,Q > 0,R > 0: for a nonnegative cost and well-posed
problem

v

2xT(tr)Sx(tr) penalizes the deviation of x from the origin at t;

> xT(t)Qx(t) t € (to, tr) penalizes the transient
> often, Q= CTC = xT(t)Qx(t) =y (t)" y ()
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Goal
Consider an n-dimensional state-space system
x(t) = Ax (t) + Bu(t), x(tp) = xo (1)

y (t) = Cx(t)
where x €¢ R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /: (xT(0)@x(1) + u" (1) Ru(z) ) ot

v

S$>0,Q = 0,R > 0: for a nonnegative cost and well-posed
problem

2xT(tr)Sx(tr) penalizes the deviation of x from the origin at t;
xT(t)Qx(t) t € (to, tr) penalizes the transient

often, Q = CTC = xT(£)Qx(t) = y (t)" y ()

u' (t)Ru(t) penalizes large control efforts

vvyyy
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Observations

J- %XT(tf)sx(tf) + % /t:f (xT(£)Qx(t) + u” (H)Ru(t)) dt

» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J = 5 /OO (x"(£)@x(t) + u (t)Ru(t)) dt

to
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» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J=3 [: (x"(£)@x(t) + u" (t)Ru(t)) dt

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.
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Observations

J- %XT(tf)sx(tf) + % /: (xT(£)Qx(t) + u” (H)Ru(t)) dt

» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J = %/OO (x"(£)@x(t) + u (t)Ru(t)) dt

to

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

» often, we have tg = 0 and
J— _/ (xT(£)@x(t) + uT (t)Ru(2) ) dit
2 Jo
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2. Solution to the finite-horizon LQ problem
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Solution to the finite-horizon LQ

Consider the performance index

J= %XT(tf)SX(tf) + % / (xT(D)Qx(t) + uT (H)Ru(1)) dt

to

with x = Ax + Bu, x(tg) =x, S>=0,R=0,and Q = C'C.
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Solution to the finite-horizon LQ

Consider the performance index

tr
J= %XT(tf)Sx(tf) + %/ (x"(£)@x(t) + u" (t)Ru(t)) dt
to
with x = Ax + Bu, x(ty) =x, S=0,R=0,and @ = C'C.

> do a Lyapunov-like construction: V/ (t) = 1xT (t) P (t) x (t)
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Solution to the finite-horizon LQ

Consider the performance index

1 1 [
J= 5xT(t,c)Sx(tf) + 5/ (x"(£)@x(t) + u" (t)Ru(t)) dt
to
with x = Ax + Bu, x(tg) =x, S>=0,R=0,and Q = C'C.
> do a Lyapunov-like construction: V (t) = 1xT (t) P (t) x (t)
> then

%V(t) = %)'(T(t) P (t) x(t) + %XT (t) P (t) x (t) + %XT (t) P (t)x(t)
—2(Ax+Bu) PX-|-2X th+2X P (Ax + Bu)
L[ r T dP TRT T
=51% (t) A P—|—d—t—|—PA x(t)+u'B'Px+ x' PBu
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Solution to the finite-horizon LQ

with 2V (t) from the last slide, we have

V (k) — V(1) = /tf Vdt

1 [F dP
— 5/ <XT <ATP + PA+ E) X 4+ uTBTPx—|—xTPBu) dt
to
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Solution to the finite-horizon LQ

with 2V (t) from the last slide, we have

\/(tf) — V(to) = /tf Vdt

1 [ dP
— 5/ <XT <ATP—|—PA—|—E)X—}—UTBTPX—I—XTPBU) dt
to

> adding t
J= %XT(tf)sx(tf) + % / (xT(£)Qx(t) + u” (H)Ru(?)) dt

to

yields

J+V(tr) = V(to) = %XT(tf)SX(tf)‘i_

2

1 (" + dP
- ATP 4+ PA — TBTp "PB TRu | dt
/to (x ( + —|—Q+dt)x+y x;|—x u+ u Ru

products of x and u quadratic
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Solution to the finite-horizon LQ

» “complete the squares” in u' B"Px + x" PBu+ u" Ru (scalar

TV .
products of x and u quadratic

case):

u" BT Px + xT PBu + u' Ru scalar case Ru? + 2xPBu

—Ru? +2 (XPBR—1/2> RY2y+ (R—1/2BPX>2 _ (R—1/2BPX)2
VR
- <R1/2u + R_1/2BPX>2 _ (R—1/2BPX>2
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Solution to the finite-horizon LQ

» “complete the squares’ in u’ BT P PB "Ru (scalar
P q u X + X u+ u Ru (

-~
products of x and u

quadratic
case):
uT BT Px + x T PBu + uT Ru scalar case Ru? + 2xPBu
2 2
—R2 42 (XPBR—1/2) RL/2, + (R—l/ZBPx) _ (R—1/2BPX)
v Ru?
2 2
- <R1/2u i R—l/ZBPx) _ (R—1/2BPX)

» extending the concept to the general vector case:

uT BT Px+xT PBu+u" Ru = |Rzu+ R2 BT Px||2 —x" PBR1BT Px

—
recall | 2)2=373F
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Solution to the finite-horizon LQ

J+ V(tr) = V(to) = %XT(tf)SX(tf)+

2 dt ~—

1 [ dP
2/ x" (ATP+PA+Q+—>><+ u'B"Px+x"PBu+u'Ru | dt
to

1 —1
IR2u+R 2 BT Px||3—xTPBR—1BT Px

|}‘completing the squares”
1 T 1 T 1 T
J+ 5% (tr)P (tr) x(tr) — 5% (to)P (to) x(to) = 5% (tr)Sx(tr)+

1 [Y dP 1 S
/ (XT (— +ATP+PA+Q— PBR_lBTP> x+||Rzu+ RTBTPXH§> dt
to

2 dt
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Solution to the finite-horizon LQ
1
J+ V(tr) = V(to) = §XT(tf)5X(tf)+
tr
%/ <XT (ATP +PA+Q+ %) x4+ u"BTPx+ xTPBu+ uTRu> dt
to

|} ‘completing the squares”

J+ %XT(tf)P(ff)X(tf) - %XT(to)P(fo)X(tO) = %XT(“)SX(“)Jr

1 tr P 1 —1
—/ <XT<d— +ATP+PA+Q— PBR—lsTP>x + |R2u + RTBTPX|§> dt
to

2 dt

» the best that the control can do in minimizing the cost is to have
u(t) = —K (t)x (t) = —R71BT P(t)x(t)

dP
- = ATP+PA-PBR'B'P+Q, P(tr) =S
to yield the optimal cost J° = Zx P(to)xo
11/32
Observation 1
u(t) = —K (t)x (t) = =R BT P(t)x(t) optimal control law
—% = ATP+PA—PBRIBTP+Q, P(tf) =S the Riccati differential equation

» the control u(t) = —R™!BTP (t)x(t) is a state feedback law
(the power of state feedback!)

12/32



Observation 1

u(t) = —K (t)x (t) = —R™IBT P(t)x(t) optimal control law

dP
= ATP4+ PA—PBRIBTP+ Q, P(tf) =S the Riccati differential equation

» the control u(t) = —R71BTP(t) x(t) is a state feedback law
(the power of state feedback!)

> the state feedback law is time-varying because of P (t)
» the closed-loop dynamics becomes
x(t) =Ax(t)+Bu(t)= (A—BR'B'P(t)) x(t)

\ . g
-~

time-varying closed-loop dynamics

12/32

Observation 2

u(t) = —K (t)x(t) = —R_lBTP(t)x(t) optimal state feedback control

dP
—— = ATP+ PA—PBRIBTP+Q, P(tf) =S the Riccati differential equation

» boundary condition of the Riccati equation is given at the final
time t; = the equation must be integrated backward in time
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u(t) = —K (t)x (t) = =R BT P(t)x(t) optimal state feedback control

dP
— = ATP+ PA—PBR™IBTP+ Q, P(tr) =S the Riccati differential equation

» boundary condition of the Riccati equation is given at the final
time t; = the equation must be integrated backward in time
» backward integration of

dP
- = ATP+PA+Q—PBR'BTP, P(tf)=S
is equivalent to the forward integration of
dP*

=ATP*+P*A+Q—PBRIBTP* PF(0)=S (2

dt
by letting P (t) = P* (tr — t)
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Observation 2

u(t) = —K (t)x(t) = —R_lBTP(t)x(t) optimal state feedback control
dP
—— = ATP+ PA—PBRIBTP+Q, P(tf) =S the Riccati differential equation

» boundary condition of the Riccati equation is given at the final
time t; = the equation must be integrated backward in time
» backward integration of

dP
= ATP+PA+Q@—PBR'BTP, P(tf)=S
is equivalent to the forward integration of
dP*

=ATP*+P*A+Q—-P*BRIBTP* P*(0)=S (2

dt
by letting P (t) = P* (tr — t)
» Eq. (2) can be solved by numerical integration, e.g., ODE45 in
Matlab
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Observation 3

J= %XT(tf)sx(tf) + % /t (xT(£)@x(t) + u” (£)Ru(t)) dt
= %XOTP(tO)XO

» the minimum value J° is a function of the initial state x (tp)
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Observation 3

J= %XT(tf)Sx(tf) + % /tof (x"(£)@x(t) + u" (t)Ru(t)) dt
0 __ 1 T
J' = 5% P(ty)xo

» the minimum value J° is a function of the initial state x ()

» J (and hence J°) is nonnegative = P (tp) is at least positive
semidefinite
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Observation 3

J= %XT(tf)sx(tf) + % /t (xT(£)@x(t) + u” (£)Ru(t)) dt
= %XOTP(tO)xo

» the minimum value J° is a function of the initial state x (tp)

» J (and hence J°) is nonnegative = P (tp) is at least positive
semidefinite

> tp can be taken anywhere in (0, tf) = P (t) is at least positive
semidefinite for any t

T
Example: LQR of a pure inertia system

Consider

X = [8 é] X + [(1)] u, J= %XT(tf) Sx (tr) —I—%/Otf (XTQX+ Ru2> dt
where S — [(1) (1’] Q= [(1) 8] R>0
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Example: LQR of a pure inertia system

Consider
.01 0 1 7 1 [/ + 5
X—[O 0]X+[1] U,J—EX (tf)SX(tf)—l—E/O (X QX—I—RU)dt

1 0 1 0
WhereS—[0 1], Q—[O O]’ R>0

> we let P(t) = P*(tr — t) and solve

dP*
=ATP* + P*A+Q - P*BRIBTP*, P*(0) = [é (1)]

dt
dP* 0 0] .. ..[0 1] [1 o] _.[0]1 ,
@W_ll o]P+P[0 o]+lo OI_PHE[O 1P
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Example: LQR of a pure inertia system

Consider
. o1 0 1 1 [t o, )
X—[O 0]X—|—[1] U,J—EX (tf)SX(tf)+§A (X Qx+Ru>dt

1 0 1 0
Where5[0 1],6?[0 O],F\’>O

> we let P(t) = P*(tr — t) and solve

P*
d =ATP* 4+ P*A+Q — P*BRIBTP*, P*(0) = lé (1)]

dt
dP* 0 0| H« 10 1 10 0] 1 "
= Tt _[1 o]P“D [0 o]*[o o]_P HE[O 1P
> letting
* * \2
Pl =1—%(p) pi; (0) =1

« _ |P11 P1 ) ) - "

P = [PE pg] = %Plz = P11 — %Plzpzz = p12(0) =0
ES ES ES 2 * p—

5Py = 2pis — 5 (p3) P (0) =1

15/32



Example: LQR of a pure inertia

P* with R=0.0001

system: analysis

1.0 1

0.8

0.6 1

0.4 1

0.2 4

— P11
— P12
— P2

0.0

0.0 0.2 0.4 0.6 0.8
time/s

Figure: LQ example: P*(0) = [

1.0

10
0 1

1.2

|

Example: LQR of a pure inertia

P* with R=0.

0001

1.4

P(t)=P*(tr — t)

16 /32

system: analysis

1.0 1

0.8

0.6

0.4 4

0.2 4

— P11
— P12
— P2

0.0 L\
0 0.2

0. 0.4 0.6 0.8

time/s

Figure: LQ example: P*(0) = [

1.0

10
0 1

1.2

|

1.4

P(t) = P*(tr — t)

» if the final time tf is large, P* (t) forward converges to a

stationary value
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Example: LQR of a pure inertia system: analysis

P* with R=0.0001

1.01 — P
— P12
0.8 — P2
0.6

0.4 1

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

1 0

Figure: LQ example: P*(0) = [O 1

], P(t)=P*(tr —t)

» if the final time tf is large, P* (t) forward converges to a
stationary value

» i.e., P(t) backward converges to a stationary value at P (0)

16 /32

Example: LQR of a pure inertia system: analysis

P* withR=1 P* with R =100

x
— Pu
*
— P12
*
— P22

0.50

x
— Pu
*
— P12
x
— P22

0.25 4

0.00 A
0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40
time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) 2]
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Example: LQR of a pure inertia system: analysis

P* withR=1 P* with R =100

— P11

— P12

’ — Py

0.50

— P11
0251 — o
0.001 — Pz

0 é le é é 1I0 1I2 1I4 0 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0

time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) (1)]

» a larger R results in a longer transient
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Example: LQR of a pure inertia system: analysis

P* withR=1 P* with R=100
1.75
1.50 A
1.25 A
1.00 4 — P
/ — P12
0751 | .
— P2
0.501 |
— pPi
0259/ — P12
0.00 P2
0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40
time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) 2]

» a larger R results in a longer transient

> i.e., a larger penalty on the control input yields a longer time to
settle

17/32



Example: LQR of a pure inertia

P* with R =100

*
— Pu

N
— P12

N
— P22

0 5 10 15 20 25 30 35 40
time/s

@ P = 3|

system: analysis

P* with R =100 and a different initial value

x
— Pu

N
— P12

N
— P22

5 10 15 20 25 30 35 40
time/s

0 P =5 )

Figure: LQ with different boundary values in Riccati difference Eq.

18 /32

Example: LQR of a pure inertia system: analysis

P* with R =100

x
— Pu

*
— P12

x
— P22

0 5 10 15 20 25 30 35 40
time/s

@PO= 3

P* with R =100 and a different initial value

x
— Pu

x
- P12

x
— P22

5 10 15 20 25 30 35 40
time/s

0 P =5 )

Figure: LQ with different boundary values in Riccati difference Eq.

» for the same R, the initial value P (tf) = S becomes irrelevant

as tr — o
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3. From finite-horizon LQ to stationary LQ

UW Linear Systems (X. Chen, ME547)

From LQ to stationary LQ

P* with R=100 P* with R =100 and a different initial value
— p;]
40 60 — o
504 — P22
30
— P 404
20 Piz 30
— p;?
20
10
10
0 0
0 s 10 15 20 25 30 35 40 0 S 10 15 20 25 30 35 40
time/s time/s

» in the example, we see that P in the Riccati differential Eq.

converges to a stationary value given sufficient time

UW Linear Systems (X. Chen, ME547)

19/32
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From LQ to stationary LQ

P* with R =100 P* with R =100 and a different initial value

— P
40 601 oo

— P

30
e p{] 40

2
204 * 304
— P22

104

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time/s time/s

» in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time

» when tr — oo, LQ becomes the stationary LQ problem, under
two additional conditions that we now discuss in details:

> (A, B) is controllable/stabilizable
> (A, C) is observable/detectable

20/ 32

Need for controllability/stabilizability

J= %XT(tf)sx(tf) + % /: (x7(5)Qx(t) + uT ()Ru(t)) dt

dP
—— = ATP+ PA—PBRIBTP+Q, P(tf) =S the Riccati differential equation

1
JO = EX(;I—P(tO)XO

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
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dP
= ATP+ PA—PBR™'BTP+Q, P(tf) =S the Riccati differential equation

1
JO = EX(;,—P(tO)XO

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded
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Need for controllability/stabilizability

J= %XT(tf)sx(tf) + % /: (x7(5)Qx(t) + uT ()Ru(t)) dt

dP
—— = ATP+ PA—PBRIBTP+Q, P(tf) =S the Riccati differential equation

1
JO = EX(;I—P(tO)XO

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded

> then if J° = 1xJ P (0) xo is unbounded, we will have
1P (0) ] = o0
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» eg:x=x+0-u,x(0)=1 Q=1 and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» eg:x=x+0-u,x(0)=1, Q@ =1and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable

> x (t) will keep increasing to infinity
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» eg:x=x+0-u,x(0)=1 Q=1 and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable
> x(t) will keep increasing to infinity
> =J =3 [° (x"Qx + uT Ru) dt unbounded regardless of u (t)
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
» eg:x=x+0-u,x(0)=1, Q@ =1and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable

> x (t) will keep increasing to infinity
> =)= %fooo (xT Qx + u" Ru) dt unbounded regardless of u(t)

» in this case, the Riccati equation is

P pipii—prie®

=2P" +1
dt dt *

forward integration of P* (backward integration of P), will drive
P* (o) and P (0) to infinity
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Need for observability /detectability

if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

23 /32

Need for observability /detectability

if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” Qx = x” CT Cx will regulate all states
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Need for observability /detectability

if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” Q@x = x" CT Cx will regulate all states

» formally: if (A, C) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P, (proof in course notes)

23 /32

From LQ to stationary LQ

LQ stationary LQ
J= lXT(1‘.‘,:)5X(i‘f)—i— 1 poo (T T
Cost 2 = J=3 +u' Ru) dt
O L[5 (xT(0)Qx(t) + uT (t)Ru(t)) dt 2 g (X @t uTRu)
x = Ax + Bu
Syst. x = Ax + Bu = (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq Riccati Eq. (RE) Algebraic RE (ARE)
: dP _ AT —-1pT
4P _ ATP 4 PA— PBR-1BTP
e = ATP4+PA—PBRBTP+Q=0
+Q, P(t)=S$ ’ e
Opt.
control u(t) = —R7IBTP(t)x(t) = u(t) = —RIBT Pyx(t)
& cost JO = %xJP(to)xo = JO = %xg—ﬂ_xo
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More formally: Solution of the infinite-horizon LQ

For
J= %/ (x(0)7 @c(8) + u(®)T Ru(1)) dt. Q= CTC
to
with x(t) = Ax (t) + Bu(t), x(to) = xo0 and R > 0:
» if (A, B) is controllable (stabilizable) and (A, C) is observable

(detectable)
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More formally: Solution of the infinite-horizon LQ

For
J= %/ (x(t)T Qx(t)+u(t)” Ru(t)) dt, Q=CTC
to
with x(t) = Ax (t) + Bu(t), x(ty) = %o and R > 0:
» if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)

» then the optimal control input is given by
u(t) = —R BT P, x(t)
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More formally: Solution of the infinite-horizon LQ

For
J= %/ (x(0)7 @c(8) + u(®)T Ru(1)) dt. Q= CTC
to
with x(t) = Ax (t) + Bu(t), x(to) = xo0 and R > 0:
» if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)

» then the optimal control input is given by
u(t) = —R BT P, x(t)
> where P, (= P[) is the positive (semi)definite solution of the

algebraic Riccati equation (ARE)
ATP4+PA—PBR'B'P+ Q=0
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More formally: Solution of the infinite-horizon LQ

For
J= %/ (x(t)T Qx(t)+u(t)” Ru(t)) dt, Q=CTC
to
with x(t) = Ax (t) + Bu(t), x(ty) = %o and R > 0:
» if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)

» then the optimal control input is given by
u(t) = —R BT P, x(t)
> where P, (= P[) is the positive (semi)definite solution of the
algebraic Riccati equation (ARE)
ATP+PA—PBR'BTP+Q =0

» and the closed-loop system is asymptotically stable, with

1
Join = JO = 5x(to)T P, x (o)

25 /32



Observations

» the control u(t) = —R™!BT Px(t) is a constant state feedback
law
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Observations

» the control u(t) = —R™1BTPx(t) is a constant state feedback
law

» under the optimal control, the closed loop is given by
x=Ax — BR1B"Px = (A — BR‘IBTP) x and J =

\ 7

Ac
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Observations

» the control u(t) = —R™!BT Px(t) is a constant state feedback
law

» under the optimal control, the closed loop is given by
x=Ax—BRB"Px=(A—BR'B"P)x and J =

A\ e
-~

Ac

[2XxT (Q+ PBR'BTP) xdt

Q
» for the above closed-loop system, the Lyapunov Eq. is

foo (XTQX + uTRu) dt =

AP+ PA. = —Q.
& (A—BR'BTP) PP (A-BR'B"P)=—-Q—-PBR'B'P
= ATP+ PA— PBR'BTP = —Q (the ARE!)
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Observations

» the control u(t) = —R™1BTPx(t) is a constant state feedback
law

» under the optimal control, the closed loop is given by
x=Ax — BR1B"Px = (A — BR‘IBTP) x and J =

\ 7
~"

Ac
Jio (xTQx+uTRu)dt =3 ["xT (Q+ PBR™B'P) xdt

1
2 Jtg

Qe
» for the above closed-loop system, the Lyapunov Eq. is
AlP+PA. = -Q.
& (A-BR'B"P) P4+ P(A-BRBTP)=—-Q— PBR'BTP
& ATP 4+ PA— PBR!BTP = —Q (the ARE!)

» when the ARE solution P, is positive definite, %XTPJFX IS a
Lyapunov function for the closed-loop system
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Observations

» Lyapunov Eq. and the ARE:

Cost J= % fooo x T Q.xdt

Syst. dynamics X = Acx

Key Eq. AIP+ PA. + Q. =0
Optimal control N/A
Opt. cost 7’ = ZxT(0) P1x (0)

J= %ftzo (XTQX + uTRu) dt
x = Ax + Bu
(A, B) controllable/stabilizable
(A, C) observable/detectable
ATP+PA—PBRIBTP+Q=0
u(t) = —R-1BT P, x(t)
J% = 1x ()" Pix(to)

Observations

» Lyapunov Eq. and the ARE:
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Cost J= % OOO xT Q.xdt

Syst. dynamics X = Acx

Key Eq. AP+ PA. + Q. =0
Optimal control N/A
Opt. cost 7’ = IxT(0) P1x(0)

J= %ftzo (xTQx + u" Ru) dt
x = Ax+ Bu
(A, B) controllable/stabilizable
(A, C) observable/detectable
ATP+PA—PBRIBTP+ Q=0
u(t) = —R~1BT P.x(t)
SO = %X(to)T P, x (o)

» the guaranteed closed-loop stability is an attractive feature

» more nice properties will show up later
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Example: Stationary LQR of a pure inertia system

» Consider

.01 0 1 [~/ 4010 2
X[O O]X+[1]U’J§/O (x [O O]x+Ru)dt,R>O
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Example: Stationary LQR of a pure inertia system
» Consider

.01 0 1 [~/ 4010 2
X[O O]X+[1]U’J§/O (x [O O]x+Ru)dt,R>O

» the ARE is
0 0 0 1], [t o 0] 1 V3RY4  Rl/2
o[t Groel ol el meer o[ 50
» the closed-loop A matrix can be computed to be

0 1
— -1pT —
Ac =A—-BR™B P—i— — [_R1/2 _\/§R1/4]
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Example: Stationary LQR of a pure inertia system
» Consider
X = [8 (1)] X—|—[2] u, J:%/OOo (XT lé 8]X—|—RU2> dt, R>0
» the ARE is
O L i R P R I IR E S WA
» the closed-loop A matrix can be computed to be

0 1
_ -1pT _
Ac =A-BR™B P—l— — [_R—1/2 —\/ER_1/4]

» = closed-loop eigenvalues:
N 1 n |
1,2 = V2R1/4 \@Rl/4j
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.10 1 0 1 o0 711 O >
x—[o O}X—I—L}U,J—E/o <x [0 0]x—|—Ru>dt

Root locus

1.00 £=0
0.75 1
0.50
0.25 1

-0

0.00 A

Imag axis

—0.251

—0.50 1

—0.751

—1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Real axis

1
R1/4

Figure: Eigenvalue A1 = — Jra T \/5;1/41' evolution (root locus)
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. |0 1 0 L /7 110 2
x_{o O}X-l-[l]u,J_E/O (x [O O]x—i-Ru)dt

Root locus

1.00 £=0
0.75 1
0.50
0.25 1

-0

0.00 1

Imag axis

—0.25 1

—0.50 1

—0.75 4

—1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Real axis

1
R1/4

Figure: Eigenvalue A1 5 = VT I ﬁémj evolution (root locus)

» R 1 (more penalty on the control input) = Ay, move closer to
the origin = slower state convergence to zero
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.10 1 0 1 o0 711 O >
x—[o O}X—i—{l}u,J—E/o <x [0 0]x—|—Ru>dt

Root locus

1.00 £=0
0.75 1
0.50
0.25 1

-0

0.00 A

Imag axis

—0.251

—0.50 1

—0.751

—1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Real axis

Figure: Eigenvalue A1 = _\/5;1/4 + \/5;1/41' evolution (root locus)

» R 1 (more penalty on the control input) = A; > move closer to
the origin = slower state convergence to zero

» R | (allow for large control efforts) = A; 2, move further to the
left of the complex plane = faster speed of closed-loop dynamics
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MATLAB commands

» care: solves the ARE for a continuous-time system:
[P, N\, K] = care (A, B,C'C, R)

where K = R7'BT P and A is a diagonal matrix with the
closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.
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MATLAB commands

» care: solves the ARE for a continuous-time system:
[P\, K] = care (A,B,C" C,R)

where K = R7!BTP and A is a diagonal matrix with the
closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.

» Iqr and Igry: provide the LQ regulator with
[K,P.A] = lqr (A, B, c'cC, R)
[K, P,A\] = lgry (sys, Q,, R)
where sys is defined by x = Ax 4+ Bu, y = Cx + Du, and

1

J= 5/ (yTny + uTRu) dt
0

30/ 32

Additional excellent properties of stationary LQ

» we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems
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Additional excellent properties of stationary LQ

» we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:

> at least a 60 degree phase margin
» infinite gain margin

» stability is guaranteed up to a 50% reduction in the gain

31/32

Applications and practice

choosing R and Q:

» if there is not a good idea for the structure for @ and R, start
with diagonal matrices;
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Applications and practice

choosing R and Q:

» if there is not a good idea for the structure for Q and R, start
with diagonal matrices;

» gain an idea of the magnitude of each state variable and input
variable

» call them X max (/1 =1,...,n) and Ujmax (i =1,...,r)

» make the diagonal elements of @ and R inversely proportional to
HXi,matz and Hui,matz, I’eSpectively.
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1 Basic concepts of matrices and vectors

A linear equation set

31’1 + 41’2 + 10]33 =6
21 +4x9 — 1023 =5 (1)
4xs + 1023 = —1,

can be simply written as

3 4 10 T 6
14 10| |a|=|5|. (2)

Equation (2) wrote x1, x9, and x5 just once rather than two or three times in (1). There are only three
unknowns in the above linear equation set. The notational simplicity and many algebraic convenience
that will arise, however, are significant when we have thousands of unknowns...

Formally, we write an m x n matrix A as

a1 a12 N AT

a921 Ce ... Qop
A= lag] =

Am1 Am2 ... Qmnp

Here,

e m x n (reads m by n) is the dimension/size of the matrix. It means that A has m rows and n
columns.

e Each element a;; is an entry of the matrix. For two matrices A and B to be equal, it must be
that a;; = bj for any j and k.

e If m = n, A belongs to the class of square matrices. The entries a;1, aso, ..., Gy, are then called
the diagonal entries of A.

— Upper triangular matrices : square matrices with nonzero entries only on and above the
main diagonal.

— Lower triangular matrices : nonzero entries only on and below the main diagonal.
— Diagonal matrices : nonzero entries only on the main diagonal.

— ldentity matrice : diagonal and all diagonal entries are 1.
e Vectors: special matrices whose row or column number is one.

— A row vector: a = [a,as, ..., a,); its dimension is 1 X n.
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— A m x 1 column vector:

Example (Matrix and quadratic forms). We can use matrices to express general quadratic functions
of vectors. For instance

f(x)=aTAz + 20z +c

la]

1.1 Matrix addition and multiplication

is equivalent to

fx) =

The sum of two matrices A and B (of the same size) is
A+ B = [ajr + bji] .
The product between a m x n matrix A and a scalar ¢ is
cA = [caji],

i.e. each entry of A is multiplied by ¢ to generate the corresponding entry of cA.
The matrix product C' = AB is meaningful only if the column number of A equals the row number
of B. The computation is done as shown in the following example:

a11 ai2 a3 b b 11 C12
11 12
] (21 \ ] a22 \ ] a23 \ C21| Ca2
ba1 | Do =
)
a31 a32 a33 b b C31 (32
Q41 42 43 31 32 Cq1  Cy2

where

Co1 = Q21b11 + agbar + agsbs;
b1

= [a217 22, CL23] bay

bs1
= "second row of A" x "first column of B".
More generally:
Cjk = ajibig + ajobog + -+ + ajnbu

bk

bak
= lajn, ajo, - ap] || (3)

bnk
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namely, the jk entry of C is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. This is called a multiplication of rows

into columns.

Matrix multiplication is not commutative:

dimensions when doing matrix products:

A

[m x n]

B

[n X p

It is a good habit to always check the matrix

C
[m x p|

This way it is clear that AB in general does not equal to BA, e.g.,

Matrices as combination of vectors:

a1
Ax =

ABC = (AB)C = A(BC) # BCA.

a2
22
a3z
42

a3
23
ass
43

The matrix-vector product

X1
X2
€3

is nothing but the weighted sum of the columns of A:

ail | 12

a21 | 22
Ax =

a31 | A32

aq1 | Q42

a3
23
ass3
43

1.2 Matrix transposition

T
T2
T3

:{L’l

21
a31
aq1

1171 + a12%2 + Q1373
(2171 + A22%2 + Q2373
(3171 + azax2 + az3Ts
(4171 + Q42%2 + 4373

a12
22

+ ) -+ I3
32

Q42

Definition 1 (Transpose). The transpose of an m x n matrix

A = [a] =

a1
a1

Am1

a12

Am2

is the n x m matrix AT (reads " A transpose”) defined as

AT = [ay;]

Transposition has the following rules:

a1
12

A1n

21

Q2n,

Q1n
A2p,

Am1

a'mn

@13
23

Q43
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CORS

A+ B)' = AT + BT

(
(cA)" = cAT
° (AB) = BT AT

If A= AT, then A is called symmetric. If A = —A” then A is called skew-symmetric.
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2 Linear systems of equations
A linear system of m equations in n unknowns x1, ... , x, is a set of equations of the form

a111 + a12T2 —+ ... ALy = bl

211 + Q929 + ... QonTy = b2 (4)
Am1T1 + AmaZ2 + .. ATy = bm
Here,

e The equation set is linear: each variable x; appears in the first power only.

o If all the b; are zero, then the linear equation is called a homogeneous system. Otherwise, it is a
nonhomogeneous system.

e Homogeneous systems always have at least the trivial solution z; =29 =--- =2, = 0.

The m equations (4) can be written as a single vector equation

Ax = b,
where _ .
Ty
a1 a2 ... ... Qin To b1
a921 a9 ... ... Q9p . b2
A= , T = ; , b=
Al Om2 o oo o er Qmn : b
| Tn |

Gauss' elimination is a systematic method to solve linear equations. Consider

1 -1 1 0
~1 1 =1 || ]o
0 10 25 f ~ 1 90
20 10 0 3 80

A b

The Gauss elimination process is as follows:

! Johann Carl Friedrich Gauss, 1777-1855, German mathematician: contributed significantly to many fields, including
number theory, algebra, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy, Matrix
theory, and optics.

Gauss was an ardent perfectionist. He was never a prolific writer, refusing to publish work which he did not consider
complete and above criticism. Mathematical historian Eric Temple Bell estimated that, had Gauss published all of his
discoveries in a timely manner, he would have advanced mathematics by fifty years.
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1. Obtain the augmented matrix of the system

1 -1 110
-1 1 1|0
0 10 25190
20 10 0 |80

[Alb] =

2. Perform elementary row operation on the augmented matrix, to obtain the Row Echelon Form.
Adding the first row to the second row gives

pivot role : 1 O —1 0
l row 2 @ [0] @ [0]
0 2 90 add pivot role 10 25190
20 10 0 |80 _ 20 10 0 |80 |
1 -1 1 0
row 4 0 0 0 0
add -2mot role 0 10 25 90

0 30 —-20]80

What we have done is using the pivot row to eliminate z; in the other equations. At this stage,
the linear equations look like

$1—$2+£L’3:O (5)

0=0 (6)
1022 + 2523 = 90 (7)

Re-arranging yields

I1—$2+$3:0 (9)
10z5 + 2523 = 90 (10)
30xy — 20x3 = 80 (11)

0=0. (12)

Moving on, we can get ride of x5 in the third equation, by adding to it -3 times the second
equation. Correspondingly in the augmented matrix, we have

1 -1 1 0 1 -1 1 0 1 -1 1 0
0 10 25 |90 0 10 25 90 N 0 1 5/2 9
0 30 —20]80 0 0 —-95|—190 | normalizing | O 0 1 [38/19 |’
0 0 0 |0 0 0 0 0 0 0 0 0

vV
the row echelon form
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namely

z3 = 38/19
To + T3 = 9

1 — 9 + 23 = 0.
The unknowns can now be readily obtained by back substitution: z3 = 38/19, 23 = 9 — 3 ,
T1 = Ty — T3.
Elementary Row Operations for Matrices \What we have done can be summarized by the following
elementary matrix row operations:
e Interchange of two rows
e Addition of a constant multiple of one row to another row
e Multiplication of a row by a nonzero constant ¢
Let the final row echelon form be denoted by
RAVEE
We have:
1. The two systems Ax = b and Rx = f are equivalent.

2. At the end of the Gauss elimination (before the back substitution), the row echelon form of the
augmented matrix will be

_rll T2 ... .. ... Tip fl T
Too ... ... ... Topn f2

Trr oo Trp fr ’
fr+1

! fm ]

where all unfilled entries are zero.

3. The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the rank of R
and also the rank of A.

4. Solution concepts:

(a) No solution | system is inconsistent: 7 is less than m and f,41, fri2, ... , fm are not all
zero.
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(b) Unique solution: if the system is consistent and r = n, there is exactly one solution, which
can be found by back substitution.

(c) Infinitely many solutions: if f..1 = f,4o =... = f,, = 0. To obtain any of these solutions,
choose values of x,,1, ... , z, arbitrarily. Then solve the r-th equation for z, (in terms of
those arbitrary values), then the (r — 1)-st equation for z,_;, and so on up the line.
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3 Vector space, linear independence, basis, and span
Given a set of m vectors ay, as, ..., a,, with the same size,
kiay + koas + - - + kpan,
is called a linear combination of the vectors. If
ay = keag + ksas + - - - + k@,
then a; is said to be linearly dependent on as, as, ..., a,,. The set

{ai,a2,...,an} (13)

is then a linearly dependent set. The same idea holds if as or any vector in the set (13) is linearly
dependent on others.
Generalizing, if
k1a1+k2a2+---+kmam:0

holds if and only if
by = hy = e = ki = 0,

then the vectors in (13) are linearly dependent. This is saying that at least one of the vectors can be
expressed as a linear combination of the other vectors.

Why is linear independence important?  If a set of vectors is linearly dependent, then we
can get rid of one or perhaps more of the vectors until we get a linearly independent set. This set is
then the smallest “truly essential” set with which we can work.

Consider a set of n linearly independent vectors, ay, as, ..., a,, each with n components. All the
possible linear combinations of ay, as, ..., a, form the vector space R™. This is the span of the n
vectors.

Definition 2 (Basis). A basis of V is a set B of vectors in V, such that any v € V can be uniquely
expressed as a finite linear combination of vectors in B.

Example 3. In R?

w=[1] w=[b] w=[3]

is not a linearly independent set.
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4 Matrix properties
4.1 Rank

Definition 4 (Rank). The rank of a matrix A is the maximum number of linearly independent row or
column vectors.

Theorem. Row or column operations do not change the rank of a matrix.

With the concept of linear dependence, many matrix-matrix operations can be understood from the
view point of vector manipulations.

Example (Dyad). A = uv” is called a dyad, where u and v are vectors of proper dimensions. It is a
rank 1 matrix, as can be seen that A = uv’ is formed by linear combinations of the vector u, where
the weights of the combinations are coefficients of v.

Fact. For A, B € R™", if rank (A) = n then AB = 0 implies B = 0. If AB =0 but A # 0 and
B #0, then rank (A) < n and rank (B) < n.

4.2 Range and null spaces

Definition 5 (Range space). The range space of a matrix A, denoted as R (A), is the span of all the
column vectors of A.

Definition 6 (Null space). The null space of a matrix A € R™", denoted as N (A), is the vector
space
{r eR": Az =0}.

The dimension of the null space is called nullity of the matrix.

Fact 7. The following is true:

N (AAT) =N (AT); R(AAT) =R (A).

4.3 Determinants

Determinants were originally introduced for solving linear equations in the form of Ax = y, with a
square A. They are cumbersome to compute for high-order matrices, but their definitions and concepts
are partially very important.

We review only the computations of second- and third-order matrices:

e 2 X 2 matrices:
a b

det[C d} = ad — be.

10
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e 3 x 3 matrices:

a b c
det | d e f | =adet e /]_ bdet d f + cdet d e
g h ok h k g k g h

= aek +bfg+ cdh — gec — bdk — ahf,

Z i],det{j i],anddet[cgl

Q@ Q.
> 00 o
T O

e .
} are called the minors of det

where det { h

Caution: det (cA) = ¢ det (A) (not cdet (A)!)
Theorem 8. The determinant of A is nonzero if and only if A is full rank.

You should be able to verify the theorem for 2 x 2 matrices. The proof will be immediate after
introducing the concept of eigenvalues.

Definition 9. A linear transformation is called singular if the determinant of the corresponding trans-
formation matrix is zero.

Fact 10. Determinant facts:
e If A and B are square matrices, then

det (AB) = det (BA) = det Adet B
det (A") = det (A)
det (A*) = det (A).

o If X and Z are square, Y with compatible dimensions, then

XY
det({ 0 Z]):dethetZ.

5 Matrix and linear equations
Consider again, using now concepts in range and null spaces of matrices, the linear equations
Az =y. (14)
e Existence of solutions requires that y € R (A).

e The linear equation is called overdetermined if it has more equations than unknowns (i.e. A
is a tall skinny matrix), determined if A is square, undetermined if it has fewer equations than
unknowns (A is a wide matrix).

11
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e Solutions of the above equation, provided that they exist, is constructed from
r=x,+z: Az =0, (15)

where ¢ is any (fixed) solution of (14) and z runs through all the homogeneous solutions of
Az =0, namely, z runs through all vectors in the null space of A.

e Unigueness of a solution: if the null space of A is zero, the solution is unique.

You should be familiar with solving 2nd or 3rd-order linear equations by hand.

12
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6 Eigenvector and eigenvalue

6.1 Matrix, mappings, and eigenvectors

Think of Az this way: A defines a linear operator; Az is a vector produced by feeding the vector = to
this linear operator. In the two-dimensional case, we can look at Fig. 1. Certainly, Az does not (at all)
need to be in the same direction as x. An example is

A, — 1 0}7

which gives that

SRR

namely, Ax is x projected on the first axis in the two-dimensional vector space, which will not be in the
same direction as x as long as x5 # 0.

AoX

Figure 1: Example relationship between x and Az.

From here comes the concept of eigenvectors and eigenvalues. It says that there are certain “special
directions/vectors” (denoted as v; and v, in our two-dimensional example) for A such that Av; = \v;.
Thus Av; is on the same line as the original vector v;, just scaled by the eigenvalue ;. It can be shown
that if A\; # Ao, then v; and vy are linearly independent (your homework). This is saying that any
vector in R? can be decomposed as

T = @1U1 + Q20V2.

Therefore
Ax = alAvl + CLQAUQ = CL1/\1U1 + CLQ/\QUQ.

Knowing A; and v; thus can directly tell us how Ax looks like. More important, we have decomposed
Ax into small modules that are from time to time more handy for analyzing the system properties.
Figs. 2 and 3 demonstrate the above idea graphically.

Remark 11. The above geometric interpretations are for matrices with distinct real eigenvalues.

13
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\J

Figure 3: Construction of Ax.

The geometric interpretation above makes eigenvalue a very important concept. Eigenvalues are
also called characteristic values of a matrix. The set of all the eigenvalues of A is called the spectrum
of A. The largest of the absolute values of the eigenvalues of A is called the spectral radius of A.

6.2 Computation of eigenvalue and eigenvectors

Formally, eigenvalue and eigenvector are defined as follows. For A € R™*™, an eigenvalue \ of A is one

for which
Az = \z (16)

has a nonzero solution = # 0. The corresponding solutions are called eigenvectors of A.
Equation (16) is equivalent to
(A= Az =0. (17)

As z # 0, the matrix A — Al must be singular, so
det (A—AI)=0. (18)

det (A — AI) is a polynomial of )\, called the characteristic polynomial. Correspondingly, (18) is
called the characteristic equation. So eigenvalues are roots of the characteristic equation. If an n x n
matrix A has n eigenvalues A\, ..., \,, it must be that

det (A=A = (A — A) - (An — ).

14
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After obtaining an eigenvalue A\, we can find the associated eigenvector by solving (17). This is
nothing but solving a homogeneous system.

Example 12. Consider

Then

2 -2 —
=bB4+N2+N)—-4=0
= A=—-1or —6.

det(A—M):o;»det([_5_A 2 AD:o

So A has two eigenvalues: —1 and —6. The characteristic polynomial of A is A\? + 7\ + 6.
To obtain the eigenvector associated to A = —1, we solve

(A—)\[)x:0<:><{_25 _22}““ ?Dx:{_; _21}33:0.

One solution is
1
‘= { ! } |

: ) ) ) T
As an exercise, show that an eigenvector associated to A = —6 is [ 2 -1 } .

Example 13 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 -6
-1 -2 0

Analogous procedures give that
)\1:5, )\2:>\3:—3.

So there are repeated eigenvalues. For A\y = A3 = —3, the characteristic matrix is
1 2 =3
A+ 31 = 2 4 —6
-1 -2 3

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the
characteristic matrix has only rank 1. The characteristic equation

has two linearly independent solutions
-2 3
11,10
0 1
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Theorem 14 (Eigenvalue and determinant). Let A € R"*". Then

det A=]] .
i=1
Proof. Letting A = 0 in the characteristic polynomial
pA) =det(A—=A) =M —A) (A= A)...

gives

Example 15. For the two-dimensional case

. [ app a2 ] = p(A) =det (A — M) = (a1 — A) (aza — \) — ar2a9;.

Q21 A22

On the other hand
pP(A) = (A1 —=A) (A —A).
Matching the coefficients we get

/\1 +)\2 = a1l +CL22

A1 = @112 — Q12021 .

16
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6.3 Eigenbases and diagonalization

Eigenvectors of an n x n matrix A may (or may not!) form a basis for R™. If we are interested in a
transformation y = Az, such an “eigenbasis” (basis of eigenvectors), if exists, is of great advantage
because then we can represent any = in R™ uniquely as a linear combination of the eigenvectors =1, ...
, Tp, SAY, T = 121 + Ty + ... + ¢,x,. And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by Ay, ... , A\, we have Az; = \;x;, so that we simply obtain

y=Ar = A(c1z1 + Coma + ... + Cpy)
= 1Az + cAxe + - - + ¢, Ax),

=cMx1+ -+ AT

This shows that we have decomposed the complicated action of A on an arbitrary vector x into a sum
of simple actions (multiplication by scalars) on the eigenvectors of A.

Theorem 16 (Basis of Eigenvectors). If an n x n matrix A has n distinct eigenvalues, then A has a
basis of eigenvectors 1, ... , x, for R™.

Proof. We just need to prove that the n eigenvectors are linearly independent. If not, reorder the

eigenvectors and suppose 7 of them, {xy,zo,..., 2.}, are linearly independent and z,,y,...,z, are
linearly dependent on {z1, x5, ..., 2,}. Consider z, 1. There must exist ¢y, ... c,41, not all zero, such
that

c1T1+ ... Cr41Tp41 = 0. (19)

Multiplying A on both sides yields
caAry+ ..., 1Az = 0.

Using Az; = \;x;, we have
aMy+ - F AT = 0.

But from (19), we know that
A1 T1 + o G 1 A1 Trgr = 0.

Subtracting the last two equations gives

aa(M—Ap)xr+ -+ (A — A1) 2, = 0.

None of Ay — A\y1,..., A\ — A1 are zero, as the eigenvalues are distinct. Hence not all coefficients
1 (M1 —Aeg1) s ooy 6r (A — A1) are zero. Thus {x1, 29, ..., 2.} is not linearly independent—a con-
tradiction with the assumption at the beginning of the proof. ]

Theorem 16 provides an important decomposition—called diagonalization—of matrices. To show that,
we briefly review the concept of matrix inverses first.

Definition 17 (Matrix Inverse). The inverse A~! of a square matrix A satisfies

AATT =A1A=1T.

17
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If A=! exists, A is called nonsingular; otherwise, A is singular.

Theorem 18 (Diagonalization of a Matrix). Let an n x n matrix A have a basis of eigenvectors

{1, x9,...,2,}, associated to its n distinct eigenvectors {1, Aa, ..., A\, }, respectively. Then
A0 .00
-1 0 )\2 : -1
A=XDX " =[xy, 29,...,%,] [T, oy .. ] (20)
o .0
0 ... 0 X\,
Also,
A" = XD"X1 (m=23,...). (21)

Remark 19. From (21), you can find some intuition about the benefit of (20): A™ can be tedious to
compute while D™ is very simple!

Proof. From Theorem 16, the n linearly independent eigenvectors of A form a basis. Write

A[E1 = )\15B1
AZL’Q = Agl’g
Ax, = Az
as
A0 .00
0 A :
Alxy, xo, .. xy] = [21, 20, ..., Ty _ 2 .
0O ... 0 M\,
The matrix [z1, s, ..., x,] is square. Linear independence of the eigenvectors implies that [z, zo, . . ., 7]

is invertible. Multiplying [z1, zo, ... ,xn]fl on both sides gives (20).
(21) then immediately follows, as

A" = (XDX )" = XDX'XDX ... XDX ™' = XD"X ",

Example 20. Let
2 =3
A= { 2 }

The matrix has eigenvalues at 1 and -1, with associated eigenvectors

HAN
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Then

31 o1 074
o [2 1] amx] 0]

Now if we are to compute A3°°. We just need to do

3000
1 0
3000 -1
A _X[O 1} X =1

7 Similarity transformation

Definition 21 (Similar Matrices. Similarity Transformation). An n x n matrix A is called similar to
an n X n matrix A if X
A=T7"AT

for some nonsingular n x n matrix 7. This transformation, which gives A from A, is called a similarity
transformation.

Let S; and S, be two vector spaces of the same dimension. Take the same point P. Let u be its
coordinate in S; and 4 be its coordinate in S,. These coordinates in the two vector spaces are related
by some linear transformation 7":

v="Tu, =T "u

Consider Fig. 4. Let the point P go through a linear transformation A in the vector space S;
to generate an output point P,. P, is physically the same point in both S; and S,. However, the
coordinates of P, are different: if we see it from “standing inside” S, then

y = Au

If we see it in Sy, then the coordinate is some other value 3.

Figure 4: Same points in different vector spaces

How does the linear transformation A mathematically “look like" in Sy?
Result:
§=T 'y=T"'Au= (T AT)q

19
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namely, the linear transformation, viewed from Ss, is
A=T"AT

It is central to recognize that the physical operation is the same: P goes to another point P,.
Different is our perspective of viewing this transformation. A and A are in this sense called similar.

Purpose of doing similarity transformation: A can be simpler! Consider, for instance, the following
example

>

In S;, the transformation changes both coordinates of P while in Sy, only the first coordinate of P
is changed.

Theorem 22 (Eigenvalues and Eigenvectors of Similar Matrices). If A is similar to A, then A has the
same eigenvalues as A. Furthermore, if x is an eigenvector of A, then y = T 'z is an eigenvector of
A corresponding to the same eigenvalue.

O

8 Matrix inversion

This section provides a more detailed description of matrix inversion. Recall that the inverse A=! of a
square nonsingular matrix A satisfies

AATT =A1A=1T.
Theorem 23 (Inverse is unique). If A has an inverse, the inverse is unique.
Concepts only. If both B and C are inverses of A, then BA= AB =1 and CA = AC = I so that
B=IB=(CA)B=CAB=C(AB)=CI=C.

Connection with previous topics: The set of all n x n matrices is not a field. Multiplicative inverse is
unique. O
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Definition 24 (Existence of a matrix inverse). The inverse A~! of an n x n matrix A exists if and
only if the rank of A is n. Hence A is nonsingular if rank(A) = n, and singular if rank(A) < n.

Proof. Let A € R™*™ and consider the linear equation
Ax =b.

If A=! exists, then
A'Ar =2 = A7 1.

Hence A~!b is a solution to the linear equation. It is also unique. If not, then take another solution u;
we should have Au = b and u = A~'b. Since A~! is unique, it must be that u = z.
Conversely, if A has rank n. Then we can solve Ax = b uniquely by Gauss elimination, to get

xr = Bb,
where B is the backward substitution linear transformation in Gauss elimination. Hence
Ax = A(Bb) = (AB)b=1b

for any b. Hence
AB = 1.

Similarly, substituting Az = b into © = Bb gives
r=B(Az) = (BA)x = Iz,

and hence
BA=1.

Together B = A~! exists. O

There are several ways to compute the inverse of a matrix. One approach for low-order matrices is
the method of using adjugate matrix (sometimes also called adjoint matrix):

-1 1 . T
A _det(A)adJ(A) :

We explain the computation by two examples. You can find additional details in your undergraduate
linear algebra course.

e 2 x 2 example:
a b1 (1) (=1)"%p
c d Tad—be | (1) e (=1)*a |’

where b in (—=1)"?b is obtained by:

— noticing b is at row 1 column 2 of A;

— looking at the element at row 2 column 1 of A (notice the transpose in adj (A)");
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— constructing a submatrix of A by removing row 2 and column 1 from it, i.e., [b] in this 2 x 2
example;

— computing the determinant of this submatrix.

— adding (—1)""* as a scalar

e 3 x 3 example:

[ e f b c b c| |
-1 h k h k e f
A1 32; _ 1 _‘df‘ ’ac _ac’
g bk det A g k g k d f ’
d e a b a b
L |9 D g h d e| |

where |-| denotes the determinant of a matrix. Similar as before, the row 1 column 2 element

is obtained via

_bc
h k

s}

(=1)*""det | A with [d,e, f], | d | removed

g
Example 25. Find the inverse matrices of
2 1 -1 1 2 —-05 0 0
A_{24},B_ 3 -1 1],Cc=| 0 40
-1 3 4 0 01
The answers are:
—-0.7 0.2 03 -2 0 0
Al = { _0642 _()Oi.%l } , B! ~13 —02 07 |,Ct'=1] 0 025 0
' ' -1 3 4 0 0 1

The related MATLAB command for matrix inversion is inv().

Theorem 26. Inverse of products of matrices can be obtained from inverses of each factor:
(AB)™' = B7'A7Y,

and more generally
(AB...YZ) ' =Zz7'y=t...BtA7L. (22)
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Proof. By definition (AB) (AB)™" = I. Multiplying A~! on both sides from the left gives
B(AB) ' =A%
Now multiplying the result by B~! on both sides from the left, we get
(AB)™' = B7tA™L.
The general case (22) follows by induction. O
Fact 27. *Inverse of upper (lower) triangular matrices are upper (lower) triangular

Proof. (main idea) We can either use the adjoint matrix method or use the following decomposition of
upper(lower) triangular matrices
A=D(I+N),

where D is diagonal and N is strictly upper (lower) triangular with zeros diagonal elements. Then using
matrix Taylor expansion we have

At =(I+N)"' D!
= -N+N*-N*+N'—..)D".

N is nilpotent: N* are upper (lower) triangular and N™ = 0 for n larger than the row dimension of A.
D~ is diagonal. Hence A~ is upper (lower) triangular. O

8.1 Block matrix decomposition and inversion
3 4
A= {1 : }
Recall the key step in performing row operations on matrices in Gauss elimination:
3 4 _ 3 4
12 0 2/3 |

where we had substracted one third of the first row in the second row. In matrix representations, the

above looks like
1 0][34] [3 4
—1/3 1|1 2] |0 23]

For more general two by two matrices, we have

Consider

1 0][a b] [ a b
_—ca‘l 1 c d___O d—ca‘lb_’

If we want to keep the second row unchanged and simplify the first row, we can do

(1 —bd ' | [a 0] [ a—bd e 0]
_O 1 cd_ I c d_'
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Generalizing the concept to blok matrices (with compatible dimensions), we have

I 0][A B] [A B
—BTA T || B" ¢|~ |0 C—BTAB |’

and _
A B I -A7'B| [ A 0
0 C—B™AB||0 I |~ |0 C-BTAB |
Thus
I 0l[ A B][I -A'B] [4 0
—BTA 1 T BT C 0 I 10 C=BTAB |-

Inversion is now very easy:
I 0][ A B][I -A'B]"" [A 0 -
—BTA7Y BT C 0 1 | 0 C-BTAB
I —A'B17'[ 4 B I 0] 4 0 -
0 I BT C | 0 C—-BTAB ’
and hence
A Bl [1I -A'B][4A 0 - I 0
BT C 10 1 0 C—-BTAB —BTATY T
[1 -A'B At 0 I 0
o 1 0 (C-BTAB)" || -BTAT 1]
The above steps work for general partitioned 2 by 2 matrices as well. The result is as follows

I 0][A B|[I —BA™'] [A 0
—CAt I||lCc D|l0o I |10 D-CA'B

A Bl [I -BA'|[A 0 Bl Y S
cD| ~|lo I 0 D—CA'B —CA™t T |

(52 )[4 8] [ e 2] [+ 3]

0 I C D||-D'C I 0 D
A Bl [I =BD'][A-BD}C 0] I 0
c D| o I 0 D -D7'C 1|

8.2 *LU and Cholesky decomposition

Fact 28. The following is true for upper and lower triangular matrices:

][]
BN
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From the last section

I 0
—CA™ ' I

Applying Fact 28 to the last equa

& o)

(A B
¢ D

]|

tion gives the block LU decomposition:

15 p-can ][0 "7

A 0
0 D-CA™'B |~

I 0
cAt g

I 0 A B

} {0 DCAUB})

| cA' 1|0 D-CA'B

which shows any square matrix can be decomposed into the product of a lower triangular matrix and

an upper triangular matrix.

There is also block Cholesky decomposition

A B I _ [0 0
[0 D}:{CA*}A[I ATB I+ D—OA‘lB]’
or using half matrices
A B Az . [0 0 0 0
o n) =i )14 a0 g6 o]
Q=D-CA'B,
where ) )
A2A2 = A, Q2Q2 = Q.
Hence N
B
{C D]:LU,
where
Az 0][ A3 A—3B 0 0 0 0 Az 0
L — * 1 * - 1
v [(JA‘Q 0] 0 0 ]+[O Q2 {0 Qz] [CA‘z Qz]{

8.3 Determinant and matrix inverse identity

Although AB # BA in general, the determinants of products have the following property:

det (AB) = det (BA) = det Adet B,

where A and B should be square

to start with.

Theorem 29 (Sylvester's determinant theorem). For A € R™*™ and B € R™*™,

det (I, + AB) = det (I, + BA),

where I,, and I,, are the m X m and n X n identity matrices, respectively.
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Proof. Construct

I, —A
w-[h )

From the decomposition

L 01[L, -A
M:[B [nHo In+BA}’

we have

det M = det (I,, + BA) .
Alternatively

| In+AB —-A I, O
w=[

Hence

det M = det (I, + AB).
Therefore

det (I,, + AB) = det M = det (I, + BA).

More generally, for any invertible m x m matrix X
det (X + AB) = det (X)det (I, + BX'A),
which comes from

X+AB=X (I+X 'AB)
= det (X + AB) =det [X (I + X 'AB)| = det X det (I + X 'AB).

8.4 Matrix inversion lemma

Fact 30 (Matrix inversion lemma). Assume A is nonsingular and (A + BC)™" exists. The following is
true

(A+BC) ™' = A~ (1 ~B(CA'B+1)"" CA—1> . (23)
Proof. Consider
(A+BC)z =y. (24)
We aim at getting
z = (%), where (x) will be our (A + BC)™". (25)
First, let
Cx =d. (26)
Equation (24) can be written as
Ar+ Bd=y
Cr—d=0.
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Solving the first equation yields
r=A"1(y— Bd). (27)

Then (26) becomes
CA™ ' (y — Bd) =d.

Combining the terms about d and applying matrix inversion yield
d=(CAT'B+ 1) cA™ly.
Putting the result in (27) yields
p=A" (y=B(CAB+1) CATYy)
—at(1-B(catB+1) ey,
Comparing the above with (25), we obtain (23). O

Exercise 31. The matrix inversion lemma is a powerful tool useful for many applications. One appli-
cation in adaptive control and system identification uses

(A+ppT) " = A7 (1 _ ¢ AT ) |

PpTA g +1
Prove the above result. Prove also the general case (called rank one update):

1

Ty _ A-1
(A—I—bc)—A 17 TAT

(A1) (A7),

Fact 32 (More extended matrix inversion lemma). Assume A, C, and A + BCB” are nonsingular.
The following is true

(A+ BOBT) ' = A7 (1 ~B(CBTA'B+1)! CBTA‘l) (28)
= A"~ AT'B(CBTAT'B+1) " CBTA (29)
—_Al_glB (BTA—IB + 0—1)*1 BT AL (30)

Proof. Consider
(A+BCB")z=y.

We aim at getting = = (x) y, where (x) will be our (A + BC’BT)_l. First, let

OBz =d.
We have
Ar+ Bd=y
CBTx —d=0.
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Solving the first equation yields
r=A"1(y— Bd).

Then
CBTA™ (y — Bd) =d
gives
d= (CBTAT'B+ 1) CB"A™'y.

Hence

z=A" (y=B(CB' A B+1)" CB"A™Yy)

— A (1= B(CB"A B+ 1) CB"A™ )y

and (28) follows. O

The extended matrix inversion lemma is key in transforming the Kalman filter to the information
filter when inverting the innovation of covariance matrices.

8.5 Special inverse equalities

Fact 33. The following matrix equalities are true
e I+GK)'G=GUI+KG)™"
to prove the result, start with G (I + KG) = (I + GK) G
e GK(I+GK) ' =G +KG) 'K = (I + GK) " GK (the proof uses the first equality twice)
e generalization 1: (021 + GK) ' G = G (0% + KG) ™"
e generalization 2: if M is invertible then (M + GK) 'G = M'G(I + KM~'G)™"

Exercise 34. Check validity of the following equality, assuming proper dimensions and invertibility of
matrices:

e Z(I+2) ' =1—-(I+42)"
e I+ XY) "= -XY(I+XY) ' =I-X{I+YX)'Y

e extension

1 1 1

(I+XZ7Y) =1-XZ"'Y(I+XZ7Y) =1-XZ"(I+YXZ") Y

=I-X(Z+YX)'Y
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9 Spectral mapping theorem

Theorem 35 (Spectral Mapping Theorem). Take any A € C**™ and a polynomial (in s) f (s) (more
generally, analytic functions). Then

eig (f (4)) = f (eig (4)).
Proof. Let
f(A) :I0]+I1A+$2A2+....
Let A\ be an eigenvalue of A. We first observe that A" is an eigenvalue of A™. This can be seen from
det (A1 — A™) =det [(A] — A)p(A)] = det (A — A) det (p(A)) where p (A) is a polynomial of A.
Now consider f () = 2o + 21\ + 22A? + ... We have
det (f (\) I — f(A)) =det [x1 (Al — A) + 35 (N1 — A?) + 23 (\*] — A%) + ... ]

— det [(A — ) ¢ (4)]

= det (A — A)det (¢ (A)).
Hence f ()) is an eigenvalue of f (A).

Conversely, if 7 is an eigenvalue of f (A), we need to prove that «y is in the form of f ()\). Factorize
the polynomial

fA)=v=aA—a1))(A—az)... (A —ay,).
On the other hand, we note that as a matrix polynomial with the same coefficients:
fA) =yl =ap(A—al) (A—al)...(A—a,l).
But det (f (A) — vI) = 0, which means that there is at least one «; such that
det (A — o I) =0,
which says that «; is an eigenvalue of A. Hence

FO)=r=asA—a) [J(A=ax) =0,
ki

v=r),
where \ is an eigenvalue of A. O

Example 36. Compute the eigenvalues of

A - 99.8 2000
| —=2000 99.8 |-
Solution:

0 1
A99.8[+2000{_1 o]'

So

cig(A) = 99.8 + 2000 eig { 01

o 1 = 99.8 % 2000i.
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10 Matrix exponentials

Since the Taylor series

st _q ; s2t? 33
e = + st + 7 —+ ? +
converges everywhere, we can define the exponential of a matrix A € C"*" by
A2t2 A3t3
eM=T+ At + 5] +T+

Fact 37. Properties of matrix exponentials
1 e =7
2 62A(tJrs) _ eAteAs

3. If AB = BA then e(AtB)t = AteBt — oBtoAl

4. det (eAt) — etracr—:(A)t

5. et is nonsingular for all t € R and (eAt)_1 =e A

6. et is the unique solution X of the linear system of ordinary differential equations

X = AX, subject to X(0) = I
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11 Inner product

11.1 Inner product spaces

Basics: Inner product, or dot product, brings a metric for vector lengths. It takes two vectors and
generates a number. In R™, we have

by

A T by
<a7b>:ab:[a17a27"wan] .
br,

Clearly, {(a,b) = a”b = (b,a). Letting b = a above, we get the square of the length of a:

lall = y/a? + a3 +-- - + a2,

Formal definitions:

Definition 38. A real vector space V is called a real inner product space, if for any vectors a and b in
V there is an associated real number (a, b), called the inner product of a and b, such that the following
axioms hold:

e (linearity) For all scalars ¢; and ¢, and all vectors a,b,c € V
(q1a + g2b,c) = q1 (a,b) + g2 (b, ¢)

e (symmetry) Ya,b € V
(a,b) = (b,a)

e (positive definiteness) Va € V
{a,a) =0

where (a,a) = 0 if and only if a = 0.

Definition 39 (2-norm of vectors). The length of a vector in V is defined by

lall = V/{a,a) = 0.

For R™,

lall = VaTa = \Ja? + a3 + -+ a2.

This is the Euclidean norm or 2-norm of the vector. R™ equiped with the inner product (a, b) = Va™b
is called the n-dimensional Euclidean space.
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Example 40 (Inner product for functions, function spaces). The set of all real-valued continuous
functions f (z), g(x), ... = € [, 5] is a real vector space under the usual addition of functions and
multiplication by scalars. An inner product on this function space is

B
()= [ f@)g@)da
and the norm of f is
B
1F@l=y [ fie)dn

Inner products is also closely related to the geometric relationships between vectors. For the two-
dimensional case, it is readily seen that

DR

is a basis of the vector space. The two vectors are additionally orthogonal, by direct observation.
More generally, we have:

Definition 41 (Orthogonal vectors). Vectors whose inner product is zero are called orthogonal.
Definition 42 (Orthonormal vectors). Orthogonal vectors with unity norm is called orthonormal.

Definition 43. The angle between two vectors is defined by

(a,b) _ (a,b)
lall - 1[oll  \/(a,a) - /(b b)

11.2 Trace (standard matrix inner product)

cos Z (a,b) =

The trace of an n x n matrix A = [a;i] is given by

=1
Trace defines the so-called matrix inner product:
(A,B) =Tr (A"B) =Tr (B"A) = (B, A), (32)

which is closely related to vector inner products. Take an example in R3*3: write the matrices in the
column-vector form B = [by, bs, bs], A = [a1, as, a3), then

a{bl * *
ATB = x alby x|, (33)
* *  albs
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So
Tr (ATB) = a{bl + a2Tb2 + a3Tb3,
ap b1
which is nothing but the inner product of the two “stacked” vectors | a; | and | by |. Hence
as b

ap b1
(A,B):Tr(ATB):< a |, | by >

ag bs
Exercise 44. If x is a vector, show that

Tr(zz”) = 272

12 Norms

Previously we have used || - || to denote the Euclidean length function. At different times, it is useful
to have more general notions of size and distance in vector spaces. This section is devoted to such
generalizations.

12.1 Vector norm

Definition 45. A norm is a function that assigns a real-valued length to each vector in a vector space
C™. To develop a reasonable notion of length, a norm must satisfy the following properties: for any
vectors a, b and scalars o € C,

e the norm of a nonzero vector is positive: ||a|| > 0, and ||a|| = 0 if and only if a =0
e scaling a vector scales its norm by the same amount: ||aal| = || ||al|
e triangle inequality: ||a + b|| < [|a|| + ||b]|
Let w; be a n x 1 vector. The most important class of vector norms, the p norms, of w are defined by
n 1/p
[|wll, = (Z |wi|p> , 1<p<oo.
i=1
Specifically, we have
|lwlly = > |w;| (absolute column sum)
I R—
|wl]|, = VwHw (Euclidean norm)

Remark 46. When unspecified, || - || refers to 2 norm in this set of notes.
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Intuitions for the infinity norm By definition

1/p

n
[[ewlloo = lim | 3 fu,]?
p—0o0 i1

Intuitively, as p increases, max; |w;| takes more and more weighting in """, |w;[’. More rigorously, we

have
n 1/p n 1/p

- NP < g 1P ; 1)P
Jim ((max fug])7)'7 < Tim 2 fwi” | < Tim 2 (max w])
1= 1=

1/p 1/p

equals max; |w;|. Hence ||w||e =

Both lim,_, ((max |w;|)")"* and lim, o (3>, (max |w;|)")

max |w;|.

12.2 Induced matrix norm

As matrices define linear transformations between vector spaces, it makes sense to have a measure of
the “size” of the transformation. Induced matrix norms? are defined by

[ Mzl

Tl (34)

M = max
1Ml =
In other words, ||M||,, is the maximum factor by which M can “stretch” a vector .

In particular, the following matrix norms are common:
| M||121 = max; >, |M;;| maximum absolute column sum

| M [|os-0o = max; Y 35%, [ M;;] maximum absolute row sum

|M |22 = v/ Amax (M*M) maximum singular value

The induced 2 norm can be understood as follows:

Y [ Mz]
= —
(1Ml = max Nzlls =0

= \/Aumax (M*M).

Remark 47. When p = ¢ in (34), often the induced matrix norm is simply written as ||M]||,.

12.3 Frobenius norm and general matrix norms

Matrix norms do not have to be induced by vector norms.

2|t is 'induced’ from other vector norms as shown in the definition.
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Formal definition: Let M, be the set of all n x n real- or complex-valued matrices. We call a

function || - || : M,, = R a matrix norm if for all A, B € M,, it satisfies the following axioms:
L [lAl[=0
2. ||A||=0if and only if A =0
3. ||cAl| = |¢|||A|| for all complex scalars ¢
4. [[A+ B| < ||All+ 1B
5. |AB|| < [[Allll B

The formal definition of matrix norms is slightly amended from vector norms. This is because although
M,, is itself a vector space of dimension n?, it has a natural multiplication operation that is obsent in
regular vector spaces. A vector norm on matrices that satisfies the first four axioms and not necessarily
axiom 5 is often called a generalized matrix norm.

Frobenius norm: The most important matrix norm which is not induced by a vector norm is the
Frobenius norm, defined by

|A||p 2 /Tr (A*A) = /< A A > = Z |a; ;|-

2%
Frobenius norm is just the Euclidean norm of the matrix, written out as a long column vector:
1
1 m m 2
1 2
|A][F = (Tr (A"A4))2 = (ZZ |ai;] > :
i=1 j=1
We also have bounds for Frobenius norms:

IAB|[5 < | Al[EIBIIE-

Transforming from one matrix norm to another:

Theorem 48. If|| - || is a matrix norm on M,, and if S € M,, is nonsingular, then
14]|s = [|ST'AS|| VA € M,

IS @ matrix norm.

Exercise 49. Prove Theorem 48.
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12.4 Norm inequalities

1.

Cauchy-Schwartz Inequality:
[z, 9)| < [lz]l2]ly]]2;
which is the special case of the Holder inequality

1 1
(2, )| < M=l|plyllq, 5+5=1, 1 <p,q<oo (35)
Both bounds are tight: for certain choices of x and y, the inequalities become equalities.

Bounding induced matrix norms:
AB[1en < |[Alleml | Bllmen, (36)
which comes from
ABz||; < [[Allicml| B2|lm < [[Allicm||Bllmen|2]]n-

In general, the bound is not tight. For instance, ||A"|| = ||A||" does not hold for n > 2 unless A
has special structures.

(35) and (36) are useful for computing bounds of difficult-to-compute norms. For instance, ||A|3
is expensive to compute but ||A||; and ||A||« are not. As a special case of (36), we have

1AL < Al 1A |-
We can obtain an upper bound of ||A||3 by computing || A]]1||4]|ce-

Any matrix induced norms of A are larger than the absolute eigenvalues of A:
A (A) | < []Allp.
Hence as a special case, the spectral radius is upper bounded by any matrix norms:
p(A) < [IA].
Let A € M,, and € > 0 be given. There is a matrix norm such that
p(A) <A <p(A) +e

Hint: A can be decomposed as A = U*AU where U is unitary and A is upper triangular [Schur
triangulariztion theorem]. Let D; = diag(t,t?,...,t") and compute

i A t_ldlg ce e t_TH_ldln i
0 Ayt 'das o Ty,
D,AD;! = e
: . . Zf_ldnfl,n
0 0 A

For ¢ large enough, the sum of the absolute values of the off-diagonal entries is less than ¢ and
in particular
IDAD L < p(A) +e
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12.5 Exercises

1. Let x be an m vector and A be an m x n matrix. Verify each of the following inequalities, and
give an example when the equality is achieved.

(@) [lzlloe < [l

(b) llzll2 < vm|lz|lo
(©) [[Alleo < v/nlAll
(d) [[A[l2 < v/ml|Alls

2. Let x be a random vector with mean E [z] = 0 and covariance E (zz”) = I, then
1AIIE = B [|[Az]|3]

Hint: use Exercise 44.

13 Symmetric, skew-symmetric, and orthogonal matrices

13.1 Definitions and basic properties

A real square matrix A is called symmetric if A = AT, skew-symmetric if A = —A”.

Fact 50. Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

R=J(A+AT), §=_(A-AT).

N | —

If A = [aj;], then the complex conjugate of A is denoted asA = [a;;], i.e., each element
ajr = a+ 13 is replaced with its complex conjugate a;, = o — 3. B
A square matrix A is called Hermitian if A7 = A; skew-Hermitian if AT = —A.

Example 51. Find the symmetric, skew-symmetric, Hermitian, and skew-Hermitian matrices in the

set:
1 2 1 2 1 21 0 2 0 242
2 1’ 2t 1 ’ -2t 1 ’ -2 0|’ 2—2 0 '

We introduce one more class of important matrices: a real square matrix A is called orthogonal®
if
ATA = AAT = 1. (37)

Writing A in the column-vector notation

A:[al,aQ,...,an},

3Some people also call use the notion of orthonormal matrix. But orthogonal matrix is more often used (we can say
orthonormal basis).
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we get the equivalent form of (37):

T T T T

al ala; atay, ... ala,
T
ATA= . |:a1; A2, ..., an}: . . . . =1
T T T T

a,, a,a, a,0z ... Q,0n

Hence it must be that
T = _
a;a; = 1

a;pam =0V #m,

namely, a; and a,, are orthonormal for any j # m.

The complex version of an orthogonal matrix is the unitary matrix. A square matrix A is called
—T

unitary if AA =A A=1, namely A=t = A",
Remark 52. Often the complex conjugate transpose A" is written as A*.
Theorem 53. The eigenvalues of symmetric matrices are all real.

Proof. ¥V : A € R™™ with AT = A. Au = \u = u’ Au = \u’u, where % is the complex conjugate of
u. ! Au is a real number, as

ﬁ =ul'Au
=ulAu ARV
=u'ATg ~A=AT
=xla o (Au)" = Ow)”
=’y cu'meR
=ulAu . Au = .

al Au

it S also a real number. O

By definition of complex conjugate numbers, /v € R. So \ =
Theorem 54. The eigenvalues of skew-symmetric matrices are all imaginary or zero.
The proof is left as an exercise.

Fact 55. An orthogonal transformation preserves the value of the inner product of vectors a and b
in R™. That is, for any a and b in R™, orthogonal n x n matrix A, and u = Aa, v = Ab we have
(u,v) = (a,b), as

ulv=aTATAb = a’.

Hence the transformation also preserves the length or 2-norm of any vector a in R™ given by ||a||s =
(a,a).

Theorem 56. The determinant of an orthogonal matrix is either 1 or -1.
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Proof. UUT = I = det U det UT = (det U)* = 1. O

Theorem 57. The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and
have absolute value 1.

Proof. Au = hu = ATAu = MATu = u = MTu = @u = Xa"ATu = @Tu = \a"A u =
Matu = (A — 1) au = 0. O

Properties of the special matrices From the above results, we have the following table:

real matrix complex matrix properties
symmetric (A = AT) Hermitian (A* = A) eigenvalues are all real
orthogonal unitary eigenvalues have unity magnitude; Ax
(ATA = AAT =) (A*A = AA*=1) maintains the 2-norm of x
skew-symmetric skew-Hermitian eigenvalues are all imaginary or zero
(AT = —4) (A" = —-4)

Based on the eigenvalue characteristics, we have:

e symmetric and Hermitian matrices are like the real line in the complex domain
e skew-symmetric/Hermitian matrices are like the imaginary line

e orthogonal/unitary matrices are like the unit circle

Exercise 58 (Representation of matrices using special matrices). Many unitary matrices can be mapped
as functions of skew-Hermitian matrices as follows

U=I-S)"I+S5),

where S = I. Show that if S is skew-Hermitian, then U is unitary.

13.2 Symmetric eigenvalue decomposition (SED)

When A € R™ ™ has n distinct eigenvalues, we have seen the useful result of matrix diagonalization:

A1
A=UANU = [uy, ..., up) [ur, . un] (38)
An

where \;’s are the distinct eigenvalues associated to the eigenvector u;'s.

The inverse matrix in (38) can be cumbersome to compute though.

The spectral theorem, aka symmetric eigenvalue decomposition theorem,* significantly simplifies the
result when A is symmetric.

4Recall that the set of all the eigenvalues of A is called the spectrum of A. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A.
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Theorem 59. V: A ¢ R™" AT = A, there always exist \; and u;, such that

A=Y Nuu] =UAU”, (39)
=1

where:®
e \;'s: eigenvalues of A

e u;: eigenvector associated to \;, normalized to have unity norms

o U=|uy,us,- ,uy|" is an orthogonal matrix, i.e, UTU = UUT = I
e {uy,us, - ,u,} forms an orthonormal basis

A1
o A=

An
To understand the result, we show an important theorem first.

Theorem 60. V: A € R™" with AT = A, then eigenvectors of A, associated with different eigenval-
ues, are orthogonal.

Proof. Let Au; = Nu; and Au; = Mu;. Then u] Au; = ul Nju; = Nulwu;. In the meantime,
ul Auj = ul ATu; = (Au;)" u; = Nulu;. So Mulu; = MNulu;. But A; # A;. It must be that
T,

ui uj = 0. [

Theorem 59 now follows. If A has distinct eigenvalues, then U = [uy, ug, - - - ,uy]" is orthogonal if
we normalize all the eigenvectors to unity norm. If A has r(< n) distinct eigenvalues, we can choose
multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

Observations:

o If we “walk along” u;, then
AU]‘ = Z )\,LUZUlT Uj = )\jUjU?Uj = )\j’dj, (40)

where we used the orthonormal condition of u]u; = 0 if ¢ # j. This confirms that u; is an
eigenvector.

Su;ul’ € R™ ™ is a symmetric dyad, the so-called outerproduct of u; and u;. It has the following properties:

o VveR™, (vol), =wvw;. (Proof: (vv) . = e (vv")e; = viv;, where ¢; is the unit vector with all but the
i, elements being zero.)

e link with quadratic functions: ¢ (z) = 27 (v0”) z = (vTx)2
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o {u;}; | is a orthonormal basis =Vz € R", 3z = >, ayu;, where a; =< z,u; >. And we have

which gives the (intuitive) picture of the geometric meaning of Az: decompose first = to the
space spanned by the eigenvectors of A, scale each components by the corresponding eigenvalue,
sum the results up, then we will get the vector Azx.

With the spectral theorem, next time we see a symmetric matrix A, we immediately know
that

e )\, is real for all
e associated with );, we can always find one or more real eigenvectors
e 3 an orthonormal basis {u;};_,, which consists of the eigenvectors

o if A c R?>*2 then if you compute first A;, Ay and u;, you won't need to go through the regular
math to get ug, but can simply solve for a uy that is orthogonal to u; with ||us|| = 1.

5 V3

Example 61. Consider the matrix A = { /3 7 } . Computing the eigenvalues gives
5—X V3 2
det =35 —12A+ XN —=3=\—-4)(\A—8) =
e[\/g 7_@ 35 A -3=A=-4)(A=8)=0
:>)\1 == 4, )\2 == 8

We can know one of the eigenvectors from

V3

_V3
: |

:|t1:0:>t1:|: 2

1
2

Note here we normalized ¢; such that ||¢;||s = 1. With the above computation, we no more need to do
(A — A1)ty = 0 for getting to. Keep in mind that A here is symmetric, so has eigenvectors orthogonal
to each other. By direct observation, we can see that

1
-[4
2

is orthogonal to ¢; and ||z||]s = 1. So t; = x.

Theorem 62 (Eigenvalues of symmetric matrices). If A = AT € R™ ", then the eigenvalues of A
satisfy
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\ . 2T Ax
max

max z€R™, z#0 ||ZL‘||%

xT Ax

Proof. Perform SED to get
i=1

where {u;};_, form a basis of R™. Then any vector € R" can be decomposed as

n
xTr = E o Uy;.
=1

Thus
ITAZL“ (Zz OéiUZ‘)T ZZ /\ZOéZUZ ZZ )\10412

a = ma =max =—> = A\, .v.
o 23 T Ter > a? N e T

The proof for (43) is analogous and omitted.

13.3 Symmetric positive-definite matrices

Definition 63. A symmetric matrix P € R™*" is called positive-definite, written P = 0, if 27 Pz > 0
for all z (# 0) € R™. P is called positive-semidefinite, written P = 0, if 27 Pz > 0 for all x € R®

Definition 64. A symmetric matrix P € R™*" is called negative-definite, written P < 0, if —P > 0,
i.e., TPz < 0 for all z (# 0) € R™. P is called negative-semidefinite, written P < 0, if 27 Pz <0

for all x € R®

When A and B have compatible dimensions, A = B means A — B > 0.
Positive-definite matrices can have negative entries, as shown in the next example.

Example 65. The following matrix is positive-definite
2 -1
S
as P = PT and take any v = [z,]”, we have

T
v Py = {‘;} [_21 _21} {‘;} = 2%+ 27 — 2wy =22+ P + (x+y)* >0,

and the equality sign holds only when z =y = 0.

Conversely, matrices whose entries are all positive are not necessarily positive-definite.
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Example 66. The following matrix is not positive-definite

12
=]

BB EEE

Theorem 67. For a symmetric matrix P, P = 0 if and only if all the eigenvalues of P are positive.

as

Proof. Since P is symmetric, we have

TA
)\max (P) = max % (44)
z€R™, z#0 H])HQ
TA
)\min (P) = min %7 (45)
zeR", 20 ||7||3
which gives
xTA‘T € P‘mion”g) /\maX”ng] :
For x # 0, ||z||3 is always positive. It can thus be seen that 27 Az > 0, x # 0 < Ay > 0. O

Lemma. For a symmetric matrix P, P = 0 if and only if all the eigenvalues of P are none-negative.
Theorem. If A is symmetric positive definite, X is full column rank, then XT AX is positive definite.

Proof. Consider y (XTAX) y = x7 Az, which is always positive unless z = 0. But X is full rank so
Xy =2 =0if and only if y = 0. This proves X7 AX is positive definite. O

Fact. All principle submatrices of A are positive definite.

Proof. Use the last theorem. Take X = e;, X = [e;,es], etc. Here e; is a column vector whose
ith-entry is 1 and all other entries are zero. ]

Example 68. The following matrices are all not positive-definite:

ol AR

Positive-definite matrices are like positive real numbers. We can have the concept of square root of
positive-definite matrices.

Definition 69. Let P = 0. We can perform symmetric eigenvalue decomposition to obtain P = UDU”
where U is orthogonal with UU” = I and D is diagonal with all diagonal elements being none negative

M O ...0

p=| 0 M =0
SRR
0 ... 0 A
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. Then the square root of P, written P%, is defined as

.where

13.4 General positive-definite matrices

Definition 70. A general square matrix () € R™" is called positive-definite, written as @ > 0, if
2TQx > 0 Vo # 0.

We have discussed the case when @) is symmetric. If not, recall that any real square matrix can be
decomposed as the sum of a symmetric matrix and a skew symmetric matrix:

- QR+Q"  Q-Q
2 + 2

Q

T . .
where % is symmetric.

Notice that mTQ_—QQTx =27 Qu — (xTQx)T = (. So for a general square real matrix:
Q-0s0Q+Q" 0.
Example 71. The following matrices are positive definite but not symmetric
{ 11 } { 10 }
O 1”1 1]
For complex matrices with Q = Q* = Qr + jQ;, we have

Q-0 2"Qr >0, Ve #0
& (v — jai) (Qr +jQr) (xr + jzr) > 0

() (e en(5) () ()
() (% &) ()

& 1HhQrTr — 11 Qg + TRQrr + 21 Qrar > 0.
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13.5 *Positive-definite functions and non-constant matrices

We can further extend the concept of positive definiteness to general and even time-varying functions,
by placing upper and/or lower bounds that are “positive-definite like".
Define first two special functions:

1. class-K function: ¢ € C°: [0,a] — [0, 00) with ¥ (0) = 0 and % strictly increasing,
2. class-K function: if the domain a = oo and ¢ (1) — 00 as r — 0.
Note: 1 is continuous but does not need to be continuously differentiable, e.g.
1) = min {x, a:2}
is a class-K function.

Lemma 72. Let V : D — R be a continuous, positive definite function. Let B, C D for some r > .
Then there exist class-K functions 1 and ¢ defined on [0, ] such that

o (llzl]) <V (x) < (||=])
for all x € B,.
o if the domain D = R" then r = o0 ,

e if VV () is radially unbounded, then ) and ¢ can be class- K.

Definition 73. A time-dependent function V (¢, z) is positive-semidefinite if

Vit x) = o(]x]]),
where ¢ is class-K.

Definition 74. A time-varying matrix P (t) is positive definite if there exists a lower-bounding positive
definite matrix such that
P(t) = csl =0, Vt > 0.
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14 Singular value and singular value decomposition (SVD)

14.1 Motivation

Symmetric eigenvalue decomposition is great but many matrices are not symmetric. A general matrix
A may actually not even be square. Singular value decomposition is an important matrix decomposition
technique that works for arbitrary matrices.®

For a general none-square matrix A € C™*", eigenvalues and eigenvectors are generalized to

AU]' = O'jUj (46)

Be careful about the dimensions: if m > n, we have

01

V1 | Vg | ... | Uy 02

=
4

U
It turns out that, if A has full column rank n, then we can find a V' that is unitary (VV* = V*V = 1)
and a U that has orthonormal columns. Hence

A=USV* (47)

14.2 SVD

(47) forms the so-called reduced singular value decomposition (SVD). The idea of a “full” SVD is as
follows. The columns of U are n orthonormal vectors in the m-dimensional space C™. They do not
form a basis for C™ unless m = n. We can add additional m — n orthonormal columns to U and
augment it to a unitary matrix U. Now the matrix dimension has changed, 3 needs to be augmented
to compatible dimensions as well. To maintain the equality (47), the newly added elements to 3 are
set to zero.

Theorem 75. Let A € C™*™ with rank r. Then we can find orthogonal matrices U € C™*™ and
V € C™*™ such that
A=UXV",

SHistory of SVD: discovered between 1873 and 1889, independently by several pioneers; did not became widely known
in applied mathematics until the late 1960s, when it was shown that SVD can be computed effectively and used as the
basis for solving many problems.
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where

¥ € R™™ is diagonal
U e C™™ is unitary
V e C™" is unitary.

In addition, the diagonal entries o; of ¥ are nonnegative and in nonincreasing order; that is, o1 > oy >
>0, > 0.

Proof. Notice that A*A is positive semi-definite. Hence, A* A has a full set of orthonormal eigenvectors;
its eigenvalues are real and nonnegative. Order these eigenvalues as

)\12)\22"'2)\r>)\r+1:>\r+2:"':>\n:0-
"Let {vy,...,v,} be an orthonormal choice of eigenvectors of A* A corresponding to these eigenvalues:
A*A’Ui = )\ﬂ)z

Then,
||AU1||2 = U;A*AUZ' = )\iU;(UZ' = )\z

For ¢ > r, it follows that Av; = 0.
For 1 <i <r, we have

A*A’Ui = )\ﬂ)l
Recall (46), we define o; = /\; and get
AUi = 0O;U;
A*Ui = 0;0;.
For 1 <i,j <r, we have
1 1 o, 1 1=y
(i, 05) = iy = — ;A" Ay = — Ay = Dy =4 1
0i0; 0i0; o 0 i#j.
Hence {u; ..., u,} is an orthonormal set of eigenvectors. Extending this set to form an orthonormal
basis for C™ gives
U= [ U, eny Up ‘ Ups1, ooy Um }
For i < r, we already have
AUZ' = O;U4,

"Fact: rank (A) = rank (A*A). To see this, notice first, that rank (A) > rank (4*A) by definition of rank. Second,
A*Az =0= 2"A*Az = 0 = ||Az|| = 0 = Az = 0, hence rank (4) < rank (A*A).
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namely
o1
02
A [Uh UT] — [ula au'r]
o,
o .
)
:[ul, ceey Up | Upg1y, - - ey um} (o
0
i 0 ]
For v,,1,..., we have already seen that Av,,; = Av,, o =--- =0, hence
o) .
0-7’
0
A\[Ul,...w U,.+1,...,Unl= [ ULy, ooy Up | Upg1, ooy Up }
~~ - s
nxn mXm O
. O -
mXn
= A=UXV".

]

Theorem 76. The range space of A is spanned by {uy,...,u.}. The null space of A is spanned by
{U'r'—‘rla c ,’Un}.

O

Theorem 77. The nonzero singular values of A are the square roots of the nonzero eigenvalues of
A*A or AA*.

[
Theorem 78. ||A||s = 01, i.e., the induced two norm of A is the maximum singular value of A.

The next important theorem can be easily proved via SVD.
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Theorem (Fundermental theory of linear algebra). Let A € R™*"™. Then
R(A)+N (4") =R™,

and

R (A) LN (AT).
Proof. By singular value decomposition, we have
A=UxV"
AT =vzUT.
The range space of A is the first  columns of U, from the first equation. The null space of A7 is the

last m — r columns of U, from the second equation. 0

New intuition of matrix vector operation With A = UXV*, a new intuition for Az = UXV*x
is formed. Since V' is unitary, it is norm-preserving, in the sense that VV*z does not change the 2-norm
of the vector x. In other words, V*z only rotates x in C". The diagonal matrix ¥ then functions to
scale (by its diagonal values) the rotated vector. Finally, U is another rotation in C™.

14.3 Properties of singular values

Fact. Let A and B be matrices with compatible dimensions. The following are true
c(A+B)<a(A)+7(B),
o(AB) <3 (A)7 (B).

Proof. The first inequality comes from

Av+ B A B
E(A—I—B):max—” v UHQSmaXH ofl + sz.
w0 ol vA0 ]2

The second inequality uses

AB Alls||B
0 lla T w0 ol

14.4 Exercises

1. Compute the singular values of the following matrices
0 2
3 2 11 11
W [* L] e, 00| @ oolo@]i]
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2. Show that if A is real, then it has a real SVD (i.e., U and V are both real).

3. For any matrix A € R™*™, construct

M = R(n—l—m)x(n—l—m)
AT 0| € ’
o

xn

m mxXm

which satisfies

M is Hermitian, and hence has real eigenvalues and eigenvectors:
0 A Uj o Uj
{ATO}[UJ]_%[UJ} 48)
(a) Show that

i. v; is in the co-kernal (perpendicular to kernal/null space) of A and w; is in the range
of A.
T

ii. if o; and { vj } form a eigen pair for M, then—o; and [ul, —v]
pair for M
iii. eigenvalues of M always appear in pairs that are symmetric to the imaginary axis.

(b) Use the results to show that, if

T .
| also form an eigen

12 4
A:[l 4 32}’

then M must have eigenvalues that are equal to 0.
4. Suppose A € C"™*™ and has an SVD A = UXV*. Find an eigenvalue decomposition of
0 A*
A 0 |7
5. Worst input direction in matrix vector multiplications. Recall that any matrix defines a linear
transformation:

Mw =z
What is the worst input direction for the vector w? Here worst means: if we fix the input norm,
say ||w|| = 1, ||z|| will reach a maximum value (the worst case) for a specific input direction in

w.

(a) Show that the worst ||z]|| is |[|M]| when ||w|| = 1.

(b) Provide procedures to obtain the w that gives the maximum ||z||, for the cases of 1 norm,
oo norm, and 2 norm.
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A
adjoint matrix, 21
adjugate matrix, 21

B
basis, 9

C
characteristic equation, 14
characteristic polynomial, 14

characteristic values of a matrix, 14

D
Determinants, 10

Diagonal matrices, 1
dyad, 10

E

eigenbasis, 17

eigenvalue, 13

eigenvectors, 13

Elementary Row Operations, 7

H
homogeneous system, 5

|
Identity matrix, 1
inverse, 17

L

linear combination, 9
linear equation set, 1
linearly independent, 9
lower triangular matrices, 1

M
Matrix inversion lemma, 26
matrix product, 2

N
nonhomogeneous system, 5
null space, 10
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nullity, 10
O

overdetermined, 11

R

range space, 10
rank, 10

row echelon form, 7

S

singular, 11
skew-symmetric, 4
span, 9

spectral radius, 14
spectrum, 14
symmetric, 4

T
transpose, 3

U
undetermined, 11

Upper triangular matrices, 1

V
Vectors, 1
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