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The power of controls

» nanometer precision control

» information storage
» semiconductor manufacturing

optics and laser beam steering
robotics for manufacturing

laser-material interaction in additive manufacturing

vvyyvyy

everyday life: driving, cooking, showering, to name just a few
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2. Introduction of the course
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Course Scope: analysis and control of linear dynamic
systems

» System: an interconnection of elements and devices for a desired
purpose

» Control System: an interconnection of components forming a system
configuration that will provide a desired response

» Feedback: the use of information of the past or the present to
influence behaviors of a system
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Why automatic control?

A system can be either manually or automatically controlled. Why
automatic control?

» Stability/Safety: difficult/impossible for humans to control the
process or would expose humans to risk

» Performance: cannot be done “as well” by humans
» Cost: Humans are more expensive and can get bored

» Robustness: can deliver the requisite performance even if process
behaves slightly differently
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Terminologies

Reference

—>{ Input filter

Disturbance

Output

—(» Controller

Sensor

|

Sensor noise

» Process: whose output(s) is/are to be controlled

» Actuator: device to influence the controlled variable of the process

» Plant: process + actuator

» Block diagram: visualizes system structure and the flow information
in control systems
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Open-loop control v.s. closed-loop control

Desired Output

u(t)

Disturbance

7/16

»(t)

Controller

Controlled System

—_—>

» the output of the plant does not influence the input to the controller

» input and output as signals: functions of time, e.g., speed of a car,
temperature in a room, voltage applied to a motor, price of a stock,
electrical-cardiograph, all as functions of time.
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Open-loop control v.s. closed-loop control

Heat Loss

Desired T — Room T
——| Thermostat [»| Gas Valve Furnace House

» multiple components (plant, controller, etc) have a closed
interconnection

» there is always feedback in a closed-loop system
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Closed-loop control: regulation example

Heat Loss

Desired T — Room T
— Thermostat [»| Gas Valve Furnace House
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Regulation control example: automobile cruise control

Road Grade
Desired Speed Controller Actual Speed
— 2 Engine  Auto Body
Throttle
Measured Speed Speedometer

» What is the control objective?

» What are the process, process output, actuator, sensor, reference, and
disturbance?

UW Linear Systems (X. Chen, ME547) Introduction 11/16

Control objectives

» Better stability

» Improved response characteristics

» Regulation of output in the presence of disturbances and noises
» Robustness to plant uncertainties

» Tracking time varying desired output

There are some aspects of control objectives that are universal. For
example, we would always want our control system to result in closed-loop
dynamics that are insensitive to disturbances. This is the disturbance
rejection problem. Also, as pointed out previously, we would want the
controller to be robust to plant modeling errors.
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Means to achieve the control objectives

Model the controlled plant
Analyze the characteristics of the plant
Design control algorithms (controllers)

Analyze performance and robustness of the control system

vvyyVvyyvyy

Implement the controller
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Resources for control education: societies

» AIAA (American Institute of Aeronautics and Astronautics)
» Publications: AIAA Journal of Guidance, Control and Navigation

» ASME (American Society of Mechanical Engineers)
» Publications: ASME Journal of Dynamic Systems, Measurement and
Control!
» |EEE (Institute of Electrical and Electronics Engineers)

> www.ieee.org
» Control System Society
» Publications:
» |EEE Control Systems Magazine®

» |EEE Transactions on Control Technology
» |EEE Transactions on Automatic Control

» IFAC (International Federation of Automatic Control)
» Publications: Automatica, Control Engineering Practice

Istart looking at these, online or at library
UW Linear Systems (X. Chen, ME547) Introduction 15 /16

IEEE Control Systems Magazine

Control Systems

Applications

of System

Safety Identification
Critical Gontrol
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Why modeling?

Modeling of physical systems:
» a vital component of modern engineering
» often consists of complex coupled differential equations

» only when we have good understanding of a system can we optimally
control it:

» can simulate and predict actual system response, and
» design model-based controllers
» example: nanometer precision control

UW Linear Systems (X. Chen, ME547) Modeling 3/13
History

» Newton developed Newton's laws in 1686. He is an extremely brilliant
scientist and in the meantime very eccentric. He was described as
“..s0 absorbed in his studies that he forgot to eat”.

» Faraday discovered induction (Faraday's law), which led to electric
motors. He was born into a poor family and had virtually no
schooling. He read many books and self-taught himself when he
became an apprentice to a bookbinder at the age of 14.

4/13
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2. Methods of Modeling
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Two general approaches of modeling

based on physics:

» using fundamental engineering principles such as Newton's laws,
energy conservation, etc

» focus in this course
based on measurement data:
» using input-output response of the system

» a field itself known as system identification

UW Linear Systems (X. Chen, ME547) Modeling
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Example: Mass spring damper

Z position: y(t)

7 k

22 m — gl ) F

7 n

zz |

27 b : -

Z Newton's second law gives

my (1) + by (1) + ky (1) = u(t), ¥(0) = y0, ¥(0) =y

» modeled as a second-order ODE with input u(t) and output y(t)
» if instead, that velocity is the desired output, the model will be different

» Application example: semiconductor wafer scanner

UW Linear Systems (X. Chen, ME547) Modeling 7/13

Example: HDDs, SCARA robots

» Newton's second law for rotation

g T = J a
d moment of inertia angular acceleration
——

net torque

» single-stage HDD

» dual-stage HDD, SCARA (Selective Compliance Assembly Robot
Arm) robots

UW Linear Systems (X. Chen, ME547) Modeling
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3. Model Properties
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Model properties: static v.s. dynamic, causal v.s. acausal

Consider a general system M with input u(t) and output y(t):

u M y

M is said to be
» memoryless or static if y(t) depends only on u(t).

» dynamic (has memory) if y at time t depends on input values at other
times. e.g.: y(t) = M(u(t)) = yu(t) is memoryless; y(t) = fot u(T)dr
is dynamic.

» causal if y(t) depends on u(7) for 7 < t,

strictly causal if y(t) depends on u(7) for 7 < t, e.g.: y(t) = u(t— 10).

\4

» Exercise: is differentiation causal?

10/13
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Linearity and time-invariance

The system M is called

» linear if satisfying the superposition property:
M(aqui(t) + arua(t)) = arM(ui(t)) + coM(ua(t))

for any input signals ui(t) and uy(t), and any real numbers a3 and .
» time-invariant if its properties do not change with respect to time.

» Assuming the same initial conditions, if we shift u(t) by a constant time
interval, i.e., consider M(u(t+ 79)), then M is time-invariant if the output
M(u(t+ 10)) = y(t+ 10).

> e.g., y(t) = Ay(t) + Bu(t) is linear and time-invariant;

y(t) = 2y(t) — sin(y(t))u(t) is nonlinear, yet time-invariant;
y(t) = 2y(t) — tsin(y(t))u(t) is time-varying.

UW Linear Systems (X. Chen, ME547) Modeling 11/13

Models of continuous-time systems

The systems we will be dealing with are mostly composed of ordinary

differential or difference equations.
General continuous-time systems:

d"y(t) d"y(t)
L s

d"u(t) d"tu(t)
prove + bm—lw + + bOU(t)

+ -+ aoy(t) = bm

with the initial conditions y(0) = yo, ..., {M(0) = y(()").
For the systems to be causal, it must be that n > m. (Check, e.g., the
case with n=0and m=1.)

12/13
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Models of discrete-time systems

General discrete-time systems:
» inputs and outputs defined at discrete time instances k=1,2, ...

» described by ordinary difference equations in the form of
y(k)+ap—1y(k—1)+---+agy(k—n) = bpu(k+m—n)+- - -+ bou(k— n)

Example: bank statements
» k — year counter; p — interest rate; x(k) — wealth at the beginning of
year k; u(k) — money saved at the end of year k; xg — initial wealth in

account
» x(k+1) = (1+ p)x(k) + u(k),x(0) = xo

UW Linear Systems (X. Chen, ME547) Modeling 13 /13
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Introduction

» The Laplace transform is a powerful tool to solve a wide variety of

Ordinary Differential Equations (ODEs).

» Pierre-Simon Laplace (1749-1827):

» often referred to as the French Newton or Newton of France

» 13 years more junior than Lagrange

» developer / pioneer of astronomical stability, mechanics based on
calculus, Bayesian interpretation of probability, mathematical physics,

just to name a few.

» studied under Jean le Rond d’'Alembert (co-discovered fundamental

theorem of algebra, aka d'Alembert/Gauss theorem)

UW Linear Systems (X. Chen, ME547) Laplace

The Laplace approach to ODEs

Easy

©)
S e |
m

-~

Laplace Transform

Inverse Laplace Transform

ODE solution

Algebraic equation

Easy

Easy

UW Linear Systems (X. Chen, ME547) Laplace

Algebraic solution
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Topic

2. Definitions
5/29

Sets of numbers and the relevant domains

set: a well-defined collection of distinct objects, e.g., {1,2,3}
R: the set of real numbers

C: the set of complex numbers

€: belong to, eg., 1€ R

R, : the set of positive real numbers

2: defined as, e.g., y(t) = 3x(t) + 1

vV vy VvV VY
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Continuous-time functions

Formal notation:
f: R+ —S R

where the input of fis in Ry, and the output in R
» we will mostly use f{t) to denote a continuous-time function
» domain of fis time
» assume that t) =0 for all t <0

UW Linear Systems (X. Chen, ME547) Laplace 7/29

Laplace transform definition

For a continuous-time function
f: R+ — R

define Laplace Transform:

F(s) = L{AD)} 2 /0 T e tdt

seC

UW Linear Systems (X. Chen, ME547) Laplace
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Existence: Sufficient condition 1

» f(t) is piecewise continuous

f(t)

—

UW Linear Systems (X. Chen, ME547) Laplace 9/29

Existence: Sufficient condition 2

» f{t) does not grow faster than an exponential as t — oo:
1(t)] < ke, forall t >t

for some constants: k, «a, te R,.

f(t)

UW Linear Systems (X. Chen, ME547) Laplace 10/29
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3. Examples
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Examples: Exponential

fit)y=e?, acC

" s+a
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Examples: Exponential

1, t>0

t) =1(t) = o=

0-10-{ gt
1
F(s) = —
(9=

Examples: Sine

f(t) = sin(wt)

w
F(s) = —2
(5) §? + w?

Use: sin(wt) = %j_w L{eVt} = s_ljw
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Recall: Euler formula

e? = cosa+ jsina
Leonhard Euler (04/15/1707 - 09/18/1783):

» Swiss mathematician, physicist, astronomer, geographer, logician and
engineer

» studied under Johann Bernoulli
» teacher of Lagrange
» wrote 380 articles within 25 years at Berlin

» produced on average one paper per week at age 67, when almost

blind!
UW Linear Systems (X. Chen, ME547) Laplace 15/29

Examples: Cosine

f(t) = cos(wt)

s
F(s) = ——~
(9= 2=
16 /29




Examples: Dirac impulse

A

o(t—T)

>

T t

» Background: a generalized function or distribution, e.g., for
derivatives of step functions

» Properties:
> [ o(t—T)dt=1
> [ 6(t— DAYt = AT)

UW Linear Systems (X. Chen, ME547) Laplace 17 /29

Examples: Dirac impulse

> f(t) = (1)
> F(s)=1

» Calculation:

£{5(8) = /0 T esti(dt = e = 1

because [ 0(t)f(t)dt = R0)

UW Linear Systems (X. Chen, ME547) Laplace
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4. Properties
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Linearity

For any a, 8 € C and functions f{t), g(t), let

F(s) = L{f(1)}, G(s) = L{&(t)}

then

L{af(t) + Bg(t)} = aF(s) + BG(s)

UW Linear Systems (X. Chen, ME547) Laplace



Differentiation

Defining
F(s) = L{f(1)}
then

L{At)} = sF(s) — R0)
» via integration by parts:

£} = [ e Ao
= [T e (o) )
— /0 " et t)dt — £0) = sF(s) — f(0)

2129
Integration
Defining

H(s) = L{f(1)}

c {/Otf(f)dT} _ %F(s)

then

UW Linear Systems (X. Chen, ME547) Laplace
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at

Multiplication by e~

Defining
F(s) = L{f(t)}
then
L{e7 (1)} = F(s+ a)
» Example:
1 —ary _ L
LW = L) =
_ W ot _ w
L{sin(wt)} = 2.2 L{e **sin(wt)} P
23/29
Multiplication by t
Defining
F(s) = L{f(t)}
then
__dK(s)
L{tAt)} = ——_
» Example:
1
Ly =1 Lit =

UW Linear Systems (X. Chen, ME547) Laplace
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Time delay 7

Defining
F(s) = L{f(1)}
then
L{At—T7)} =¢e " F(s)
25/29

Convolution

Given f(t), g(t), and

(Fxg)(t / t — r)e(r)dr = (g% (1)

then

LA{(Fxg)(1)} = F(s)G(s)

» Proof: exercise

» Hence we have

o(t) —= G(s) —=g(t) = L7+ {G(s)}

because

1 ——G(s) —— Y(s) = G(s) x 1

UW Linear Systems (X. Chen, ME547) Laplace
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Initial Value Theorem

If A04) = lim0, f(t) exists, then

f04) = lim sF(s)

55— 00
UW Linear Systems (X. Chen, ME547) Laplace 27 /29

Final Value Theorem

If im0 () exists, then

lim f{t) = lim sF(s)

t—o0 s—0

» Example: find the final value of the system corresponding to:

3(s+2)

Yo (s) —
1(s) s(s?> + 25+ 10)’

Y2(5) = ——

3
s—2

UW Linear Systems (X. Chen, ME547) Laplace
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Common Laplace transform pairs

ft)  Fs) ft) F(s)
sinwt o et L
S + w? 51+ a
coswt > t —
" dx( 5
s
tx(t) — £ =
x(1) ds s3 .
itt) / X(s)ds te 5
s (S + aZJ
o(t) 1 e ?sin (wt) 5
(s+ a)” + w?
1(t) ! e ' cos (wt) > +2 2
s (s+ a)” + w?
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Common Laplace transform pairs

f(t) F(s) ft) F(s)

: w _ 1
sinwt  ——— e
S + w? s+ a
s
coswt 52(;'5(?}2) t 52—2
s
tx(t) — £ =
x(1) ds s3 .
X(tt) / X(s)ds te 2t 5
s (S—|‘ aZJ
o(t) 1 e ?sin (wt) 5
(s+ a)” + w?
1
1(t) = e ' cos (wt) > +2 2
s (s+ a)” + w?
3/14

Overview of inverse Laplace transform: modularity and
decomposition

» Goal: to break a large Laplace transform into small blocks, so that we
can use elemental examples of Laplace transfer functions:

_ B(s)  Bui(s) N Bs(s)

Gls) = As)  Au(s) | Aa(s)

+ ...

» We will use examples to demonstrate strategies for common fractional
expansions.

UW Linear Systems (ME) Inverse Laplace
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Real and distinct roots in A(s)

» Example 1

G(s) =

A(s) s(s+4)(s+8) s +s+4+5+8

B(S) 32 Kl K2 K3
(

> Kl = |im5_>0 SG(S) =1
» Ky =limg_a(s+4)G(s) = -2
» Kz =lims,_g(s+8)G(s) =1

UW Linear Systems (ME) Inverse Laplace 5/14

Real and repeated roots in A(s)

» Example 2

Ky n K> n K3
(s+1)(s+2)2 s+1 s+2 (s+2)2

G(s) =

> K3 = Iims_>_2(s—|— 2)2G(S) = -2

> Ki = Iim5_>_1(s—|— 1)G(S) =2

» For K3, we hit both sides with (s -+ 2)? then differentiate once w.r.t.
s, to get

. d 5
Ky, = slrn2 Fs(s+ 2)°G(s) = -2

UW Linear Systems (ME) Inverse Laplace
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2. Applications of Laplace transform
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Solution of a first-order ODE

Example 1: Let a > 0,b > 0, y(0) = yp € R, obtain the solution to the
ODE:

A(t) = —ay(t) + b1(1)
1, t>0
where 1(t) = { 0 t<0
» Laplace transform: L{y(t)} = sY(s) — y(0)
» = Solution in Laplace domain:

Y(S):Sj_ay(o)+s(sia):s—lkay(o)—i_g(l— 1 )

> Apply inverse Laplace transform: y(t) = L7H{Y(s)} = ...
» Solution: A
HD) = & *%(0) + 2(1(1) e

8/14
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Solution of a first-order ODE

Example 1: a > 0,b> 0,y(0) = yp € R:

1 b

s+ ay(O) i s(s+ a)

A1) = —ay(t) + b1(t) = Y(s) =

b
A1) = e2y(0) + Z(1(t) — &2
Observations:
> From the ODE, y(c0) = 2
» Using final value theorem,

lim y(t) = lim sY(s) = l—;

t—00 s—0

UW Linear Systems (ME) Inverse Laplace 9/14

Solution of a first-order ODE

Example 2: Let a > 0,b> 0, y(0) = yp € R, obtain the solution to the
ODE:

A1) = —ay(t) + bi(1)
» Laplace transform: L{y(t)} = sY(s) — yo
» = Solution in Laplace domain: Y(s) = ﬁ()’o + b)
» Apply inverse Laplace transform: y(t) = L7 Y(s)} = e 3 (yy + b)

» Q: what's the initial value from initial value theorem? what does the
impulse do to the initial condition?

10/14
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3. From Laplace transform to transfer functions
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Connecting two domains

» N-th order differential equation:

d" a1 _ d"u d™ 1ty :

d—;’/—l_an_l W_{—F- cotarytagy = bmW‘f‘bm—l W‘F' +byu+bou
n—1

where y(0) =0, #|,0 =0,..., 9o |0 =0

» Applying Laplace transform vyields

(s"+ an_15" 1+ -+ a0)Y(s) = (bmS™ + b1+ -+ bo)U(s)

bms™ + bp_1s™ 1 4+ - + by
U(s

= Y(s) =
(5) "+ ap 18"l 4+ ag

UW Linear Systems (ME) Inverse Laplace
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Transfer functions

Y(s)  bmS™+ bp_1s" 1+ + by

G —
(5) U(S) sh 4 an—lsn_l + -+ a9

A(s) = 0: Characteristic equation (C.E.)
Roots of C.E.: poles of G(s)
Roots of B(s) = 0: zeros of G(s)

m < n: realizability condition; G(s) is called
» properif n>m
» strictly proper if n > m

» Examples: Gi(s) = K, Gu(s) =

vvyyvyy

~ sta
13 /14
The DC gain
Y(s b,s™ + by 15"+ 4+ b

U(s) s+ ap—1s" 1+ + ag

» DC gain: the ratio of the output of a system to its input (presumed
constant, e.g., Laplace transform = 1/s) after all transients have
decayed.

» can use the Final Value Theorem to find the DC gain of a system:

DC gain of G(s) = lim sY(s) = lim sG(s)1 = lim G(s)

s—0 s—0 S s—0

» Example: find the DC gain of Gi(s) = K and Gy(s) = ;ka Try (i)
solve the ODE and (ii) the Final Value Theorem

UW Linear Systems (ME) Inverse Laplace
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Overview

» The Z transformation is a powerful tool to solve a wide variety of
Ordinary difference Equations (OdEs)

» Analogous to Laplace transform for continuous-time signals

UW Linear Systems (X. Chen, ME547) Z transform 3/23
Definition

Let x(k) be a real discrete-time sequence that is zero if k < 0. The
(one-sided) Z transform of x(k) is

X(2) £ Z{x(k)} =D _x(k)z*
k=0

= x(0) +x(1)z 1+ x(2)z72 + ...

where z € C.

» a linear operator: Z {af(k) + Bg(k)} = aZ {fk)} + BZ {g(k)}
> the series 1 + x+ x° + ... converges to 7 for |x| < 1 [region of
convergence (ROC)]

» (also, recap that ZLV:o Bk = 1;@;“ if 5#£1)

UW Linear Systems (X. Chen, ME547) Z transform
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Example: Derive the Z transform of the geometric
sequence {a*}%

(0. @]
1 z
Zik1 K~k _ _
{a'} ;Oaz 1—az! z—a

for [az7t| <1 & |2 > |a.

UW Linear Systems (X. Chen, ME547) Z transform 5/23

Example: Step sequence (discrete-time unit step function)

1, Vk=1,2,...
1(k):{7 Y )

0, Vk=...,—1.0

210} = 2{aY]_ =|1— |-

for |zl > 1

UW Linear Systems (X. Chen, ME547) Z transform
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Example: Discrete-time impulse

1, k=0
o(k) = .
0, otherwise
Z{§(k)} =1

Exercise: Derive the Z transform of cos(wgk)

UW Linear Systems (X. Chen, ME547) Z transform



Topic

2. Common Z transform pairs

k) F(2) ROC
5(k) 1 All z
21 (k) ? 2> |a]
—a*1(—k —1) 1_—‘32__11 1z| < |4
ka*1 () ¥ — = 2 > ||
K az !

—kak1(—k — 1) i az—l_)12 2] < 4|
cos(wok) 1— 122_—1Zcosc((2usgd?|—) 72 2> 1
sin(wok) 1-— ZZZQICS(;ZQ(;;(?))—F 72 2> 1
o) At
aksin(wok) - 232321_;5:5:; )+ 2, 1z > |a|

9/23
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3. Properties and application to dynamic systems

UW Linear Systems (X. Chen, ME547) Z transform 10/23

Properties of Z transform: time shift

» Similar to Laplace transform, Z transform processes nice properties
that provide conveniences in system analysis.

» Let Z{x(k)} = X(2) and x(k) =0 Vk < 0.

» one-step delay:

Z{xk=1)} =) xk—1)z7* =) x(k—1)z*+ x(-1)
k=0 k=1

= Zx(k— 1z kD71 4 x(—1)
k=1

=7 ' X(2) + 7= |z 1 X(2)
> analogously, Z{x(k-+ 1)} = X3 x(k+ 1)z = 2X(2) — 2x(0)
» Thus, if x(k+ 1) = Ax(k) + Bu(k) and the initial conditions are zero,

zX(2) = AX(2) + BU(z2) = X(2) = (zI — A)"'BU(2)

provided that (z/ — A) is invertible.

11/23



Solving difference equations

Solve the difference equation
y(k) +3y(k—1) 4+ 2y(k—2) = u(k —2)
where y(—2) = y(—1) = 0 and u(k) = 1(k).

Z{yk—2)} = Z{yk—1-1)} = 27 'Z{y(k— 1)} + »(—2)
=7 (7' Y(2) + y(-1)) + ¥(—2)

Taking Z transforms on both sides and applying the initial conditions =

(143271 +227)Y(2) = z%U(2)

1
= Y(z) = U(z
(2) 224+ 3242 (2)
12/23

Solving difference equations

Solve the difference equation
y(k) 4+ 3y(k— 1)+ 2y(k—2) = u(k— 2)
where y(—2) = y(—1) = 0 and u(k) = 1(k). Cont'd

1 1
72 —|—3z—|—2U(Z) - (z4+2)(z+ 1)

Y(z) = U(z)

uk) =1k = Uz =1/1-z1)=

Mz) = : .
AT o)+ 2)(z+ 1) 6z-1 3z12 2z+1

(careful with the partial fraction expansion) Inverse Z transform then gives

WK = 100+ 3(-2)F ~ S (D, k>0

UW Linear Systems (X. Chen, ME547) Z transform
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4. Application to system analysis

UW Linear Systems (X. Chen, ME547) Z transform

14 /23

From difference equation to transfer functions

We now generalize the concept in the last example. Assume that y(k) =0
Vk < 0. Applying Z transform to the ordinary difference equation

v(k)+apn—1y(k—1)+---+aoy(k—n) = bpu(k+m—n)+---+ bou(k— n)

yields

(2" + an—12" 1+ -+ a0) Y(2) = (bnZ" + bm_12" 1 + -+ + bo) U(2)

Hence .
bmzZ™ + bp—12" -+ + b1z + by
Y(z) = = T U(2)
2"+ ap12 —i—---—l—a12+aoj

(.

P
Gyu(z): discrete-time transfer function

Analogous to the continuous-time case, you can write down the concepts

of characteristic equation, poles, and zeros of the discrete-time transfer
function G,(2).

UW Linear Systems (X. Chen, ME547) Z transform
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Transfer functions in two domains

v(k) + an—1iy(k— 1)+ -+ aoy(k — n) = bpu(k+ m—n) + -+ + bou(k — n)

—1
Goul2) = B(z) _ b + bm_l_z'“ + biz+ by
A(2) 2"+ ap_12" -4 a1z + ao
V.S.
d"y(t) d" y(t) _ 4 dmu(t) d"u(t) |
g a1 et aoy(t) = b n A b = + bou(t)
B m
Gyu(S) _ (S) _ b,s" -|—_ -+ bis+ bg
A(s) s"+ ap_15" 14+ -+ a;s+ ap
Properties Gyu(s) Gyu(2)
poles and zeros roots of A(s) and B(s) roots of A(z) and B(z)
causality condition n>m n>m
DC gain / steady-state
response to unit step G,,(0) Gyu(1)
1623

Additional useful properties of Z transform

» time shifting (assuming x(k) = 0 if k < 0):
Z{x(k—ng)} =z ""X(2)

/-domain scaling: Z {akx } = X(a_lz)

differentiation: Z {kx(k)} = — %

time reversal:Z {x(—k)} = X (z~ )
convolution: let k) * g(k) = Z o f(k—j) g(j), then

Z{flk) + g(k)} = F(2) G(2)

initial value theorem: f(0) = lim,_o F(2)

vV vyvyyy

v

» final value theorem: limy o f(k) = lim,—1 (z— 1) F(2) if k) exists

and is finite

UW Linear Systems (X. Chen, ME547) Z transform
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5. Application
UW Linear Systems (X. Chen, ME547) Z transform 18 /23

Mortgage payment

image you borrow $100,000 (e.g., for a mortgage)
annual percent rate: APR=4.0%
plan to pay off in 30 years with fixed monthly payments

interest computed monthly

vV vy Vv VvVyYy

What is your monthly payment?

UW Linear Systems (X. Chen, ME547) Z transform
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Mortgage payment
» borrow $100,000 = initial debt y(0) = 100, 000
> APR = 4.0% = MPR = %% =0.0033
» pay off in 30 years (N = 30 x 12 = 360 months) = y(N) =0

» monthly mortgage dynamics

y(k+1)=(1+ MPR)y(k) — b 1(k)
———— ~~
3 monthly payment
z 1 b
Y =
— Y(3) z— ay(O) i z—al—z1

1 b 1 1
i el (1—32_1 B 1—z—1)

= y (k) = a"y(0) + b (ak — 1)

1—a
» need .
0)(a—1
y(N) = 0= aVy(0) = —2; (aV — 1) = b= X1 — g477.42.
20/23
Topic

6. More on the final value theorem

UW Linear Systems (X. Chen, ME547) Z transform
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limy o f(k) = lim,_1 (z— 1) F(2) if flk) exists and is
finite.

Proof:
If limy_oo (k) = fx exists then D> 02 [f(k+ 1) — (k)] = f — (0).

on one hand: zli_rpliz_k [f(k+1)—f(k)] = i [f(k+ 1) — f(k)]
—0 k=0

on the other hand: iz_k [f(k+ 1) — f(k)] = zF(z) — z(0) — F(2)
k=0

Thus foo — f(0) = lim,1 [2zF(2) — zA0) — F(2)] = limk oo f(k) =
lim,1(z—1) F(2)

22
limg oo F(k) = lim,1 (z— 1) F(2) if k) exists and is
finite.

Intuition:

» f(k) is the impulse response of

0(k) — F(2) —= (k)

» namely, the step response of

; (1-27) F(2) —= (k)

1—z-1

» if the system is stable, then the final value of f(k) is the steady-state
value of the step response of (1 —z71) F(2), i.e.

lim k) = lim (1—2z"1) F(z) = lim (z— 1) F(2)

k—o00 z—1 z—1

UW Linear Systems (X. Chen, ME547) Z transform
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Topic

1. Motivation
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Why state space?

» Static/memoryless system: present output depends only on its present
input: y(k) = f{u(K))

» Dynamic system: present output depends on past and its present
input,

> eg., y(k) = fu(k),u(k—1),...,u(k—n),...)
» described by differential or difference equations, or have time delays

» How much information from the past is needed?

UW Linear Systems (X. Chen, ME547) State Space Intro 3/12

The concept of states of a dynamic system

» The state x(t) at time t is the information you need at time t that
together with future values of the input, will let you compute future
values of the output y.

» loosely speaking:

» the “aggregated effect of past inputs”
P the necessary “memory” that the dynamic system keeps at each time
instance

UW Linear Systems (X. Chen, ME547) State Space Intro 4/12



Example

» a point mass subject to a force input

» to predict the future motion of the particle, we need to know

» current position and velocity of the particle
» the future force

» = states: position and velocity

UW Linear Systems (X. Chen, ME547) State Space Intro 5/12

The order of a dynamic system

» the number, n of state variables that is necessary and sufficient to
uniquely describe the system.

» For a given dynamic system,

» the choice of state variables is not unique.
» However, its order n is fixed; i.e. you need not more than n but not less
than n state variables.

UW Linear Systems (X. Chen, ME547) State Space Intro
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2. State-space description of a system

UW Linear Systems (X. Chen, ME547) State Space Intro 7/12

States of a discrete-time system

Consider a discrete-time dynamic system:

u(k) System y(k)

L1y L2y...,Ty

Y
\4

The state of the system at any instance k. is the minimum set of variables,

x1(ko), x2(ko)s -+ 5 Xn(ko)

that fully describe the system and its response for k > k, to any given set
of inputs.
Loosely speaking, x1(ko), x2(ko), -+ , xn(ko) defines the system’s memory.

UW Linear Systems (X. Chen, ME547) State Space Intro
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Discrete-time state-space description

u(k y(k
(£) | System (F) \
,xlax27°"7xn ]
general case LTI system
x(k+ 1) = f(x(k), u(k), k) x(k+ 1) = Ax(k) + Bu(k)
y(k) = h(x(k), u(k), k) Y(k) = Cx(k) 4 Du(k)
» u(k): input

» y(k): output
» x(k): state

UW Linear Systems (X. Chen, ME547) State Space Intro

9/12

Continuous-time state-space description

u(t) y(t)

System
L1y L2y...,Ty

Y

\4

general case

LTI system
dx(t dx(t
# = f(x(t), u(t), t) # = Ax(t) + Bu(t)
y(t) = h(x(1), u(t), t) y(t) = Cx(t) + Du(t)
» u(t): input
> y(t): output
> x(t): state

UW Linear Systems (X. Chen, ME547) State Space Intro
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Example: mass-spring-damper

S =1

mass position

A~
3 |
~—

mass velocity

11/12
Example: mass-spring-damper
k
( )
m ——sy=F
[
b
p(t) 0 1 |]|p(2) 0
o I A L R H I
S~—— N mv T~ \rr,;_/
x(t) A x(t) B
p(t) 1)
o =[1 o %]
S—— V(t)
¢ (1)
x(t

12/12
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1. Transform techniques in the state space
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Continuous-time LTI state-space description

ult) System y(t)
L1, L2y, Ty
9 () = Ax(t) + Bu(t)
dt (1)
¥(t) = Cx(t) + Du(t)
> u(t): input
» y(t): output
» x(t): state
UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 3/15
Recap: LTI input/output description
u(t) System y(t)
L1,L2y..., L
Let u(t) € R and y(t) € R, then
W) = (g* u)(¢)
t (2)
:/ g(t— 7)u(r)dr
0

where g(t) is the system's impulse response.
Laplace domain:

Y(s) = G(s)U(s)

Y(s) = L{x(1)}, U(s) = L{u(t)}, G(s) = L{g(t)}

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 4/15



From state space to transfer function
Given A€ R™" Bc R™! Cec RY™" DcR,

d
E“X(t) = Ax(t) + Bu(t) 3)
(1) = Cx(1) + Du(t)
L
=
sX(s) — x(0) = AX(s) + BU(s) ()
Y(s) = CX(s) + DU(s)
When x(0) = 0, we have
Y|
% = ((sl— A)"'B+ D 2: G(s) (5)
—the transfer function between u and y.
UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 5/15

Analogously for discrete-time systems

For Ac R™" Be R™1 CeRYX™" DeR, taking the Z transform yields

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (0)

U

zX(z) — zx(0) = AX(z) + BU(=2)
Y(z) = CX(z) + DU(=2)

= Thus, when x(0) = 0, we have

Y(2)

= C(zl — A1 2: G(z
U(Z)_C(I A)TIB+ D2: G(2)

—the transfer function between u and y.

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions
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From state space to transfer function: Observations

d
—X(8) = Anxnx(t) + Bpxau(t) )
Y(t) = Cixnx(t) + Du(t)
» Dimensions:

G(s)=_C (sl—A7' B +D

1xn nxn nx1

» Uniqueness: G(s) is unique given the state-space model

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 7/15

Topic

2. Linear algebra recap
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Matrix inverse

1
1=~ __Adj(M
det(M) i(M)
where Adj(M) = {Cofactor matrix of M} T
1 2 3 Ci1 Ci2 <13
eg:. M= |0 4 5], {Cofactor matrix of M} = |1 2 o3
1 0 6 C31 C32 €33
5 0 5 0 4
where C11 = ‘0 6‘ =24, Clzz—‘l 6' =5, C13 = 1 0 =—4,
2 3 1 3 1 2
C21:_‘0 6'2—12, C22=|1 6‘:3' C23=—‘1 0|=2,
2 3 1 3 1 2
C31—‘4 5|——2,C32——‘0 5‘——5,C33—'0 4‘—4
UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 9/15
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3. Example
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Mass-spring-damper

position: y(t)

s
e
777
777
777
777
777
777
777
777
777
777
e
/777
777

S =1

ER T O ()

1 =0 9 1%

© N
Q1% e

o -t ol

G(s) = C(sl— A)"'B+ D
= 1
-0 |5 % | [

s

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions



Mass-spring-damper

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 13 /15

Mass-spring-damper

Putting the inverse in yields

b T 12
1o e S 1)
_ “m 1 Lmd
P24 Lsy K
namely
1
G(s) = L
() P2+ Lsq K

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 14 /15



Exercise

0 -6 0
Given the following state-space system parameters: A= |—2 1 0 |,
0O 0 -1
-6 0 -3
B=1-2 1 0], C= [8 (1) (1)]D:[(1) 8 _J,obtainthe
0 2 3

transfer function G(s).

UW Linear Systems (X. Chen, ME547) State Space to Transfer Functions 15/15
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State-Space Canonical Forms

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) State-space canonical forms 1/31

Goal

The
>

vy

realization problem:

existence and uniqueness: the same system can have infinite amount
of state-space representations: e.g.

B
(packed representation: ¥; = [%'i] Lo = [ 2’2 E ])

canonical realizations exist

{)'( = Ax + Bu {X :Ax—l—%Bu

relationship between different realizations?

example problem for this set of notes:

B b252 + b1s + by
- s3 + a2s2 + a5+ ag

G(s)

UW Linear Systems (X. Chen, ME547) State-space canonical forms 2/31



Outline

1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms
4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations

UW Linear Systems (X. Chen, ME547) State-space canonical forms 3/31

Controllable canonical form (ccf)
Choose x7 such that

u ! = bys® + bys+ by — (2)
s3 + aps? + a1s + ag 25 T P15 ko Y
U(s) . :
X = — =
1(s) s3 + 2352 + ais + ag X1+ axxy + aixy + apxy = u
Let xo = x1, X3 = X0. Then x3 = —arx3 — a1xo — agxy + u.
Y(S) = (b252 + b1s + bo) Xl(S) =y = b, x1 +b1 x1 +boxy
N~~~ ~~

X3 X2

Putting in matrix form yields

g [ a0 0o 1 0 xi(t) 0
E{@(t)]:{o 0 1]{X2(1?)]—|—|:O]u(t) (3)
X3(t) —ag —ai1 —ar X3(t) 1

x1(t)
y(t) = [ bo b1 b ] [X2(t) ]
x3(t)

4/31



Block diagram realization of controllable canonical forms

d Xl(t) 0 1 0 Xl(t) 0
p x(t) | = 0 0 1 x(t) [ +1 0 |u(t) (4)
X3(t) —ag —ai —ar Xg(t) 1
Xl(t
y(t) = [ by b1 b2 [ Xg(t)
x3(t)
]
n
]
Uls) + 1] Xs 1 1] X — v
Y s s 0] ~

UW Linear Systems (X. Chen, ME547)

State-space canonical forms 5/31

General ccf

For a single-input single-output transfer function

b, =1, . ..4p b
G(s) = 1S _+1 + b1s + bo +d,
s+ a, 1"t +---4+a1s+ ag
we can verify that

[ 0 1 0 0 0 ]

0 0 0

zC:[‘C‘c gc] P A

c| ¥e 0 o - 0 1 0

—ap —a1 —ap—2 —ap-1|1
| bO bl bn—2 bn—l d ]

realizes G(s). This realization is called the controllable canonical form.

UW Linear Systems (X. Chen, ME547)

State-space canonical forms
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2. CT observable canonical form

UW Linear Systems (X. Chen, ME547) State-space canonical forms

Observable canonical form (ocf)

b252 + b1s + bg
U(s)
s3 + 3252 + a1s + ap
ao ai ao b> by bo
= Y(s) = % Y(s) — 5_2Y(S) — gY(s) + ?U(s) + 5—2U(s) + S—3U(s).

Y(s) =

In a block diagram, the above looks like

i)
(1]
Uls) b | AN 1L 1T 1 Y(s)
1 %0 | ) s ) s ) S
o
[o1]
[20]

UW Linear Systems (X. Chen, ME547) State-space canonical forms



Observable canonical form

b2 ]
(b1 ]
U | g+ L% [0l [1]x Y6
—{ b [—0O . O . O .
[a1]
[a0]
Here, the states are connected by
Y(s) = Xi(s) y(t) = x(t)

SX1(S) = —32X1(5) + X2(S) + bo U(S) )-(1(1.') = —32X1(t) + Xg(t) + bgu(t)
SXQ(S) = —81X1(5) + X3(S) + by U(S) = )-(2(1.') = —alxl(t) + X3(t) + blu(t)
SX3(S) = —a()Xl(S) + b()U(S) )-(3(1.') = —aoxl(t) + bou(t)

UW Linear Systems (X. Chen, ME547)

State-space canonical forms

9/31

Observable canonical form

'>'<1(t) = —32X1(t) + Xz(t) + b2U(t)
< )-<2(t) = —81X1(t) + X3(t) + blu(t)
)'<3(t) = —aoxl(t) + bou(t)
y(t) = x(t)
—d2 1 0 b2
=x(t)=1| —a1 0 1 | x(t)+ | b1 | u(t)

—a 0 O bo

N - _ —_—
Ao B,

y(t)::l 1 00 lx(t)
c,

The above is called the observable canonical form realization of G(s).

Verify that C,(sl — A,) 1B, = G(5s).

UW Linear Systems (X. Chen, ME547)

State-space canonical forms
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General ocf

In the general case, the observable canonical form of the transfer function

bn_lsn_l + .-+ 4+ b1s + bg

G(s) = d
() s"+ap_1s" 1+ -+ a;s+ ag *
Is ) }
—a,1 1 0 ... 0l]byy
_an_2 0 bn—2
zo:[éo gO] = s (6)
o | Po —a 0 - 0 1| b
—dg 0 0 0 bo
1 0 --- 0 0] d
UW Linear Systems (X. Chen, ME547) State-space canonical forms 11 /31

3. CT diagonal and Jordan canonical forms

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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Diagonal form

When
B(S) _ b252 + bis + bg

A(s) s34 axs2 + a1s + ag
and the poles p; # p> # p3, partial fractional expansion yields

G(s) =

ki ko k3 . B(s
G(s) = + + , ki = lim (s—p;)ﬁ,
S—p1 S—pr S—p3 p—pi A(s)
namely + o sXil 1| X "
S
_|_
71
U(s +| Y{(s
( ) + mSXQ 1 XQ 2 AN ( )
I\ - 2 )
—i—[ +
7]
+ mSXg l X3 k3
s
—"_T
7]
UW Linear Systems (X. Chen, ME547) State-space canonical forms 13 /31
+ ASXl l X1 kl
S
+
1]
U(s +| Y(s
3 ko —C)
+ +
]
+ _sX X
O—3 % ol ks
|
]
The state-space realization of the above is
P1 0 0 1
A= 0 P2 0 ,B: 1 ,C:[kl k2 k3],D:0.
0 0 p3

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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Jordan form

If poles repeat, say,

b252-+'b15-+'b0 - b252-+'b15-+'b0

pr— — 9 e R?
s3+as?+as+a (s—p1)(s— pm)? PL7 Pm

G(s)

then partial fraction expansion gives

) ) ) ki = lims_p, G(5)(s — p1)
G(s)=——+——t—— W/ Sk =limesp, G(5)(5 — pm)?
S—P1 (S—pm) S Pm - d 2
ks = ||ms—>pm ds {G(S)(S - pm) }

UW Linear Systems (X. Chen, ME547) State-space canonical forms 15 /31
Jordan form
ki ko k3
G(s)= + 5 +
has the block diagram realization:
RSN 1] X% L
S 1
+
]
U(s) +| Y(s)
— ks O
X3 *
RV 1 RN 1] X k
N S N S 2
| |
[P | [P |
[ I
16 /31

UW Linear Systems (X. Chen, ME547) State-space canonical forms



Jordan form

+ X
O % - k1
+
]
U(s) +| Y(s)
— ks O
+
X3 X
+ ~ 1 A~ 1 2 [ ks
S
+ +
[ D | (D |
" "

The state-space realization of the above, called the Jordan canonical form,

IS
P1 0 0 1
A= 0 Pm 1 ,B: 0 ,C:[kl k2 k3],D 0.
0 0 pm 1
UW Linear Systems (X. Chen, ME547) State-space canonical forms 17 /31

4. Modified canonical form

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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Modified canonical form
If the system has complex poles, say,

b252-+'b15-+'b0

k1

as+ [

G(s)

then we have

s34+ aps?2+a1s+a s—p1

(s — 0)? + w?

+ 1 X1
7]
U Y
(5 RO
— ks O
+
+ Xs + X
e 1 w e 1 2 kg
T+ s \(4- s
- 7]
W
where ky = (8 + ao)/w and k3 = a.
UW Linear Systems (X. Chen, ME547) State-space canonical forms 19 /31
Modified canonical form
+ ]_ X1
Ol s k1
7]
U Y
(5 RO
— ks O
+
+ Xs + X
e 1 w e 1 2 kg
+ T+ s
- 7]
w

= modified Jordan form:

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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5. DT state-space canonical forms

UW Linear Systems (X. Chen, ME547) State-space canonical forms 21 /31

DT state-space canonical forms

» The procedures for finding state space realizations in discrete time is
similar to the continuous time cases. The only difference is that we use

Z{x(k—n)} =z""X(2),

instead of

assuming zero state initial conditions.

» Fundamental relationships:

x (k) ——=z

— x(k —1)

X(z) —=z

—— 7z 1X (2)

x(k+n)—,

o x(k+n—1)

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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DT ccf

G( ) b222 + b1z + by
Z) =
23+ az2+ a1z + ag

» Same transfer-function structure = same A, B, C, D matrices of the
canonical forms as those in continuous-time cases

» Controllable canonical form:

X1 (k + 1) 0 1 0 X1 (k) 0
X (k—l—l) = 0 0 1 [ X2 (k) + 10 U(k)
X3 (k + 1) —ap —ai —ar X3 (k) 1
x1 (k)
y(k) = [ bo b1 b2 ] X2 (k)
x3 (k)

UW Linear Systems (X. Chen, ME547) State-space canonical forms 23 /31

DT ocf

B b222 + b1z + by
- 78 + 3222 + a1z + ap

G (2)

» Observable canonical form:

X1 (k + 1) —a 1 0 X1 (k) by
X (k + 1) = —a; 0 1 X2 (k) + | b1 | u (k)
X3 (k + 1) —a 0 O X3 (k) bg
x1 (k)
y(k)=[1 0 0] | x(k)
x3 (k)

UW Linear Systems (X. Chen, ME547) State-space canonical forms 24 /31



DT diagonal form

b222 + b1z + by

G —
(Z) 73+ a222 + a1z + ap

» Diagonal form (distinct poles):

G(z) = k1 ko k3

+ +
Z—p1 Z—p2 Z—pP3

Xl(k—l—l) ptr 0 O X1
[XQ(/(—I—].)][O P2 0][X2

x3 (k +1) 0 0 p3

UW Linear Systems (X. Chen, ME547) State-space canonical forms

DT Jordan form 1

byz% + b1z + by

G =
(Z) z3 + a222 + a1z + ag

» Jordan form (2 repeated poles):

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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DT Jordan form 2

B b222 + b1z + by
- 78 + 3222 + a1z + ap

G (2)

» Jordan form (2 complex poles):

k oz +
1 B

G(s)=
) z—p1 (z—0)*+w?
X1 (k + 1) pr 0 O X1 (k) 1
xk+1) |=]10 o0 w xo(k) |+ 0 | u(k)
X3 (k + 1) 0 —w o X3 (k) 1
x1 (k)
y(k) = [ kl k2 k3 ] X2 (k)
x3 (k)
where ky = (6 + ao)/w, k3 = a.
UW Linear Systems (X. Chen, ME547) State-space canonical forms 27 /31

Exercise

obtain the controllable canonical form:
1 3

> G(s) =t

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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6. Similar realizations

UW Linear Systems (X. Chen, ME547) State-space canonical forms 29 /31

Relation between different realizations

Similar realizations

Given one realization X of a transfer function G(s) and a nonsingular
T € R"™", we can define new states:

Tx* = x.
Then
%(t) = Ax(t) + Bu(t) = % (Tx*(£)) = ATx*(£) + Bu(t),
. [ x*(t) = T IATx*(t)+ T 1Bu(t)
T { y(£) = CTx*(t) + Du(t)
namely

s _ [ T AT | T'B
ctT | D

also realizes G(s) and is said to be similar to X.

UW Linear Systems (X. Chen, ME547) State-space canonical forms
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Relation between different realizations

Similar realizations

Exercise (Another observable canonical form.)

Verify that the following realize the same system

) —ao 1 0 b2 )l i 0 0 —dQ b()

. —dai 0 1 b1 x 1 0 —di b1

L= —dQ 0 O bo 7 L= 0 1 —da b2
1 0 0|d _ 00 1 |d |

UW Linear Systems (X. Chen, ME547) State-space canonical forms 31/31




Xu Chen January 12, 2023

1 From Transfer Function to State Space: State-Space Canonical Forms

It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse
problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization

theory.
A single transfer function has infinite amount of state-space representations. Consider, for example, the two
models

{:'v = Az + Bu {x :Ax—l—%Bu

y =Cx ’ y =2Cz

which share the same transfer function C(sI — A)~!B.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan
form, using the following unit problem:

b282 +b1s + by
s34+ ass? +a1s+ag

G(s) = (1)

1.1 Controllable Canonical Form.

Consider first: )
Y = U (s). 2
(s) T ——. (s) (2)

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

$1:y7$2=$129a 333:3'32:?% (3)
which gives
d I 0 1 0 X 0
pn To | = 0 0 1 22 |+ | 0 |u (4)
I3 —ap —ai; —asg I3 1
Z1
Y= [ 1 00 ] T2
€3

For the general case in (1), i.e., ¥ + a2 + a1y + agy = baii + b1u + bou, there are terms with respect to the
derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose
(1) as

1
2 5
u $3 + az52 + a1 + ag bas® +bis+by —>Y (5)

The first part of the connection

1
3 +ags? +ai1s+ ag

looks exactly like what we had in (2). Denote the output here as §. Then we have

PR 0 1 0 T 0
— | x| = 0 0 1 xo |+ | 0 | u,
dt
I3 —agp —a; —az I3 1
where
1 =7, Ty =T1, T3 = L. (7)

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the
second part of (5) is nothing but

Tl —= b282+b1$+b0 =Y




Xu Chen 1.1 Controllable Canonical Form. January 12, 2023
So
T
Y = body + by + bowy = boxs +bywo +bowy = [ by b1 by | | @2
T3

The above procedure constructs the controllable canonical form of the third-order transfer function (1):

d .1?1(t) 0 1 0 Z‘1(t) 0
pr xa(t) | = 0 0 1 x2(t) |+ | 0 | u(t) (8)
’Ig(t) —ag —a; —ag zg(t) 1
z1(t)
y(t) = [ bo b1 bg ] 332(75)
z3(t)
In a block diagram, the state-space system looks like
[b2]
+
— +
U(s) + ~ 1| X 1 |[X2 1 X1 ™ S Y(s)
b s s s 0] ~
O
O (@]
o]
Example 1. Obtain the controllable canonical forms of the following systems
241
© Gls)= s34+ 2s+10
1 0
— Comparing the transfer function with the general form yields A = 11, B=|0]|, C =
—-10 -2 0 1
1 0 1]
bos? +b b
.« G(s) = — 05 4; 15 + by
$° +apgs® +a1s+ as
1 0
— Notice the difference in the coefficients. We have A = 1{,B=1|0]|,C= [bg by bo]
—a2 —ai; Qo 1
General Case.
For a single-input single-output transfer function
by18" 144 b b
G(s) = 15 -ﬁ; + 015+ bo td,
s" 4+ ap_18"" 4+ -+ ar1s+ag
we can verify that
0 1 0 0 0]
0 0 0 0 0
ZC:[AC Bc:|: : : : : (9)
Ce | De 0 0 0 1 |0
—ag —ap —Qp_2 —Gp_1 |1
| bo b1 bp—o  bp—1 | d |




Xu Chen 1.2 Observable Canonical Form.

January 12, 2023

realizes G(s). This realization is called the controllable canonical form.

1.2 Observable Canonical Form.

Consider again
b2$2 + b15 —|— bo

Yis) = Gle)Us) = 53 + azs? + a1s + ag

Expanding and dividing by s3 yield

1 1 1 1 1 1
<1 —ﬁ—agg —&—als—z —|—a083> Y(s)= (bgs —|—b15—2 +b033> U(s)

and therefore
1 1 1
Y(s) = 7(12;}/(5) - als—QY(s) — aos—gY(s)

1 1 1
+ bQ;U(S) =+ bl?U(S) + bOSfSU(S)

In a block diagram, the above looks like

2]
(1]
Y
Uls) (b | + 1+ X 1]+ A 1 (5)
190 | ) ) s ) s
2]
1]
o]
or more specifically,
i
1]
+ +
U('S) m + l X3 f& l X2 A 1 X1 Y(S)
190 | ) s ) s ) s
@]
1]
o |



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

Here, the states are connected by

Y(s) = Xi(s) y(t) = 21 (1)
sX1(s) = —axX1(s) + Xa(s) + b2U(s) Z1(t) = —agx1(t) + x2(t) + bau(t)
sXo(s) = —a1 X1(s) + X5(s) + b1U(s) = Z2(t) = —ar1x1(t) + x3(t) + byu(t)
sX3(s) = —apX1(s) + boU(s) &3(t) = —apx1(t) + bou(t)

or in matrix form:

—as 1 0 by
gt)=1| —a1r 0 1 |z@®)+ | by | u(t)
—ap 0 O bo
—_— ~——
A, B,
yt)=[1 0 0 ]x(t)
c

The above is called the observable canonical form realization of G(s).

Exercise 1. Verify that C,(sI — A,)" !B, = G(s).

General Case.

In the general case, the observable canonical form of the transfer function

bn_lsn_l + -+ bis+ by

G(s) = — +d
s"t+ap—18s" + - ta1s+tap
is _ _
—ap_1 1 -+ 0 O byp_q
—ap_2 0 -+ 0 0fby_20
B : : N :
Eo _ o o _ : : : : :
[Co Do] —a; 0 -+ 0 1| b
—ag 0 b
i 1 d |

Exercise 2. Obtain the controllable and observable canonical forms of

k1
G(s) = .
(5) = — o
1.3 Diagonal and Jordan canonical forms.
1.3.1 Diagonal form.
When
B(S) . 5282—|—b18+b0

A(s) s34 aps? +ays+ag
and the poles of the transfer function p; # ps # p3, we can write, using partial fractional expansion,
ky ko ks B(s)

- S _p )22
Gl 3—P1+8—p2+8—}?3’k1 Pl—’rgi(s pl)A(S)’

namely

(10)



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

+ SX1

o =R B NS
O s Ll
+
U(s) +1 Y(s)
+ SX2 1 X2
o5 e f—O—
+ +
+ _sX X
o= 5 1Ak
S
+
The state-space realization of the above is
P1 0 0 1
A= 0 P2 0 7B: 1 ,C:[kl kg kg],D:O
0 0 P3 1
1.3.2 Jordan form.
If poles repeat, say,
bys? +b b bys? +b b
Gls) = T8t %  _ Pa¥ £hIt %S, p1# pm ER,

$3 + ags? +ais + ag (s —p1)(s — pm)

then partial fraction expansion gives

where

ky = lim G(s)(s — pm)
S*}pm
d
k3 = gl_lglm s {G(s)(s — pm)*}
In state space, we have
+ X
) 1 ! ky
S
+T
7]
Ul(s) +| Y(s)
— ks O
X3 *
t~ 1 oy 1| X
N s L/ S 2
i |
[P | [P |
[ e



Xu Chen 1.4 Modified canonical form. January 12, 2023

The state-space realization of the above, called the Jordan canonical form,' is

pr 0 0 1
A= 0 Pm 1 ,BZ 0 ,Cz[kl kg kg},DZO
0 0 pm 1

1.4 Modified canonical form.
If the system has complex poles, say,

b282 + bi1s + by b282 + bi1s + by
Gls) = 2 ~s_ )2 1 2
Bt ass?+ars+ag (s—p1)[(s—0)?+ w?

then partial fraction expansion gives

k1 n as+ 0
s=p (s—o0) +w?

G(s) =

which has the graphical representation as below:

+/‘\ l X1 k}
7]
U(s) n Y(s)
— ks O
+
X3 ¥

T~ 1 W T~ 1 2k |

+ ] s T+ s

- 7

w

Here ko = (8 4 ao)/w and ks = .
You should be able to check that the block diagram matches with the transfer function realization.
The above can be realized by the modified Jordan form in state space:

P1 0 0 1
A= 0 (o} w ,B: 0 ,C:[k‘l k‘g k3},D:0
0 —w o 1

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms

The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only

difference is that we use
Z{z(k—n)}=2""X(2),

instead of

c {j;x(t)} = s"X(s),

assuming zero state initial conditions.
We have the fundamental relationships:

x (k) 21 x(k—1)

1The A matrix is called a Jordan matrix.



Xu Chen 1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms January 12, 2023

X (2) 21 271X (2)
z(k+n) 21 x(k+n-1)
The discrete-time state-space description of a general transfer function G(z) is
z(k+1)= Az (k) + Bu (k)
y (k) = Cx (k) + Du (k)
and satisfies G (z) = C (21 — A)"' B+ D.
Take again a third-order system as the example:

o b222 —+ blz —+ bo o 622’71 —+ 612’72 —+ boZiB
T B4 a2t az+ar l4aszl+az 2+ a9z 3
The A, B, C, D matrices of the canonical forms are exactly the same as those in continuous-time cases.

G (2)

Controllable canonical form:

xy (k+1) 0 1 0
zo(k+1) | =] 0 0 1
$3(k+1)
(
(
(

Observable canonical form:

X (k? + 1) —as 1 0 X1 k) bo
T2 (k‘ + 1) = —ay 1 T2 k) + 1 b1 |u (/f)
T3 (k‘ + 1) —ap 0 0 T3 k) bo

o

z1(k+1) pp 0 0 x1 (k) 1
zo(k+1) | =] 0 pm 1 zo (k) |+ | 0 |u(k)
z3 (k+1) 0 0 pm x3 (k) 1
1 (k)
y (k) = [ kl k/’g ]{?3 ] To (l{i)
3 (k)
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Jordan form (2 complex poles):

k az+
G(S)_Z—Pl (z—0)* +w?
2o (k+1) | = 0 o w zo (k) |+ | 0 |u(k)
zg(k+1) 0 —w o x3 (k) 1
I (k)
Yy (k}) = [ kl kg k3 ] To (k)
3 (k)

where ks = (8 + ao)/w, ks = a.
Exercise: obtain the controllable canonical form for the following systems

-3

_ z T —z
® G(S) T 14221422

__ bgz%4biztbs
° G(s)= z23+aoz?+aiztasz

1.6 Similar Realizations

Besides the canonical forms, other system realizations exist. Let us begin with the realization ¥ of some transfer
function G(s). Let T' € C™*™ be nonsingular. We can define new states by:

Tz* = x.

We can rewrite the differential equations defining 3 in terms of these new states by plugging in x = Tx*:

d

= (Ta* (1) = AT (1) + Bu(®),

to obtain
T YATz*(t) + T~ Bu(t)
y(t) = CTz*(t) + Du(t)

I\
*
—N
-
*
—
I

This new realization

-1 -1
2*{T AT |T7'B (12)

cr | D |
also realizes G(s) and is said to be similar to X.

Similar realizations are fundamentally the same. Indeed, we arrived at X, from X via nothing more than a
change of variables.

Exercise 3 (Another observable canonical form.). Verify that

—a9 1 0 bz
o —ai 0 1 b1
x= —ap 0 0 bo
1 0 0|d
is similar to
0 0 —Qp bo
x 1 0 —Qaq bl
X = 0 1 —ao bg
00 1 |d
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1. Solution Formula

Continuous-Time Case
The Solution to x = ax + bu
The Solution to nt'-order LTI Systems
The State Transition Matrix et
Computing e“t when A is diagonal or in Jordan form

Discrete-Time LTI Case
The State Transition Matrix A*
Computing AX when A is diagonal or in Jordan form

2. Explicit Computation of the State Transition Matrix e*!
3. Explicit Computation of the State Transition Matrix A*

4. Transition Matrix via Inverse Transformation
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Introduction
The Solution to x = ax + bu

» To solve the vector equation x = Ax + Bu, we start with the
scalar case when x, a, b, u € R.

» fundamental property of exponential functions

ieat—aeat ie
dt - 7 dt

—at _ _ oat

> x(t) = ax(t) + bu(t), a#0 =20 etk (1) — e tax (t) =
e ?'bu (t) ,namely,

% {e7x(t)} = e *bu(t) & d {e *x(t)} = e bu(t)dt

t
= e ' x (t) = e x (tp) -I-/ e "bu(T)dT

to

UW Linear Systems (X. Chen, ME547) SS Solution 3/56

The solution to x = ax + bu

t
e ¥'x(t) = e *x (to) +/ e "bu(t)dr

to

when t; = 0, we have

t
) (t) _ eafx (O) 1 / ea(t—T)bu (’7') dr (1)
ree response forced:gsponse

UW Linear Systems (X. Chen, ME547) SS Solution
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The solution to x = ax + bu

Solution Concepts of e?'x (0)

Impulse Response
25

a>0 _ N
Time Constant = %

15 ] |al

when a < 0: After
| a=20 three time constants,
e?*x (0) reduces to
0sf 0 <0 1 ?% of its initial value

| | | ., ‘ the free response
’ o U ey * *  has died down.

Amplitude

UW Linear Systems (X. Chen, ME547) SS Solution 5 /56

* Fundamental Theorem of Differential Equations

addresses the question of whether a dynamical system has a unique solution or not.

Consider x = f (x, t), x (tg) = xo, with:
> f(x,t) piecewise continuous in t (continuous except at finite
points of discontinuity)
» f(x,t) Lipschitz continuous in x (satisfy the cone
constraint:||f (x,t) — f (y,t) || < k(t) ||x — y|| where k(t) is
piecewise continuous)

then there exists a unique function of time ¢ (-) : R, — R” which is
continuous almost everywhere and satisfies

> (/b (to) = X0
> ¢o(t)=1f(op(t),t), Vt € R,\D , where D is the set of
discontinuity points for f as a function of t.

6/56
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The solution to n'"-order LTI systems

» Analogous to scalar case, the general state-space equations

] x(t) = Ax(t) + Bu(t) _ .
Y { (B = Cx(t) + Du(t) x(tp)) =x€R", AecR

have the solution

t
x(t) = eAltmh)y, +/ A=) Buy(r)dr (2)
v to
free response ~ /
forced response

t
y () = CeAt=)y 4 C / A=) By(r)dr + Du (t)
to

t

» In both the free and the forced responses, computing et is key.

» Alt—t0). c3lled the transition matrix

UW Linear Systems (X. Chen, ME547) SS Solution 7 /56

The state transition matrix et

For the scalar case with a € R, Taylor expansion gives

1 1
eat:1+at+§(at)2+---+m(at)”+... (3)

The transition scalar ®(t, ty) = e(t~%) satisfies
d(t, t) =1 (transition to itself)

O(t3, t)P(tr, t1) = P(t3, t1) (consecutive transition)
O(ty, t1) = (11, 1) (reverse transition)

UW Linear Systems (X. Chen, ME547) SS Solution

8/56



The state transition matrix et

For the matrix case with A € R"™*"

1 1
eAt:l,,+At+§A2t2+---+mAntn+--- (4)

» As [, and A’ are matrices of dimension n x n, et must € R"™*".

» The transition matrix ®(t, t;) = eA(t=%) satisfies

e™ =1, o(t, t) = I,
eAti At — QA(t1tt2) O(t3, t)P(t2, t1) = (t3, t1)
oAt _ [eAt} -1 . (b(tQ, tl) = cb_l(tl, t2).

> Note, however, that e*teBt = e(A+B)t if and only if AB = BA.
(Check by using Taylor expansion.)

UW Linear Systems (X. Chen, ME547) SS Solution 9 /56

Computing a structured e via Taylor expansion

convenient when A is a diagonal or Jordan matrix

A1 000
The case with a diagonal matrix A= | 0 X, 0
0 0 A3
N0 0 AT 0 0
> A2=| 0 XN 0 |,....,.A7=| 0 XN O
0 0 A\ 0 0 M

» all matrices on the right side of

1 1
eAt:I+At+§A2t2+---+mA”t”+...

are easy to compute

UW Linear Systems (X. Chen, ME547) SS Solution
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Computing a structured e via Taylor expansion

convenient when A is a diagonal or Jordan matrix

A1 000
The case with a diagonal matrix A= | 0 X, O
0 0 A3

1 1
eAt:/—i—At—|—§A2t2—|—~~—|——IA”t”—|—...
n!

(1 0 0 Mt 00 N2 0 0
=10 1 0[+] 0 Xt 0 |+ 0 N2 0 +...
001 t
1+ A

I 0 0 X3 0 0 2N
[ 14+ Mt4 3M2 4. 0 0
= 0 1+ ot + 3A582 + ... 0
I 0 0 1+ Ast 4+ 3A382 + ...
eMt 0 0
=1 0 e 0
0 0 et
11/56

Computing a structured e via Taylor expansion

A
0
0
A 00 010
» Decompose A= | 0 A O [+ [0 O 1 |.Then
0 0 A 0 0O

At — e(>\l3 t+Nt) .

> also, (Mst) (Nt) = ANt? = (Nt) (Akt) and hence
e()\l3t—|—Nt) — eMtaNt

» thus

NSOV PN
A cett=ert]
t e()\l3t+Nt) Alt Nt eAteNt

€ e €

12/56
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Computing a structured e via Taylor expansion

A0 o0 010 et = gMtellt
A=10 XN 0| +]10 01
0 0 A\ 0 0O
YA N
» N is nilpotent': N3 = N* = ... = 04, yielding
0 1t £
Nt 1 2,2 1 3 0 2
eMt =L+ Nt + N2+ M3+, Y =01 ¢t
2 .
0 0 1
» Thus \ NN
e tett TeM
eM=1 0 eM teM (5)
0 0 et

13 /56

Example (mass moving on a straight line with zero friction

and no external force)

i X1 . 0 1 X1
dt| x| [0 0]|x]"
———
A
x(t) = e**x(0) where
[0 1], 1[0 1[0 1., _[1¢
e—l+[00t+2!00 OOt—i—...—Ol.
[0 0
10 0

14 /56
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Computing low-order e via column solutions

We discuss an intuition of the matrix entries in e”t. Consider

example:

. 0 1
X:AX:[O _1]x, x(0) = xo

o B Ist column | 2nd column x1(0)
Wm0 T w0 “xQ(O)] ©

= a1(£)x1(0) + ax(t)x(0) (7)

Observation

= x(t) = a1(t),

= x(t) = ax(t).

UW Linear Systems (X. Chen, ME547) SS Solution 15 /56

A

Computing low-order e”* via column solutions

: 0 1
x—Ax—[O _1]x, x(0) = xo

Hence, we can obtain e?f from the following

t
(1) = £ ) — 0t 0 / 0(t—7) d
1. write out Xl() X2( ) :>X1() © Xl( )+ 0 © X2(T) !

Xz(t) = — Xz(t)

[ 1] x1(t) = 1
2. let x(0) = then namely x(t) =
<0) = | g |- then 1) mamely (1) = | ¢ |
3. let x(0) = 2 , then xo(t) = et and x1(t) =1 — e *, or more

1—et
compactly, x(t) = ot

0 et

UW Linear Systems (X. Chen, ME547) SS Solution

-t
4. using (6), write out directly e/t = [ L 1-e ]
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Computing low-order e

At

via column solutions

Exercise

Compute e*t where

A —

O O >
O > =
> = O

UW Linear Systems (X. Chen, ME547) SS Solution

Discrete-time LTI case

For the discrete-time system

iteration of the state-space equation gives

x (k)

x(k+1) =

= AFRox (ko) + [AFTRoTIB AfTo2B

Six (k) =

Ak kOX

free response

+ Z Ak- 1_JBu

\

TV
forced response

UW Linear Systems (X. Chen, ME547) SS Solution

Ax(k) + Bu(k), x(0) = xo,

, B]

u(ko+1)

I u(k:— 1) |

17 /56

u (ko)
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Discrete-time LTI case

k—1
x (k) = ARox (ko) + Y A< Bu ()
free rzsrponse J\':ko P
forced response

the transition matrix, defined by ®(k,j) = A*~/, satisfies

bk, k) =1
k3, ko)®(ka, ki) = D(ks, ki) ks > ko > ki
®(ko, k1) = ® ki, ko) if and only if A is nonsingular

UW Linear Systems (X. Chen, ME547) SS Solution 19 /56

The state transition matrix AX

Similar to the continuous-time case, when A is a diagonal or Jordan
matrix, the Taylor expansion formula readily generates A*.

A1 00 A0 0
» Diagonal matrix A= | 0 X, 0 |[:AK=1] 0 X 0
0 0 Xs 0 0 X

UW Linear Systems (X. Chen, ME547) SS Solution
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Computing a structured A* via Taylor expansion

» Jordan canonical form

A1 0 A0 0 010
A=10 X 1|=]10X0]|+(001
0 0 A 0 0 A 0 0O

Ay N

AX = (Al + N)*

= (ML) + k(AR IN + ( ’2‘ ) (A3) 2 N2+< ’3‘ )(Al3)k_3 N3+

W—/ . ~ )
2 combination N3=N4=...=0/5
N0 0 010 0 0 1
k(k —1
=1 0 XN 0 | +kXN"T1T]0 0 1 +¥>\k_2 000
0 0 M\ 0 0 0 000
A RN Lk (k= 1) A2
=] o Ak k)k—1
0 0 Ak

UW Linear Systems (X. Chen, ME547) SS Solution 21 /56

Computing a structured A* via Taylor expansion

Recall that ( /3( ) = 2k (k—1)(k—2). Show
A 1 0 0]
O N1 0
A= 0 0 XN 1
000 A
N RN Sk (k= 1) A %/<(1/<—(1)(/<)—E)2Ak—3 1
A e Lk (k— 1)\
=A=10 o0 Ak kK-
| 0 0 0 e |

UW Linear Systems (X. Chen, ME547) SS Solution
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2. Explicit Computation of the State Transition Matrix e”t

UW Linear Systems (X. Chen, ME547) SS Solution 23 /56

Explicit computation of a general et

» Why another method: general matrices may not be diagonal or
Jordan

» Approach: transform a general matrix to a diagonal or Jordan
form, via similarity transformation

UW Linear Systems (X. Chen, ME547) SS Solution
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Computing e“ via similarity transformation

Principle Concept.
1. Given

X(t) — AX(t) + BU(t)7 X(to) = Xp € Rn7 A c Ran

find a nonsingular T € R"*" such that a coordinate
transformation defined by x(t) = Tx*(t) yields

d * *
= (Tx*(t)) = ATx*(t) + Bu(t)

d .
—x*(t) = T'AT  x*(t)+ T 'Bu(t
2£A: diagonal or Jordan B
x*(0) = T 'x
UW Linear Systems (X. Chen, ME547) SS Solution 25 /56

Computing e via similarity transformation
1. When u(t) =0

x=Tx* d _
x(t) = Ax(t) =2 X(0= TZAT  x(1)

2A: diagonal or Jordan

2. Now x*(t) can be solved easily: e.g., if A = %1 )? , then
2

co-evo-[% 2][50]-[ )
3. x(t) = Tx*(t) then yields

x(t) = TeMx*(0) = TeM T 1x

4. On the other hand, x(t) = e“txy. Hence

At — Te/\t T—l

UW Linear Systems (X. Chen, ME547) SS Solution
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Similarity transformation

» Existence of Solutions: T comes from the theory of eigenvalues
and eigenvectors in linear algebra.
» |f two matrices A, B € C"™" are similar:
A= TBT ! T & C"™" then
» their A” and B" are also similar: e.g.,
A2 =TBT 'TBT'=T7B°T!
» their exponential matrices are also similar

eAt — TeBt T—l

as
TP T =T(,+ Bt + %th2+...)T—1
= TLT Y+ TBtT 1 + %Tthz Tl
:I+At+%A2t2+---:eAt
[UW Linear Systems (. Chen, MES#7) =SS Solution 27 /56

Similarity transformation

» For A€ R™" an eigenvalue \ € C of A is the solution to the
characteristic equation

det(A— M) =0 (8)

The corresponding eigenvectors are the nonzero solutions to

At=Xt< (A-N)t=0 (9)

UW Linear Systems (X. Chen, ME547) SS Solution
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Similarity transformation

The case with distinct eigenvalues (diagonalization).
Recall: When A € R™" has n distinct eigenvalues such that

AX1 = >\1X1
AX, = A\, X,
or equivalently A 0 ... 0
A
Ale,X2,...,an:[X17X2,..-,Xn] O _2 _ 0
- |0 0 A,
A
[x1, %2, ..., Xs| is square and invertible. Hence

A=TAT™L, A= T1AT

UW Linear Systems (X. Chen, ME547) SS Solution

A N

» Find eigenvalues: det(A — A\/) = det [ A ! ] =

—2 —-A-3
A+2)(A+1) =N =-2 ) =-1
» Find associate eigenvectors:

2 4

> \ = —2: (A—)\ll)t1:O=>t1= _12
> Mi=—1(A-X)tr=0=t = _11
. 101
> Define TandA: T=[t, & |= o 1|

R Y

UW Linear Systems (X. Chen, ME547) SS Solution
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Example (Mechanical system with strong damping)

A2

2 - 0 -1
1
1 1 -1 -1
> -1 =
Compute T [_2 _1] B ]
e %t 0
» Compute et = TeMT 1 =T [ 0 e-lt ] T-1=
_e—2t +2e—t _e—2t + e—t
Qe 2t _ et e _ et
e

Similarity transform: diagonalization

Physical interpretations

» diagonalized system:
e [ 0 [ K] _[ x(0)
T 0 et x3(0) | | e*tx3(0)
> x(t) = Tx*(t) = eM'x;(0)t; + e*2'x5(0)t, then decomposes the
state trajectory into two modes parallel to the two eigenvectors.

UW Linear Systems (X. Chen, ME547) SS Solution
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Similarity transform: diagonalization

Physical interpretations

» If x(0) is aligned with one eigenvector, say, t;, then x5(0) =0
and x(t) = eMix;(0)t; + e*2x;5(0)t, dictates that x(t) will stay
in the direction of t;.

» i.e., if the state initiates along the direction of one eigenvector,
then the free response will stay in that direction without “making
turns’.

» If A\ <0, then x(t) will move towards the origin of the state
space; if A\; =0, x(t) will stay at the initial point; and if
positive, x(t) will move away from the origin along t;.

» Furthermore, the magnitude of \; determines the speed of
response.

UW Linear Systems (X. Chen, ME547) SS Solution 33/56

Similarity transform: diagonalization

Physical interpretations: example
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Similarity transformation

The case with complex eigenvalues
Consider the undamped spring-mass system

X2 -1 0 X2

\ .- g
-~

A

%[ﬁ]:[ 0 1] [Xl],det(A—Al):)\2+1:O:>>\1,z,Zif-

The eigenvectors are

)\1:_/: (A—j/)t1:0:>t1: j-]
M=—j: (A+jt,=0=t, = —1j ] (complex conjugate of t;).
Hence
1 1 L1 1—j]
T=|"% " | 1T1=2 |
[J —J] 2[1 J
35/56

Similarity transformation

The case with complex eigenvalues

A
> Mo =)
1 1 1 —j
> 7T = . . ,T‘lzl ;
[J —J] 2[1 J ]
» we have
" _
QA TMT-L T e/ 9'1: -1 _ co§t sint |
0 e —sint cost

36 /56
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Similarity transformation

The case with complex eigenvalues

As an exercise, for a general A € R**? with complex eigenvalues

o + jw, you can show that by using T = [tg, t;] where tg and t; are
the real and the imaginary parts of t;, an eigenvector associated with
M =0+ jw, x = Tx* transforms x = Ax to

ORI PO

and

o w],
ol —w oo _[ e’t coswt e”sinwt]

—e%tsinwt e’tcoswt

UW Linear Systems (X. Chen, ME547) SS Solution 37 /56

Similarity transformation

The case with repeated eiTnvaIues via generalized eigenvectors

1 2

0 1| two repeated eigenvalues A (A) = 1, and

Consider A = [

(A—/\/)tlzlg g]tlzozmlzlél.

» No other linearly independent eigenvectors exist. What next?
» A is already very similar to the Jordan form. Try instead

Alt b=t tz}lg‘ i]

which requires At, = t; + Ay, i.e.,

(A—)\l)tgztl(:)[g S]b:[é];‘b:[o%]

t, is linearly independent from t; = t; and t, span R?. (t, is called a
generalized eigenvector.)

38 /56



Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

For general 3 x 3 matrices with det(Al — A) = (A — \,,)3, i.e,
A = Ay = A3 = \,,, we look for T such that

A= TJT!

where J has three canonical forms:

Am 0 0 Am 1 0
Nl o A 0 |Ldi), | 0 Am 1
0 0 A, | 0 0 Am
Am 1 0 Am 00 ]
i), 0O A O | or | O A, 1
0 0 A, 0 0 Am
39/56

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 0 0
i), A=TJT ', J=| 0 X, O
0 0 An

this happens
» when A has three linearly independent eigenvectors, i.e.,
(A— Anl)t = 0 yields t;, t,, and t3 that span R>.

» mathematically: when nullity (A — A,,/) = 3, namely,
rank(A — A\,1) = 3 — nullity (A — A, /) = 0.

40 /56
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors
i), A=TJT Y, J=1] 0 X, O [ or | 0O Apn 1
0 0 M\ 0 0 Ap

» this happens when (A — A\,,/)t = 0 yields two linearly
independent solutions, i.e., when nullity (A — A\,,/) = 2.

» we then have, e.g., A\ 1 0
Alti, b, 3] = [t1, o, 5] | 0 A O
0 0 A\,
= [)\mtl, t; + )\th; )\mt3] = [Atl, Atg, At3] (10)
» t; and t3 are the directly computed eigenvectors.
» For t;, the second column of (10) gives
(A=A tb=1t;
UW Linear Systems (X. Chen, ME547) SS Solution 41 /56

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 1 0
i), A=TJT Y, J=1| 0 A 1
0 0 Anm

» this is for the case when (A — \,,/)t = 0 yields only one linearly
independent solution, i.e., when nullity(A — A,,/) = 1.

» We then have A, 1 0
Alti,to, 3] =[ti, 2, 85] | 0 Ap 1
0 0 M\,

~ [)\mtl, 1 + )\mtz, L + )\mt3] = [Atl, Atz, At3]

yielding(A At =0
(A= Apl) ty = t1, (to: generalized eigenvector)
(A—Apnl)ts = tp, (t3: generalized eigenvector)

UW Linear Systems (X. Chen, ME547) SS Solution
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-1 1 2 L 101
A_[—l 1],det(A—)\/)—)\ :>)\1—)\2—O,J—[0 O]

» Two repeated eigenvalues with rank(A — 0/) = 1 = only one

linearly independent eigenvector:(A—0/)t; =0 = t; = [ 1 ]

» Generalized eigenvector:(A—0/)t, =t = t, = [ ? ]

» Coordinate transform matrix:

RN

1 0 et e’ 1 0 1—¢t t
At __ Jt-—-1 __ —
et =TT _[1 1”0 eof”—l 1]_[—t 1+t]

v

UW Linear Systems (X. Chen, ME547) SS Solution 43 /56

A:[j ”,det(A—A/):AZ:ml:AFo.

Observation

> A =0t = [ 1 ] implies that if x;(0) = x(0) then the

response is characterized by €% =1

> ie., x1(t) = x1(0) = x2(0) = x2(t). This makes sense because
X1 = —X1 + x» from the state equation.

UW Linear Systems (X. Chen, ME547) SS Solution
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Example (Multiple eigenvectors)

Obtain the eigenvectors of

2 2 -3
A=| 2 1 —6| (\M=5 h=A=-3).
1 -2 0
45/560

Generalized eigenvectors

Physical interpretation.

Am 1 0
When x = Ax, A=TJT twithJ=| 0 )\, O we have
0 0 M\,
e’mt  ternt
x(t)=e*x(0)=T| 0 e 0 | T 'x(0)

0 0 et

e?mt  ternt p
=T| 0 e 0 [FTx(0)

0 0 et

» If the initial condition is in the direction of t, i.e.,
x*(0) = [x(0),0,0]" and x;(0) # 0, the above equation yields
x(t) = x;(0)t; e’

UW Linear Systems (X. Chen, ME547) SS Solution
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Generalized eigenvectors
Physical interpretation Cont'd.

Am 1 0
When x = Ax, A=TJTtwithJ=1| 0 X, 0 |, we have
0 0 A\,
e)\mt te)\mt O
x(t)=eMx(0)=T| 0 e 0 | T 'x(0)

0 0 et

ermt  termt p
=T| 0 €& 0 |FTxY(0)

0 0 et

» If x(0) starts in the direction of t, i.e., x*(0) = [0, x3(0),0]",
then x(t) = x3(0)(t1te* + te’?). In this case, the response
does not remain in the direction of t, but is confined in the
subspace spanned by t; and t,.
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Obtain eigenvalues of J and et by inspection:
-1 0 0 0 0 |
o -2 1 0 0
J=]1 0 -1 -2 0 ©
o 0 0 -3 1
| 0 0 0 0 -3]

UW Linear Systems (X. Chen, ME547) SS Solution
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Explicit computation of AX
Everything in getting the similarity transform applies to the DT case:

A = TACT L or AK = TJKT L,

J Jk
A0 A0
S o]
A1 0 AR Lk (k— 1) AR2
[o A 1] {0 MK k)KL ]
0 0 A\ 0 0 Ak
A1 0 DU Lt
{o A0 ] [ 0 Ak 0 ]
0 0 X3 0 0 X
« | cosk@  sin k6
o w r [—sink@ cosk@]
[—w a] r=+vo2+ w?

0 =tan 1 ¥
g

UW Linear Systems (X. Chen, ME547) SS Solution 49 / 56

-1 0 0
Write down J* for J=| 0 —-1 1 | and
0 0 -1
[ 10 1 0 0 0 |
0 -—-10 O 0 0
J= 0 0 -2 0 0
0 0 0 —100 1
0 0 0 -1 -100

50 /56
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4. Transition Matrix via Inverse Transformation

UW Linear Systems (X. Chen, ME547) SS Solution

Transition matrix via inverse transformation

Continuous-time system

state eq. x(t) = Ax(t) + Bu(t), x(0) = xo
t
solution x(t) = e"x(0) +/ A= Bu(r)dr
SN—— 0
free response ~~ of
forced response
transition matrix et

On the other hand, from Laplace transform:

51 /56

X(t) = Ax(t) + Bu(t) = X(s) = (sl — A)"" x(0) + (s/ — A)~" BU(s)

-~

free response forced response

Comparing x(t) and X(s) gives

et =L {(sl - A}

UW Linear Systems (X. Chen, ME547) SS Solution

(11)
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Example

=127

0
>
I
5
1
()
|
Q
|
&
IS
|

:Ll{(s—0;2+w2 [S:WO 50_0‘7 ]}

cos (wt)  sin (wt)

— ¢t [ —sin (wt) cos (wt) ]
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Transition matrix via inverse transformation (DT

case)

Discrete-time system

state eq. x(k + 1) = Ax(k) 4+ Bu(k), x(0) = xo
(k—1)
solution x(k) = Ax(0) + )  AkDBu())
SN—— .
free response \J_O .,
forced ?gsponse
transition matrix transition matrix AX

On the other hand, from Z transform:
X(z) = (21 — A" zx(0) + (zI — A BU(s)

Hence

A= Z7H (2l = A)7'z} (12)

UW Linear Systems (X. Chen, ME547) SS Solution
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Example

(z—a ) +w?| W z—0
{ [z—rcosé’ rsin6 ]}
—2rcos€z+r2 —rsinf)  z—rcosb

W
r=+vo2+w? f=tan 1=

o
x| cosk@ sink0
— " | —sink® coskb
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Example
: 0.7 0.3
Consider A = [ 0.1 05 ] We have
(zl —A) 'z
B z(z—0.5) 0.3z ]
_ (z—0.8)(z—0.4) (z—0.8)(z—0.4)
o 0.1z z(z—0.7)
| (z—0.8)(z—0.4) (z—0.8)(z—0.4)

z—0. z—0.4 —0.8 —0.4
— 0.25z  0.25z 0252 + 0752

| z—0.8 z—04 z-—-0.8 z—0.4
[ 0.75(0.8)" +0.25 (0.4)F 0.75(0.8)* — 0.75 (0.4)
| 0.25(0.8)% —0.25(0.4)° 0.25(0.8)" + 0.75 (0.4)"

- 0.75z 0.25z 0.75z 0.75z
—0.8 + o ]

56 / 56
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Xu Chen

January 25, 2023

1 Solution of Time-Invariant State-Space Equations

1.1 Continuous-Time State-Space Solutions

1.1.1 The Solution to & = ax + bu

To solve the vector equation & = Az + Bu, we start with the scalar case when z,a,b,u € R. The solution can be
easily derived using one fundamental property of exponential functions, that

and

Consider the ODE

4
dt

at

— aeat7

() = ax(t) + bu(t), a # 0.

Since e~ # 0, the above is equivalent to

e i (t) — e ax (t) = e “bu(t),

namely,

d —at __ _—at
%{e z(t)} =e "bu(t),
& d{e ™z (t)} =e “bu(t)dt.

Integrating both sides from t to ¢; gives

ty
e Mg (ty) = e g (tg) —|—/ e bu (t) dt.

to

It does not matter whether we use t or 7 in the integration j;tgl e~ %bu (t) dt. Hence we can change notations and

get

t
ey (t) = e "ox (tg) + / e~ Tbu (1) dr,

¢
&z (t) = ety () + / e by (1) dr.

Taking ty = 0 gives

to

to

x(t) =

ez (0)
———

free response

¢
Jr/ ey (1) dr
0

forced response

(1)

where the free response is the part of the solution due only to initial conditions when no input is applied, and the
forced response is the part due to the input alone.

Solution Concepts.

Time Constant. When a < 0, e* is a decaying function. For the free response e*'z (0), the exponential

function satisfies e™! ~ 37%, 72 ~ 14%, =3 ~ 5%, and e~* ~ 2%. The time constant is defined as

la’

After three time constants, the free response reduces to 5% of its initial value. Roughly, we say the free response

has died down.

Graphically, the exponential function looks like:
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Impulse Response
25 T

a>0

Amplitude

a=20

051 4

a<O

. . . L L
0 0.5 1 15 2 25 3
Time (sec)

Unit Step Response. When a < 0 and u(t) = 1(¢) (the step function), the solution is

x(t) b

= m(l—ea ).

Step Response

Q|
~

0.6 4

Amplitude
~

041 7 4

021 B

L
0.5 1 15 2 25
Time (sec)

1.1.2 * Fundamental Theorem of Differential Equations
The following theorem addresses the question of whether a dynamical system has a unique solution or not.
Theorem 1. Consider & = f (z,t), x (to) = xo, with:
e f(x,t) piecewise continuous in ¢
e f(x,t) Lipschitz continuous in x
then there exists a unique function of time ¢ (-) : Ry — R™ which is continuous almost everywhere and satisfies
o ¢ (tg) =xo
o ¢(t)=f(p(t),t), vVt € R,\D , where D is the set of discontinuity points for f as a function of ¢.
Remark 1. Piecewise continuous functions are continuous except at finite points of discontinuity.
e example 1: f(t) = |¢]

e example 2:
Alx, t S tl
AQiL’, t>11

f(x’t) :{
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Lipschitz continuous functions are those that satisfy the cone constraint:

1f (@) = f (. 0) | <k (2) [l —yll
where k (t) is piecewise continuous.
e example: f(x) = Az + B
e a graphical representation of a Lipschitz function is that it must stay within a cone in the space of (x, f (x))

e a function is Lipschitz continuous if it is continuously differentiable with its derivative bounded everywhere.
This is a sufficient condition. Functions can be Lipschitz continuous but not differentiable: e.g., the saturation
function and f (z) = |z|.

e A continuous function is not necessarily Lipschitz continuous at all: e.g., a function whose derivative at x = 0
is infinity.
1.1.3 The Solution to ntP-order LTI System

Consider the general state-space equation

[ #(t) = Ax(t) + Bu(t) - § .
o { y(t) = Cx(t) + Du(t) x(tp) =x0 €R™, A€R

Only the first equation here is a differential equation. Once we solve this equation for z(t), we can find y(t) very
easily using the second equation. Also, f (z,t) = Az + Bu satisfies the conditions in Fundamental Theorem for
Differential Equations. A unique solution thus exists. The solution of the state-space equations is given in closed
form by

t
a(t) = ety 4 / A7) Bu(r)dr (2)
N——

to

free response

forced response

Derivation of the general state-space solution. Since e™4* # 0, i(t) = Az(t) + Bu(t) is equivalent

o () A (1) = B 1)
namely
% (e=4a (t)) = e **Bu (t)
- d(e—Atx (t)) = e MBu(t)dt

Integrating both sides from tg to t; gives
ty
e~ Ay (ty) = e=Mog (to) + / e M Bu (t) dt
to
Changing notations from ¢ to 7 in the integral yields
t
e Atx (t) = e ox (1)) +/ e A7 Bu (1) dr
to

t
ez (t) = e (1) + / A=) Bu (1) dr

to

In both the free and the forced responses, computing the matrix e is key. eA(*~%) is called the transition

matrix, and can be computed using a few handy results in linear algebra.
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1.1.4 The State Transition Matrix e4?

For the scalar case with a € R, Tylor expansion gives

1 1
e =14 at+ —(at)> + -+ = (at)" +
2 n!
The transition scalar ®(t,ty) = e*(*=%) satisfies
O(t,t) =1 (transition to itself)
D(t3,t2)P(ta,t1) = P(ts,t1) (consecutive transition)
D(ty,t1) = D' (t1,t2) (reverse transition)
For the matrix case with A € R™*"
At 1 242 1 nyn
e :I+At+§At +"'+5At + ...

As I and A? are matrices of dimension n X n, we confirm that et € R?*".

The state transition matrix ®(t,t) = eA(*~%0) satisfies

A=,
e At pAt2 _ LA(t1+t2)
oAt _ [eAt]*l )
Similar to the scalar case, it can be shown that
O(t,t)=1

D(tg,t1) = D7 (t1,12).

Note, however, that e4teB! = ¢(A+B)t if and only if AB = BA. (Check by using Tylor expansion.)

At.

When A is a diagonal or Jordan matrix, the Tylor expansion formula readily generates e":

A0 0 A0 0
Diagonal matrix A=| 0 Xy 0 In thiscase A =] 0 A3 0 is also diagonal and hence
0 0 Xs 0 0 A}
At 1 242 1 nyn
e =I+At+§At +"'+jAt +...
n!
1 0 0 Mt 00 Iz 0 0
=10 1 04| 0 Xt 0 |+ 0 X% 0 +..
| 0 0 1 0 0 Ast 0 0 IA3¢?
[ 1+ Mt + 2A3% + 0 0
= 0 1+ Xt + 5A382 4 ... 0
i 0 0 L+ Ast+ $A382 4 ...
et 00
= 0 e 0
0 0 eMst
A1 0
Jordan canonical form A= | 0 A 1 |. Decompose
0 0 A
A0 O 010
A=(0 X 0 |+]0 0 1
0 0 A 0 00
Al3 N
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Then

At — ((Mst+Nt)

As (Mt) (Nt) = ANt? = (Nt) (Mt), we have et = eMteNt = NNt Also, N has the special property of
N3 = N* = ... =013, yielding

t2
Nt L \rag0 Lt
e =T+ Nt+ §N t“=10 1 ¢
0 0 1
Thus 2
AL et At
At MG oAt
e’ = 0 e te 9)
0 0 M
Remark 2 (Nilpotent matrices). The matrix
01 0
N=|0 01
0 0 0

is a nilpotent matrix that equals to zero when raised to a positive integral power. (“nil” ~ zero; “potent” ~ taking
powers.) When taking powers of N, the off-diagonal 1 elements march to the top right corner and finally vanish.

Example. Consider a mass moving on a straight line with zero friction and no external force. Let x; and x2 be
be the position and the velocity of the mass, respectively. The state-space description of the system is

alnl-lo]ln]

Columns of the state-transition matrix. We discuss an intuition of the matrix entries in the et matrix.
Consider the system equation

a'c:Ax:[O 1 }n z(0) = z,

with the solution

w0 = | g | =20 = a0,

2(0) = [ 01 S 2(t) = an(t).
Hence, we can obtain e from the following, without using explicitly the Tylor expansion,

L write out a:cl(t) =xa(t) N x1(t) =e% 21 (0) —|—/0 O gy (1) dr = %21 (0) —|—/0 e Txo(0)dr
T2 (t) =22 (t) (t) _—t (0)
X9 =€ T2
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2. let 2(0) = [ (1) }, then v , namely z(t) = { (1) }

ot
3. let x(0) = [ (1) }, then z5(t) = e % and x1(t) = 1 — e~ *, or more compactly, z(t) = [ 1 ,et }

4. using the property of (10), write out directly
1 1—et
A
Exercise. Use the above method to compute e”* where

A:

o O X
S > =
> = O

1.2 Discrete-Time LTI State-Space Solutions

For the discrete-time system
x(k+1) = Az(k) + Bu(k), z(0) = zo,

iteration of the state-space equation gives

z(k+1) = Az (k) + Bu (k) )
u (ko)
(k) = AF oy (k) + [ Ab—ko-lp  pk—ko=2p ... B ] u(k0:+ 1) 12
u(k’.— 1)
k—1
el (k) = Ao (k) + Y AT Bu() )
—_——

free response J=ko

forced response

where the transition matrix is defined by ®(k,j) = A*~7 and satisfies

Ok, k) =1
P(ks3, ko) (k2, k1) = P(ks, k1) ks > ko > k1
(ko k) = D71 (1, 10) if and only if A is nonsingular

1.2.1 The State Transition Matrix A*

Similar to the continuous-time case, when A is a diagonal or Jordan matrix, the Tylor expansion formula readily
generates A*. We have

M 00 Moo
e Diagonal matrix A= | 0 X 0 |[:AF=| 0 X 0
0 0 A | 0 0 N
A1 0 A 0 0 010
e Jordan canonical form A= | 0 A 1 | =0 X 0 [+ | 0 0 1 |: With the nilpotent N and the
0 0 A L0 0 A 000
A3 N
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commutative property (A3) N = N (AI3), we have

AF = (AI3 + N)F = (\L)" + k(ML) N + < F > (ML) 2 N2 + < g ) (ML) P N3 4

2
2 combmatlon N3=N4=...=0I3
01 0 0 0 1
- OAk +k>\’“1001+%/\’“2000
0 Ak 000 00 0
k )\k: 1 % )\k 2
=10 Ak kAk
0 0 Ak
Exercise. Show that
A1 00 NoRARTL S Sk (k= 1) A2 Lk (k= 1) (k—2) AF3
o x 10 k| 0 AR EAk—1 2k (k—1)AF2
A=lo o0 r1|74= 0 o AF kAR
00 0 X 0 0 0 AP

1.3 Explicit Computation of the State Transition Matrix e

General matrices may have structures other than the diagonal and Jordan canonical forms. However, via similar
transformation, we can readily transform a general matrix to a diagonal or Jordan form under a different choice of
state vectors.

Principle Concept.

1. Given
z(t) = Ax(t) + Bu(t), x(tp) = zo € R", A € R**"

we will find a nonsingular matrix 7' € R™*™ such that a coordinate transformation defined by z(t) = Tz*(¢)

yields
d .
% (Tx*(t)) = ATz*(t) + Bu(t)
%x*(t) =T AT 2*(t) + T~ 'Bu(t), z*(0) = T 'z

LA B>

where A is diagonal or in Jordan form.

2. Now z*(t) can be solved easily, and the free response is 2*(t) = e2*(0). For example, when A = [

At * et p*
we would readily obtain z*(t) = [ eO e’(\)ﬁ } { iigg; } [ Aot *Egg ]
2

3. As z(t) = Ta*(t), the above implies
z(t) = TeMT 1y

4. From the original state-space description, x(t) = e4*xy. Hence

’eAt — TeAtTfl

Existence of Solutions. The solution of T' comes from the theory of eigenvalues and eigenvectors in linear
algebra.
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More generally If two matrices A, B € C"*" are similar: A = TBT~!, T € C"*", then
o their A" and B” are also similar: e.g., AA =TBT 'TBT~' = TB?>T~!

e their exponential matrices are also similar
€At — TeBtTfl

as
1 1
TeP'T=!' = T(I + Bt + 53%2 +. )T =TIT ' 4+ TBT™ + §TBQt2T_1 +...

1
:I+At+§A2t2+-~-:e““’

Eigenvalues and Eigenvectors. The principle concept of computing e? in this section relies on the similarity
transform A = T~ 'AT, where A is structurally simple: i.e., in diagonal or Jordan form. We already observed
1t %

At *(0) eg. |: e)x .fl(O)

the resulting convenience in computing z*(t) = ez Moty (0) } Under the coordinate transformation
2

defined by z(t) = T'z*(t), we then have

M (0)

_ At, % e.g.
x(t) = Te™z"(0) = [t1,12] [ eXat i (0)

] =Mzt (0)t) 4 223 (0)ty

in other words, the state trajectory is conveniently decomposed into two modes along the directions defined by ¢4
and ts, the column vectors of T

In practice, A and T are obtained using the tools of eigenvalues and eigenvectors.

For A € R™*" an eigenvalue A € C of A is the solution to the characteristic equation

|det (A= \I) =0] (14)

The corresponding eigenvectors are the nonzero solutions to
At=X& (A-XHt=0 (15)
The case with distinct eigenvalues (diagonalization). When A € R™*™ has n distinct eigenvalues such
that

A.’L’l = )\1:171

ASCQ = )\21‘2

Ax,, = Ao

we can write the above as

A O 0
0 A
Alxy, 2o, ... xn] = [M121, Ao, ..., A\nZp] = [21, X2, . .., Ty 2
SR
A
- 0 0 An
A
The matrix [z1, Z2, . . ., Z,] is square. From linear algebra, the eigenvectors are linearly independent and [x1, x2, . . ., Z,]

is invertible. Hence
A=TAT ', A=T7'AT

Example 1. Mechanical system with strong damping
Consider a spring-mass-damper system with m = 1, £k = 2, b = 3. Let z; and x5 be the position and velocity of
the mass, respectively. We have

—s o —
To+2x1+3x2 =0 dt | x2 -2 -3 o
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-A 1

Find eigenvalues: det(A — AI) = det [ 9 _)_3

:| :()\+2)()\+1):>)\1:—2,>\2:—1

Find associate eigenvectors:

— A= -2 (A*/\lf)t1:O:>t1: |: _12:|

-\

—1: (A—)\gl)t220$t2: |: 11:|

o |1 1 A0 | -2 0
DeﬁneTandA.T—[tl t2]—|:2 1},A—[O )\2}_[ 0 1]
117" 1 -1

—1 . _ - -

Compute T+ = { 9 4 } = { 9 1 }
-2t -2t —t -2t | —t

At _ o At—1 e 0 | e 42 —e %t te

Compute e =TeMT— =T { 0 e-lt } T = { 9e—2t _ 9p—t  9p—2t _ o=t }

Physical interpretations Let us revisit the intuition at the beginning of this subsection:

x(t) = eMtzi(0)t; + e2tx}(0)t, decomposes the state trajectory into two modes along the direction of the
two eigenvectors ¢ and to.

The two modes are scaled by x7(0) and x5(0) defined from z(0) = Tx*(0), or more explicitly, z(0) =
[t1,t2][x%(0), 25(0)]T = 23(0)t; + 23(0)t2. This is nothing but decomposing x(0) into the sum of two vec-
tors along the directions of the eigenvectors; and x7(0) and z3(0) are the coefficients of the decomposition!

t] xz

aze-ttz
l, x(0)

~ x,

If the initial condition z(0) is aligned with one eigenvector, say, t1, then z3(0) = 0. The decomposition
x(t) = eMtai(0)t; + e 223(0)ty then dictates that x(t) will stay in the direction of ¢;. In other words, if the
state initiates along the direction of one eigenvector, then the free response will stay in that direction without
“making turns”. If A; < 0, then z(¢) will move towards the origin of the state space; if A\; = 0, x(¢) will stay
at the initial point; and if positive, 2(t) will move away from the origin along ¢;. Furthermore, the magnitude
of \; determines the speed of response.
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T1

L]
—]
—

-0.5

1.5 \ \\
-15 - -0.5 0.5 15
e~ 2t

//—\\
L

The case with complex eigenvalues Consider the undamped spring-mass system

d |z | 0 1 T ) _ — 4
a0 L[ ] a1 20 g =

A

The eigenvectors are
. . 1
Al =7: (A—j[)t1=0=>t1: |: ] :|
do=—j: (A+jDta=0=ty = [ jj ] (complex conjugate of t1).

Hence

T_ 1 1 T*lzl 1 —j At _ pAtp=1 _p eIt 0 p-1_ | cost sin t
i =5 |’ 211 4 | 0 et —sint cost |’

As an exercise, for a general A € R?*2 with complex eigenvalues o + jw, you can show that by using T' = [tg, t1]
where tp and ¢; are the real and the imaginary parts of ¢1, an eigenvector associated with Ay = o + jw , z = Tz*

transforms & = Az to
i o w "
ro=| 7, ¢ e
and

o ow |,
N e“tcoswt e sinwt
—etsinwt etcoswt |-

10
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A m())

X
><
X

@
—

>~
N—r

O =

The case with repeated eigenvalues, via generalized eigenvectors. Consider A = { 1 ] , which has

two repeated eigenvalues A (A) = 2 and
1
(A—)\I)t1:0:>t1: |: 0 :| .

No other linearly independent eigenvectors exist. How do we go further? As A is already very similar to the Jordan
form, we try instead

Al
Alty =]t t2][0 /\},
which requires Aty = t1 + Ao, i.e.,
0 2 1
0
:>t2_[0.5}

to is linearly independent from ¢1. Together, ¢; and to span the 2-dimensional vector space. As such, ¢ is called a
generalized eigenvector.

For general 3 x 3 matrices with det(A\] — A) = (A — \;,)3, i.e., A1 = Ao = A3 = A\, we look for 7" such that

A=TJT !

11
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where J has three canonical forms:

Am 00 Am 10 Am 0 0 Am 10
D, 1 0 Am 0 |,d), | 0 An O [or | 0O An 1 |,id), | 0 An 1
0 0 Am 0 0 Am 0 0 Am 0 0 Am

e Case i): this happens when A has three linearly independent eigenvectors, i.e., (A — A, I)t = 0 yields t1, t,
and t3 that span the 3-d vector space. This happens when nullity (A — A\,,I) = 3, namely, rank(4 — \,,,1) =
3 — nullity (A — A\, 1) = 0.

e Caseii): this happens when (A—\,,,I)t = 0 yields two linearly independent solutions, i.e., when nullity (A — A\, 1) =

2. We then have, e.g.,

Am 1 0
A[t17 t27 td] = [tla t27 td] 0 )\m 0 < [)\mtlv tl + )\mt27 )\mt?)] = [At17 AtZ; At3]
0 0 An

t; and t3 are the directly computed eigenvectors. For the generalized eigenvector ¢35, the second column of the
equality gives
(A=A Dta =1ty

e Case iii): this is for the case when (A — \,;,I)t = 0 yields only one linearly independent solution, i.e., when
nullity (A — A, 1) = 1. We then have,

Am 1 0
Alty,to, t3] = [t1,ta,t3] | 0 Ay 1 & [Amti,t1 + Amta, ta + Apts] = [Aty, Ato, Ats]
0 0 A\

yielding

where t5 and t3 are the generalized eigenvectors.

Example 2. Consider
-1 1 )
A= 11 ydet (A=A =A+1)(A=1)—1=X =X =X =0.

Two repeated eigenvalues with rank(A — 0I) = 1 =-only one linearly independent eigenvector:
1
(A—Ol)tlz():}tl: 1 .

Generalized eigenvector:

(A—01>t2:t1:>t2:|:(1):|.

B [t 0] 0 [ 1 0
T[t17t2]|:1 1:|?T |:_1 1:|3

At g1 [ 1071 ¢ 1 0] [1-t ¢
A PR I Y | Rty

The first eigenvector implies that if 21 (0) = x2(0) then the response is characterized by €* = 1, i.e., z1(t) = x1(0) =
x2(0) = x2(¢). This makes sense because &1 = —x1 + z2 from the state equation.

Coordinate transform matrix:

0
0

O =

J:T*AT:[

12
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Example 3 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 —6
-1 -2 0

Analogous procedures give that
A1 =05, g = A3 =—-3.

So there are repeated eigenvalues. For A\; = 5, (A — 51)t; = 0 gives

-7 2 =3 1 0 1 1
2 -4 -6 [t1=0=> 01 2 |t1=0=1t= 2
-1 -2 -5 1 0 1 -1
For Ay = A3 = —3, the characteristic matrix is
1 2 -3
A+31= 2 4 -6
-1 -2 3

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the characteristic
matrix has only rank 1. The characteristic equation

(A=XI)t=0
has two linearly independent solutions
-2 3
1 , | 0 |.
0 1
Then
1 -2 3 5 0 0
T= 2 1 0)],J=]0 -3 0
-1 0 1 0o 0 -3
Am 1 0
Physical interpretation. When & = Az, A =TJT ! with J = 0 XAn O [, wehave
0 0 An
Amt  permt A

e mt t6>\7nt

0
et 0 | 2FHTE(0)

e 0
r(t)=eMz(0)=T| 0 et 0 |Tlz0)=T]| o0

0 0 et 0
If the initial condition is in the direction of t1, i.e., 2*(0) = [2%(0),0,0]" and 27}(0) # 0, the above equation yields
z(t) = z5(0)t1ert. If 2(0) starts in the direction of t5, i.e., *(0) = [0,23(0),0]T, then x(t) = z3(0)(tter*t +
tae*mt). In this case, the response does not remain in the direction of #5 but is confined in the subspace spanned
by t; and to.

Exercise 1. Obtain eigenvalues of .J and e’ by inspection:

-1 0 0 0 O
0o -2 1 0 0
J = 0o -1 -2 0 O
0o 0 0 -3 1
o 0 o0 0 =3

13
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1.4 Explicit Computation of the State Transition Matrix A*
Everything in computing the similarity transform A = TAT~! or A = TJT~! applies to the discrete-time case.

The state transition matrix in this case is

| AF = TAPT or AP = TR

You should be able to derive these results:

| J \ Jr
MO AP0
0 X 0 M
Al P
0 A 0 AP
A1 0 RN Lk (R — 1) AF2
0 X 1 0 AF EAF-T
0 0 A 0 0 \F
A1 0 NENFT 0
0 X 0 0 Ak 0
0 0 A3 0 0 M
‘ 0w & co§k9 sin k6 r = VoT TR, 0= tan—l ¥
—w o —sinkf cosk6 o
-10 1 0 0 0
[ -1 0 0 0 —-10 0 0 0
Exercise 2. Write down J* for J = 0o -1 1 and J = 0 0 -2 0 0
0 0 -1 0 0 0 —100 1
i 0 0 0 -1 -100
Exercise 3. Show that
AT [ e g
k a1 -
T=loorx1 |77 =0 o AR RS
00 0 A 0 0 0 AF

1.5 Transition Matrix via Inverse Transformation

We have now

Continuous-time system Discrete-time system

state equation z(t) = Az(t) + Bu(t), (0) = zg z(k + 1) = Az(k) + Bu(k), z(0) = zg
t (k—1)
solution z(t) = eMz(0) +/ AT Bu(r)dr  xz(k) = AFz(0) + Z A®=179) By(4)
——— 0 —— =
free response free response
forced response forced response
transition matrix eAt Ak

We also know from Laplace transform, that

&(t) = Ax(t) + Bul(t)
X(s) = (sI — A) "' z(0)+ (sI — A) "' BU(s)

free response free response

Comparing z(t) and X (s) gives

et =71 {(sI—A)~"} (16)

14
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g

Example 4. Consider A = [ ‘: } We have

At _p-1| 570 W ’lzﬁ_l 1 [s-0
w s—0 (s—a)2+w2 —w

—ot[ oslen) sntan)

Similarly, for the discrete time case, we have X (z) = (zI — A)~" 22(0) + (21 — A)~" BU(s) and

AF =zt {(zI —A)" "2}

g

Example 5. Consider A = [ ZJ } We have

Ak z1 Z[z—a —w ]_1 _ g 22 {z—o
w  z—o0 (-0l +uw?| —w

:ZI{ z [z—rcos@ 7 8in }}’ = o Wl 0 — tan-1%
o

22 — 2rcosfz + r2 —rsind  z—rcosf

k| cosk® sinkd
T —sink® coské

0.7 0.3

Example 6. Consider A = [ 01 05

} . We have

z

il

0.75z 0.75z

0.1z (2=0.7) 0.252 _ 0.25z

2—0.8 z—0.4
0.25% 0.75z

z(z—0.5 0.3z 0.752 0.25z

(21— A) 1z = | GOBG-0D) GomG—0D | _ { 208 T 204
(2—08)(2—0.4) (2—0.8)(2—0.4) z=0.8  2-04

k

. [ 0.75 (0.8)" +0.25 (0.4)F  0.75(0.8)* — 0.75 (0.4)
k

= A% =
0.25 (0.8)" — 0.25 (0.4)*  0.25(0.8)" +0.75 (0.4)

15

|

2—0.8 + z2—0.4

(17)
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Motivation

» For mechanical systems, physics often give differential-equation
models.

» When implementing controls digitally (e.g., on a
microcontroller), a continuous-time system must be represented

in the discrete-time domain.
» Sampler: converts a time function into a discrete sequence, e.g.,

y(t) y(k)

UW Linear Systems (X. Chen, ME547) SS discretization 2/8



Signal holding

» Zero-order Hold (ZOH): converts a sequence into a “stair-case”

time function, e.g.,

u(k) u(t)
’ . u(k) u(t)
ZOH
| | | | | |
o 1 2 3 k 0 T 2T 3T t
where u(t) = u(k) for k € [kT,(k+1)T).
UW Linear Systems (X. Chen, ME547) SS discretization 3/8
Problem definition
Consider a continuous time system preceded by a ZOH:
u(ty) u(t) x(t)
—————Zero Order Hold | 4t — Az + Bu
J_>
(tk)
» Goal: to obtain the model between u(tx) and x(t).
4/8

SS discretization

UW Linear Systems (X. Chen, ME547)



Solution

u(ty) u(t) z(t)
— | Zero Order Hold ‘é—f = Ax + Bu
z(t)

1. Starting from ty, the solution of x = Ax + Bu at time t,, is

X(tk—{—l) — eA(tk+1_tk)X(tk) _|_/

7%

tet1
eAtier1=7o) Bu(1,)d T,

T n

—N— tka1 —N—
= eAtk+1 = L x (1) + u(tk)/ eAltk+1 = To) Bdr,
Ty

(. 7
N~

= [% eA1Bd(—n)=— [2 eA1Bdn
T T

2. Noting — 0 eABdn = [ eA"Bdr and denoting t, as k yield
T M= Jo

-
x(k +1) = Agx(k) + Byu(k), Ay = e*", By = / e"" Bdt
0

UW Linear Systems (X. Chen, ME547) SS discretization 5/8

Analysis

Mapping of eigenvalues

» "' has the same eigenvalues as e"': A is in diagonal or Jordan
form with diagonal elements formed by eigenvalues of A

» = eigenvalues of Ay = e”7 are e*7’s where ); is an eigenvalue
of A

» same conclusion can be drawn from the spectral mapping
theorem

UW Linear Systems (X. Chen, ME547) SS discretization 6/8




Theorem (Spectral Mapping Theorem)

Take any A € C™" and a polynomial function f (-) (more generally,

analytic functions). Then

eig (f (A)) = f (eig (A))

Example (Compute the eigenvalues)

A 99.8 2000
~ | —2000 99.8

Solution:

0 1

A = 99.8/ + 2000 [ 1o

= 99.8 £ 2000/

] = A(A) = 99.8 ++ 2000\ { [

=)

UW Linear Systems (X. Chen, ME547) SS discretization 7/8
*Analysis
Explicit form of By when A is nonsingular
T
x(k +1) = Agx(k) + Byu(k), Ay = e*", By = / e”" Bdt
0
> Using e’ = | + At + 5 A% + ... gives
T
1 2 2
By, = /+AT+§AT + ... |drB
0 H
1 2 1 2713
= | IT + AT+ AT+ ...
2 3!
— A (T —)B=A"(A;—I)B
UW Linear Systems (X. Chen, ME547) SS discretization 8/8




Essentials of Control Systems

Discretization of Continuous-time
Transfer-function Systems

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) TF discretization 1/8

Overview

» Consider the discrete-time controller implementation scheme

AT
ulk] —ZoH 2 6 (s) 10— yik]

where u[k]| and y[k] have the same sampling time.

» for this note, we use [k] to distinguish DT signals from their CT
counter parts

v

Goal: to derive the transfer function from u[k] to y[k].

» Solution concept: let u[k] be a discrete-time impulse (whose Z
transform is 1) and obtain the Z transform of y[k].

UW Linear Systems (X. Chen, ME547) TF discretization

2/8



Solution

u(t)

ulk] — ZOH L 6 (s) 2

o —— ylk]

» ulk] is a DT impulse = after ZOH

1(t)-1(t—AT) = U(s) =

1, 0<t<AT 1— e sAT
U(t) — ) = B
0, otherwise s

» Hence

UW Linear Systems (X. Chen, ME547) TF discretization 3/8

Solution

ulk] —ZoH 2 6 () 1o 4]

1 — e—sAT

e—sAT
s ]

y(t) = £ [G(s) ] - [G(s)ﬂ = [G(s)

» Sampling y(t) at AT and performing Z transform give:
( )

S

7(t) ?(t—AA T)

7 N\

Gz)=2! [G(s)g y~ [G(s) SAT]

. t=kAT t=kAT,

{ 29[k] =y[k—1]!!! J

_z {/:—1 [6(5)1]

S t:kAT} - Z_lz {E_l [G(S)él t:kAT}

UW Linear Systems (X. Chen, ME547) TF discretization 4/8




Solution

ulk] —[ZOH G (s)

The zero order hold equivalent of G(s) is

G(z)=(1-zNHz { £ [G(s)ﬂ

where AT is the sampling time.

UW Linear Systems (X. Chen, ME547) TF discretization 5/8

Obtain the ZOH equivalent of

a
G(s) =
s+a
Following the discretization procedures we have &8 — _a 1 _ 1
g P s  s(sta) s  s+a

and hence

£t {@} = 1(t) — e '1(t)

Sampling at AT gives 1[k] — e~ @A T1[k], whose Z transform is

z z z(1 — e 3AT)

z—1 z-—e BT (z—1)(z— e A7)

Hence the ZOH equivalent is

Z(]. . e—aAT) 1 — e—aAT

(1- Z_l)(z 1)z _eAT) 7 _e-aBT

UW Linear Systems (X. Chen, ME547) TF discretization

6/8



Matlab command

In MATLAB, the function c2d.m computes the ZOH equivalent of a
continuous-time transfer function, as well as other discrete equivalents. For

and AT =1, the following script
T=1,;

numG=1; denG=[1 0 0];

G = tf(numG,denG) ;

Gd = c2d(G,T);

produces the correct ZOH equivalent.

UW Linear Systems (X. Chen, ME547) TF discretization 7/8

Exercise

Find the zero order hold equivalent of G (s) = e s OAT < L <3AT,
where AT is the sampling time.

UW Linear Systems (X. Chen, ME547) TF discretization

8/8
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Outline

1. Definitions in Lyapunov stability analysis
2. Stability of LTI systems: method of eigenvalue/pole locations

3. Lyapunov's approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case

4. Recap

UW Linear Systems (X. Chen, ME547) Stability

2/73



1. Definitions in Lyapunov stability analysis

UW Linear Systems (X. Chen, ME547) Stability 3/73

Finite dimensional vector norms

Let v € R”. A norm is:

» a metric in vector space: a function that assigns a real-valued
length to each vector in a vector space, e.g.,

» 2 (Euclidean) norm: |[v|; = VvTv = /vZ + 3+ -+ v2
default in this set of notes: || - || = - |2

UW Linear Systems (X. Chen, ME547) Stability

4/73



Equilibrium state
For n-th order unforced system
x="f(x,t), x(th) = xo

an equilibrium state/point x, is one such that

f(xe,t) =0, Vt

the condition must be satisfied by all t > 0.
if a system starts at equilibrium state, it stays there

e.g., (inverted) pendulum resting at the verticle direction

vvyyvyy

without loss of generality, we assume the origin is an equilibrium
point
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Equilibrium state of a linear system

For a linear system
x(t) = A(t)x(t), x(ty) = xo

» origin x, = 0 is always an equilibrium state

» when A(t) is singular, multiple equilibrium states exist
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Continuous function

The function f : R — R is continuous at xp if Ve > 0, there exists a
d (X0, €) > 0 such that

Ix — x| <6 = |f(x) = f(x)| <€

Graphically, continuous functions is a single unbroken curve:

Figure: Continuous functions

e.g., sinx, x2, sign(x — 1.5)
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Lyapunov's definition of stability

» Lyapunov invented his stability theory in 1892 in Russia.
Unfortunately, the elegant theory remained unknown to the West

until approximately 1960.

» The equilibrium state 0 of x = f(x, t) is stable in the sense of
Lyapunov (s.i.L) if for all € > 0, and ty, there exists 0 (e, ty) > 0
such that ||x () |2 < & gives ||x (t) ||2 < € for all t > t,

Figure: Stable s.i.L: ||x (o) || < & = ||x(t) || < € Vt > to.

8/73

UW Linear Systems (X. Chen, ME547) Stability



Asymptotic stability

The equilibrium state 0 of x = f(x, t) is asymptotically stable if
» it is stable in the sense of Lyapunov, and

» for all € > 0 and ty, there exists d (¢, tg) > 0 such that
1x (to) ||]2 < O gives x(t) — 0

P
,/ \\ 6
e
4 \
’ 0] o= 2 #(t)
Z‘(to) V4 \ \
| ] \ ]
\ ) 7 y
\\ ~L /
4
r— 0 \\N ’//

t— o0

Figure: Asymptotically stable i.s.L: |[x (tp) | < 0 = [[x(t)] — O.
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2. Stability of LTI systems: method of eigenvalue/pole locations
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10/73



Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for x = Ax or
x(k + 1) = Ax(k) can be concluded immediately based on the
eigenvalues, \'s, of A:

> the response e”x(ty) involves modes such as !, tet,
e’t coswt, e?Fsinwt

> the response A*x(kg) involves modes such as A, kAK—1,
r¥ cos k6, r¥sin k6

e’t 5 0ifo<0; e —=0if <0
> AN 0if A <1 rF = 0if r] = Vo2 +w?| =) <1

\4
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Stability of the origin for x = Ax

stability Ai(A)
at 0
unstable  Re{\;} > 0 for some A; or Re {\;} <0 for all \;’s but
for a repeated \,, on the imaginary axis with
multiplicity m, nullity (A — A\,/) < m (Jordan form)
stable Re{A;} <0 for all \;'s and V repeated A,, on the
i.s.L imaginary axis with multiplicity m,
nullity (A — A,,/) = m (diagonal form)
asymptotically Re{\;} <0 for all \; (A is then called Hurwitz)
stable
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Example (Unstable moving mass)

> )\1:)\2:0,m:2,

nullity (A — A\;1) = nullity [ 8 (1) ] =1<m

> i.e., two repeated eigenvalues but needs a generalized
eigenvector = Jordan form after similarity transform

1 t
01

> verify by checking et = [

]: t grows unbounded
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Example (Stable in the sense of Lyapunov)

X:AX,A:[O O]

> )\1:)\2:0,m:2,

nullity (A — A;1) = nullity [

0 O]—Q—m

01

» verify by checking et = [ L0 ]
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Routh-Hurwitz criterion

» the Routh Test (by E.J. Routh, in 1877): a simple algebraic
procedure to determine how many roots a given polynomial

A(s) = aps" + ap_18"  + - Fais+ ag

has in the closed right-half complex plane, without the need to
explicitly solve for the roots

» German mathematician Adolf Hurwitz independently proposed in
1895 to approach the problem from a matrix perspective

» popular if stability is the only concern and no details on
eigenvalues (e.g., speed of response) are needed
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Routh-Hurwitz criterion

» the asymptotic stability of the equilibrium point 0 for x = Ax
can also be concluded based on the Routh-Hurwitz criterion

simply apply the Routh Test to A(s) = det (sl — A)
> recap: the poles of transfer function G(s) = C(s/ —A) "B+ D
come from det (s/ — A) in computing the inverse (s/ — A) ™"

\4
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The Routh Array

for A(s) = a,s" + a,_18"t + - -+ + a1s + ao, construct

s" | @ ap2 ans
s" Va1 ap-3 ans
5n_2 dn—2 dn—4 dn—b6
5n_3 dn-3 4n-5 dn-7

st X, x

O x,

dn—6
dn—7

» first two rows contain the coefficients of A(s)
» third row constructed from the previous two rows via

a b

c d
bc —ad xc — ay

c

c

UW Linear Systems (X. Chen, ME547)

Stability

The Routh Array

X
Y
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for A(s) = a,s" + a,_18"t + -+ + a1s + ag, construct

s" | an  an—2 an-s
I T
"% | Gn—2 Gn-4 Gn_s
5n_3 dn—3 AGn—5 (dn-7
st ox, X

s x,

dn—6
dn-7

» All roots of A(s) are on the left half s-plane if and only if
all elements of the first column of the Routh array are

positive.

UW Linear Systems (X. Chen, ME547)
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The Routh Array

Example (A(s) = 2s* + s° + 35 + 5s + 10)

o 2 3 10
o 1 5 0
2[3-25-_7 10 0
st 5 — 0 0 0
g 10 0 O

» two sign changes in the first column
» unstable and two roots in the right half side of s-plane
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The Routh Array

special cases:

» |If the 1st element in any one row of Routh’s array is zero, one
can replace the zero with a small number ¢ and proceed further.

» If the elements in one row of Routh’s array are all zero, then the
equation has at least one pair of real roots with equal magnitude
but opposite signs, and/or the equation has one or more pairs of
imaginary roots, and/or the equation has pairs of
complex-conjugate roots forming symmetry about the origin of
the s-plane.

» There are other possible complications, which we will not pursue
further. See, e.g. "Automatic Control Systems", by Kuo, 7th
ed., pp. 339-340.
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Stability of the origin for x(k 4+ 1) = f (x(k), k)

» stability analysis follows analogously for nonlinear time-varying
discrete-time systems of the form

x (k+1) = f(x(k), k), x (ko) = xo
» equilibrium point x.:
f(xe, k) = xe, Vk

» without loss of generality, 0 is assumed an equilibrium point
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Stability of the origin for x(k + 1) = Ax(k)

stability Ai(A)
at 0
unstable |Ai| > 1 for some A; or [\;| <1 for all A\;'s but for a

repeated ), on the unit circle with multiplicity m,
nullity (A — An/) < m (Jordan form)
stable |Ai| <1 for all A\;'s but for any repeated A, on the unit
i.s.L circle with multiplicity m, nullity (A — A\,/) = m
(diagonal form)
asymptotically |A;| < 1 for all A\; (such a matrix is called a Schur
stable matrix)
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Routh-Hurwitz criterion for DT LTI systems
» the stability domain |\;| < 1 is a unit disk
» Routh array validates stability in the left-half plane

» bilinear transformation maps the closed left half s-plane to the
closed unit disk in z-plane

A Imaginary A maginary

s-plane z-plane

Bilinear transform

z=1F ors=12 /\
> Real 1\J
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1

> Real

Routh-Hurwitz criterion for DT LTI systems

» Given A(z) = z" + a;z" ' + .- + a,, procedures of
Routh-Hurwitz test:

» apply bilinear transform
A _ ([ 14s n 1+s n—1 _. A%(s)
(Z)|Z:g— 1—s + a1 1—s + -+ a, = (1=s)"
» apply Routh test to
A*(s)=als"+ar (s"l 4.+ af = A(Z)\zzg (1—3s)"
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Routh-Hurwitz criterion for DT LTI systems

Example (A(z) = z° + 0.82° 4+ 0.6z + 0.5)

> A(s) = A(2)],cres (1= 5)* = (1 +5)° +0.8(1 +5)* (1 —5) +
06(14s)(1—5s)°+05(1—5)=03s>+3.1s2+ 175429
» Routh array

s3 0.3 1.7
s? 3.1 2.9
s | 17— =142 0
s° 2.9 0

» all elements in first column are positive = roots of A(z) are all
in the unit circle
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3. Lyapunov's approach to stability
Relevant tools

Lyapunov stability theorems
Instability theorem
Discrete-time case
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Lyapunov's approach to stability

The direct method of Lyapunov to stability problems:
» no need for explicit solutions to system responses

» an “energy’ perspective

» fit for general dynamic systems (linear/nonlinear,
time-invariant/time-varying)
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Stability from an energy viewpoint: Example
Consider spring-mass-damper systems:

X] = Xo (xq: position; x, : velocity)
k b

Xo = ——Xx] — —Xp, b>0 (Newton's law)
m m

» X (A)'s are in the left-half s-plane=- asymptotically stable
» total energy
. . . 1 2 1 2
£ (t) = potential energy + kinetic energy = §kX1 + 5> M

» energy dissipates / is dissipative:
E(t) = kxyx1 + mxoxo = —bx2 < 0

» £ =0 only when x, = 0. Since [x1, x2]" = 0 is the only
equilibrium state, the motion will not stop at x, = 0, x; # 0.
Thus the energy will keep decreasing toward 0 which is achieved
at the origin.

UW Linear Systems (X. Chen, ME547) Stability 28 /73



Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

x(t) = f(x(t),t), x(to) = xo
x(k+1)=f(x(k), k), x(ko) = xo

v

assume the origin is an equilibrium state

» energy function = Lyapunov function: a scalar function of x
and t (or x and k in discrete-time case)

» goal is to relate properties of the state through the Lyapunov
function

» main tool: matrix formulation, linear algebra, positive definite
functions
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Relevant tools

Quadratic functions

» intrinsic in energy-like analysis, e.g.

1212_1X1TkO X1
Ekxl—l—§mx —E[XZI 0 m X

» convenience of matrix formulation:

1, 1 BERHEEREE
§kx1 + 5 M + X1X0 = [ X2 % G %
9T
1 1 X1 g % 0 X1
§kx12—|—§mx22+x1x2+c: X2 220 X2
1 0 0 ¢ 1

» general quadratic functions in matrix form

R(x)=x"Px, PT =P

UW Linear Systems (X. Chen, ME547) Stability
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Relevant tools

Symmetric matrices
» recall: a real square matrix A is
» symmetricif A= AT
» skew-symmetric if A= —AT

» examples:
1 2 1 2 0 2
2 17| -2 1] -20

Any real square matrices can be decomposed as the sum of a
symmetric matrix and a skew symmetric matrix:

1 2]_[1 25],[0 -05
©& 13 4| |25 4 05 0
P+PT+P—PT
2 2
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formula: P =

Relevant tools

Symmetric matrices
» A real square matrix A € R"™" is orthogonal if ATA = AAT = |
» meaning that the columns of A form a orthonormal basis of R”
» to see this, writing A in the column-vector notation

A= dy d» ... dp
weget
C T T T T [~ 7]
T T T
a- a a- a ... dsa
2d1l dya 2 dn 0 1
ATA = —
T T T
_anal an32 ana,,_ _O O ]__

namely, a/a; = 1a/ a, = 0 Vj # m.
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The eigenvalues of symmetric matrices are all real. \

Proof: V: A € R™" with AT = A.
Eigenvalue-eigenvector pair: Au = \u= 1" Au = X\t u, where T is
the complex conjugate of u. T" Au is a real number, as

ﬁ — u" Au
=u'Au - AER™"
_ UTATU A = AT
=X’z o (Au) =(w)
= )Mo'u cu'ueR
—T"Au - Au=)\u

— _T |
Also, TTu € R. Thus A = Z2% must also be a real number. H

a'u
4

33/73
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Important properties of symmetric matrices

The eigenvalues of symmetric matrices are all real. \
The eigenvalues of skew-symmetric matrices are all imaginary or zero. \
All eigenvalues of an orthogonal matrix have a magnitude of 1. \

matrix structure analogy in complex plane

symmetric real line
skew-symmetric imaginary line
orthogonal unit circle

34/73
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Example

> g g . eigenvalues (= £2) are all real
121 [10 0 2 |
> = —
21 [O 1]+[20]:>e|genva|ues( 142 by
spectral mapping theorem) are all real
> _02 é . eigenvalues (= £2j) are all imaginary
1 2] 10 0 2 . .
> = 1_[0 1]+[_2 0]:>e|genva|uesare1i2j
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The spectral theorem for symmetric matrices

When A € R"*" has n distinct eigenvalues, we can do diagonalization
A = UANU™!. The following spectral theorem significantly simplifies
the result when A is symmetric.

Theorem (Symmetric eigenvalue decomposition (SED))

V:AcR™ AT = A, there always exist \; € R and u; € R", s.t.

A=Y Nuu| = UNUT (1)
i=1

> \;’s: eigenvalues of A

» wu;: eigenvector associated to \;, normalized to have unity norms
> U=[u,un,- - ,u,,]T is orthogonal: UTU = UUT = |

> A = diagonal(A\1, Ao, ..., Ap)
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Elements of proof for SED

V: A e R™ with AT = A, then eigenvectors of A, associated with
different eigenvalues, are orthogonal.

Let Au; = \ju; and Au; = N\ju;. Then v Auj = u X\ju; = \jul uj. In
the meantime, u] Auj = u] ATu; = (Au;) " uj = N\ju] uj. So
Aol up = Nulup But \; £ Aj. It must be that u u; = 0. O

SED now follows:
» If A has distinct eigenvalues, then U = [uy, up, - - - ,un]T is
orthogonal if we normalize all the eigenvectors to unity norm.
» If A has r(< n) distinct eigenvalues, it turns out can choose
multiple orthogonal eigenvectors for the eigenvalues with
none-unity multiplicities. See proof in supplementary notes.
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Rethinking symmetric matrices

With the spectral theorem, next time we see a symmetric matrix A,
we immediately know that

» )\, is real for all i
» associated with );, we can always find a real eigenvector

» 3 an orthonormal basis {v;}7_,, which consists of the
eigenvectors

» if Ac R?%? then if you compute first A\;, A\» and u;, you won't
need to go through the regular math to get u, but can simply
solve for a up that is orthogonal to u; with [|uy|| = 1.

UW Linear Systems (X. Chen, ME547) Stability
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Rethinking symmetric matrices

SED of A = [ \% \f ] . Computing the eigenvalues gives

o|et[5\;§A 7*_@] =35-122 + X -3=(\1—-4)(A—-8)=0

:>)\1:4, A =8

» First normalized eigenvector:

(A—)\ll)t1:0:>[\% ?]n:O:Ml:[

» A is symmetric = eigenvectors are orthogonal to each other:
1

choose t, = [ 3— ] . No need to solve (A — \y/) t, = 0!

_ﬁ]
2

N|—=
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Theorem (Eigenvalues of symmetric matrices)

If A= AT € R™" then the eigenvalues of A satisfy

TA

Amax = Max x ; (2)
xeR" x#£0 ”X”2
TA

/\min — min = (3)

xR, x£0 || x]|3

Perform SED to get A= Y7, A\ju/ u; where {u;}]_; spans R". Then
any vector x € R" can be decomposed as x = >, a;u;. Thus

xT Ax (Z, OéiUi)T Z,- iU ZI )\,-04,2

max = max = max = )\
2 . 2 : 2 max
x20 || x5 o > ai Y00
[]
y
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Positive definite matrices

» eigenvalues of symmetric matrices are real = we can order the
eigenvalues.

Definition

A symmetric matrix P is called positive-definite if all its eigenvalues
are positive.

Equivalently,

Definition (Positive Definite Matrices)

A symmetric matrix P € R"*" is called positive-definite, written
P =0, if x"Px > 0 for all x(# 0) € R".

P is called positive-semidefinite, written P > 0, if x” Px > 0 for
all x € R”
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Negative definite matrices

Definition

A symmetric matrix @ € R"" is called negative-definite, written
Q=<0,if —Q =0, ie, x"Qx <0 for all x(#0) € R".

Q is called negative-semidefinite, written Q < 0, if x” Qx < 0 for
all x € R”

» When A and B have compatible dimensions, A = B means
A—B > 0.
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Positive definite matrices

» Positive-definite matrices can have negative entries:

P = [ _21 _21 ] is positive-definite, as P = PT and take any

v =[x,y]", we have

x| 2 1 X
T - 2 2
vPv—[y] [_1 2][y1—2x+2y 2Xxy

=x*+y*+(x—y)* >0

and the equality sign holds only when x = y = 0.
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Positive definite matrices

» Conversely, matrices whose entries are all positive are not
necessarily positive-definite.

A= [ L2 ] is not positive-definite:

A [33][A]-
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Positive definite matrices

For a symmetric matrix P, P = 0 if and only if all the eigenvalues of
P are positive.

Since P is symmetric, we have

)(7—/Q)(
)\max(P) o Xelgr]v,a);;éo ||X||%

TA
Amin (P) = min X

xeRn, x£0 ||x]|3

which gives xT Ax € [Aminl[x]13, Amax||X||3]. Thus
xTAx >0, x #0 < Amin > 0. ]
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Relevant tools

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to
check if a symmetric matrix P is positive (semi-)definite or not:

» P >0 (P = 0) < the leading principle minors defined below are
positive (nonnegative)

» P>~ 0(P>=0)< P can be decomposed as P = N"N where N
is nonsingular (singular)

P11 P12 P13
The leading principle minors of P = | po1 p» pr3 | are defined as
P31 P32 P33

P11 P12
~det . det P.
Pu [ P21 P22 ]

46 /73

UW Linear Systems (X. Chen, ME547) Stability



Relevant tools

Checking positive definiteness of a matrix.

None of the following matrices are positive definite:

o e AL
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Relevant tools

Definition (Positive Definite Functions)

A continuous time function W : R” — R, called to be PD,
satisfying

» W(x) >0 forall x+#0

> W(0)=0

» W(x) — oo as |x| = oo uniformly in x

In the three dimensional space, positive definite functions are
“bowl-shaped”, e.g., W (x1,x) = x + x5 .

\
\\
\N&‘ékb

R\
R

52 2
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Relevant tools

Definition (Locally Positive Definite Functions)

A continuous time function W : R” — R, called to be LPD,
satisfying

» W(x)>0forall x#0and x| <r

» W(0)=0

In the three dimensional space, locally positive definite functions are
“bowl-shaped” locally, e.g., W (xi,x2) = x? +sin® x, for x; € R and
‘X2‘ <7
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Relevant tools

Exercise

Let x = [x1, X0, x3] . Check the positive definiteness of the following
functions

1. V(x)=x; +x3 + x5 (PD)
2. V(x) = x2 + x2 + 3x2 — x¢ (LPD for |x3| < v/3)
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3. Lyapunov's approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case
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Lyapunov stability theorems

» recall the spring mass damper example in matrix form

A MR

» energy function is PD:
& (t) = potential energy + kinetic energy = Zkx? + 3 mx;
and its derivative is NSD:

2

: oE o€ | .. . : :
E(t) = la_xl’ 8_><2] P, %] " = kxaxs + mxso (6)
k b o0& o0&
= k1X1X2 -+ mxo (_EXI — ;XQ) = [a—Xl, a—le Ax (7)
— —bx?

» Remark: £(t) is a derivative along the state trajectory: (6) takes
the derivative of £ w.r.t. x =[x, x]"; (7) is the time derivative
along the trajectory of the state.
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The notion of derivative along state trajectories

» Generalizing the concept to system x = f (x): let V (x) be a
general energy function, the energy dissipation w.r.t. time is

f
dV(x) [oV av oV 1)

d oo o) |

also denoted as L¢V/(x), the Lie derivative of V(x) w.r.t. f(x).

» We concluded stability of the system by analyzing how energy
will dissipate to zero along the trajectory of the state.
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The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is stable in
the sense of Lyapunov if there exists a locally positive definite
function V/(x, t) such that V (x,t) < 0 for all t > ty and all x in a
local region x : |x| < r for some r > 0.

» such a V(x,t) is called a Lyapunov function

> ie., V(x)is PD and V(x) is negative semidefinite in a local
region |x| < r

The equilibrium point 0 of x(t) = f (x(t),t), x(ty) = xo is locally
asymptotically stable if there exists a Lyapunov function V(x) such

that V (x) is locally negative definite.
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The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is globally
asymptotically stable if there exists a Lyapunov function V(x) such

that V/(x) is positive definite and V/(x) is negative definite.

UW Linear Systems (X. Chen, ME547) Stability 55 /73

Lyapunov stability concept for linear systems

» for linear system x = Ax, a good Lyapunov candidate is the
quadratic function V (x) = x" Px where P = PT and P = 0

» the derivative along the state trajectory is then
V(x) = x"Px + xT Px
= (Ax)" Px + xT PAx
= x! (ATP + PA) X

» such a V (x) = x" Px is a Lyapunov function for x = Ax when
ATP+PA=0

» and the origin is stable in the sense of Lyapunov
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Theorem (Lyapunov stability theorem for linear systems)

For x = Ax with A € R"*", the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q > 0, the
Lyapunov equation

ATP+PA=—Q

has a unique positive definite solution P = 0, PT = P.

o

1] ] y XT X >\ min —a o
=" %:—XTgXS—%:V(t)Se 'V (0). Since
max

Q > 0and P >0, ()\Q)min_> 0 and (Ap),... > 0. Thus o > 0; V (t)
decays exponentially to zero. V(x) > 0 =V(x) =0 only at x = 0.

Therefore, x — 0 as t — 00, regardless of the initial condition. o

o
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<" it 0 of x = Ax is asymptotically stable, then all eigenvalues of
A have negative real parts. For any Q, the Lyapunov equation has a

unique solution P. Note x (t) = e*'xy — 0 as t — oco. We have
0

W— xT(0) Px (0) = /OOO %XT (t) Px (t) dt = /OOO xT () (ATP+ PA) x (t) dt

— x(0)7 Px(0) = /OOOXT () Qx (t) dt = /OOOX(O) ATt QeAty (0) dt

If @ = 0, there exists a nonsingular N matrix: @ = N"N. Thus

x(0)7 Px (0) = /OOO INe“tx (0) |[2dt > 0

x(0)" Px(0) =0 only if xo =0

Thus P >~ 0. Furthermore
P = / e Qe dt
0
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Lyapunov stability theorems

Let x = Ax, A= [ :1 (1) ] The Lyapunov equation is

[—1 1”;»11 P12]+[P11 P12][—1 1]:_[1 o]
-1 0 P12 P22 P12 P22 -1 0 0 1

P Q
We need
—2p11 — 2p12 = —1 p11 =1
—p12—p+pi1=0 = ppx=23/2
2p12 = —1 pi2 = —1/2
leading principle minors: py; > 0, p1ipos — p3, > 0
= P > 0 =-asymptotically stable
UW Linear Systems (X. Chen, ME547) Stability 59 /73
Essense of the Lyapunov Eq.
Observations:
» ATP + PAis a linear operation on P: e.g.,
a1 A | |
A= , Q= q @ |, P=|p p
do1 422 ’ ‘ ’ ‘
T 1 e o ]
A pir P2 | + | P1 P2 [ ]— q1 Q@
dp1 4z
| | |
ATp; +anps + anp = —q
AT py + arap1 + anp = —qo
60/73
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Essense of the Lyapunov Eq.

Observations: with now

ATpi + anpr + anps = —q

ATP+PA=Q &<
A'py + apr + anp: = —q2

» can stack the columns of ATP + PA and Q to yield, e.g.
AT 0 P anl anl || p1 | _ [ g1 |
0 AT P2 aipl axnl | | p2 p)

AT 0 i annl anl _Pl_:__Ch_
0 AT ainl  axl | P2 | g

La
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The Lyapunov Eq.: Existence of solution

. AT 0 alll 321l
LA a [ 0 AT ] + [ 312I 322l

» can simply write L4 = | ® AT+ AT ® | using the Kronecker

mirror symmetric

[ bC b C ... byC |
b1C bnC ... by),C
product notation B® C = 2_1 2_2 2_
b C bnC ... by,,C

> can show that L, is invertible if and only if \; + ); # 0
for all eigenvalues of A.

» To check, let ATu; = \ju; and ATu; = \;ju;. Note that
u,-uJ-TA + ATu,-uJ-T = u; ()\jUj)T + /\,-u,-ujT = (N + ) u,-uJ-T. So
Ai + A is an eigenvalue of the operator L4 (P). If A\; + \; #0,
the operator is invertible.
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The Lyapunov Eq.: eigenvalues

|

-1 1
-1 0

], A2 = —05%i/3/2

AT + a1l aryl
_ T T . 11 21
LA_I@A +A ®l_[ 312/ AT+322/]
[ = i [ R
B 1 -110 -1| | 1 -1]0 -1
a 1 0 -1 -1 | 1 0| -1 -1
0 1 |1 0] |0 1]1 0|

The eigenvalues of L4 are, e.g., by Matlab, —1, —1, —1 — /3,
—1 + /3, which are precisely A1 + A1, A1+ A2, Ao + A1, Ao + Ao

UW Linear Systems (X. Chen, ME547)
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Procedures of Lyapunov's direct method

1. Given A, select an arbitrary positive-definite symmetric matrix @
(e.g., I).

2. Find the solution matrix P to the continuous- or discrete-time
Lyapunov equation.

3. If a solution P cannot be found, the origin is not asymptotically
stable.

4. If a solution is found:

» if P is positive-definite, then A is Hurwitz and the origin is
asymptotically stable;

» if P is not positive-definite, then A has at least one eigenvalue
with a positive real part and the origin is an unstable equilibrium.
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It suffices to select @ =/

For linear systems we can let @ = / and check whether the resulting
P is positive definite. If it is, then we can assert the asymptotic
stability:

» take any @ > 0. there exists @ = NN, where N is invertible,
yielding
ATP+ PA=—|
()
NTATN-TNTPN+NTPNNTAN = —N"N
—_— Y
AT P P A

» A= N"1AN and A are similar matrices and have the same
eigenvalues
» P = NTPN and P have the same definiteness. If we can find a
positive definite solution P then the P will also be positive
definite. Vise versa.
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Instability theorem

» failure to find a Lyapunov function does not imply instability

» (for nonlinear systems, Lyapunov function can be nontrivial to

find)

The equilibrium state 0 of x = f (x) is unstable if there exists a
function W (x) such that

> W(x) is PD locally: W(x) > 0V |x| < r for some r and

W(0) =0
> W(0)=0
» there exist states x arbitrarily close to the origin such that
W(x) >0
66 /73




Discrete-time case: key concept of Lyapunov

For the discrete-time system
x(k+1) = Ax (k)
we consider a quadratic Lyapunov function candidate
V(x)=x"Px, P=P" =0
and compute AV (x) along the trajectory of the state

V (x(k+1)) = V(x(k)) =x" (k) \[ATPA — Plx (k)

The above gives the DT Lyapunov stability theorem for LTI systems.
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DT Lyapunov stability theorem for linear systems

For system x (k + 1) = Ax (k) with A € R"*", the origin is
asymptotically stable if and only if 3 Q > 0, such that the
discrete-time Lyapunov equation

ATPA—P=-Q

has a unique positive definite solution P = 0, PT = P.
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The DT Lyapunov Eq.

ATPA—P=-Q

» Solution to the DT Lyapunov equation, when asymptotic
stability holds (A is Schur), comes from the following:

M V (x (0 Zx (k) [ATPA — P] x (k)

k=0

:—Zx )" QA" (0)

= P = Z (AT)" Qak
=

» Can show that the discrete-time Lyapunov operator
Ly = ATPA — P is invertible if and only if for all 7,

(Aa); (Aa); #1
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DT Lyapunov stability: MATLAB command

0 1 0

x(k+1)=Ax(k), A= 0 0 1
0.275 —-0.225 —-0.1

Matlab Commands:

A=[010;001; 0.275-0.225 -0.1]

Q = eye(3)

P = dlyap(A',Q) % check function definition in Matlab help

eig(P)
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Recap

» Internal stability

» Stability in the sense of Lyapunov: ¢, § conditions
» Asymptotic stability

» Stability analysis of linear time invariant systems (x = Ax or
x(k +1) = Ax(k))
» Based on the eigenvalues of A
» Time response modes
» Repeated eigenvalues on the imaginary axis
» Routh’s criterion

» No need to solve the characteristic equation

> Discrete time case: bilinear transform (z = 1£2)
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Recap

» Lyapunov equations
Theorem: All the eigenvalues of A have negative real parts if
and only if for any given @ = 0, the Lyapunov equation

ATP+ PA=-Q

has a unique solution P and P = 0.

Note: Given Q, the Lyapunov equation ATP + PA= —Q has a
unique solution, when A\a; + Aa; # 0 for all / and J.
Theorem: All the eigenvalues of A are inside the unit circle if
and only if for any given Q > 0, the Lyapunov equation

ATPA—P=—-Q@

has a unique solution P and P = 0.
Note: Given Q, the Lyapunov equation ATPA — P = —Q has a
unique solution, when A4 ;Aa; # 1 for all / and j.
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Recap

» P is positive definite if and only if any one of the following
conditions holds:

1. All the eigenvalues of P are positive.
2. All the leading principle minors of P are positive.
3. There exists a nonsingular matrix N such that P = NTN.
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Outline

MY

. Concepts

2. DT controllability
Controllability and controllable canonical form
Controllability and Lyapunov Eq.

3. DT observability
Observability and observable canonical form

4. CT cases
5. The degrees of controllability and observability
6. Transforming controllable systems into controllable canonical forms

7. Transforming observable systems into observable canonical forms
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Recap

General LTI state-space models:

x(t) = Ax(t) + Bu(t) or x (k + 1) = Ax (k) + Bu (k)
y = Cx+ Du

continuous time discrete time
Lyapunov Eq. | ATP 4+ PA=—Q ATPA— P =—-Q
unique sol. Ai(A) + )\j(A) £ 0 IAi(A)] \)\j(A)| <1

cond. Vij Vi,
_ [ ATt N AL _ 0o T\ k K
solution P iy fO. € Qe dt | P = _Zk:_o (AT)" QA
(if A'is Hurwitz) (if A'is Schur)
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The concept of controllability and observability
Controllability:

» inputs do not act directly on the states but via state dynamics:
x(t) = Ax(t)+ Bu(t) or x(k+1)=Ax(k)+ Bu(k) (1)

» can the inputs drive the system to any value in the state space
in a finite time?

Observability:

» states are not all measured directly but instead impact the
output via the output equation:

y = Cx+ Du

» can we infer fully the initial state from the outputs and the
inputs? (can then reveal the full state trajectory through (1))
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In-class demo

Controllability and inverted pendulum on a cart

5/48
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The concept of controllability and observability

position_ velocity . position  velocity
| T1 = X2 |

WAl — |

— W\, L W

» assume x(0) =0
» because of symmetry, we always have

x1(t) =x3(t), x2(t) =x4(t), Vt >0

» state cannot be arbitrarily steered = uncontrollable

6/48
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Controllability definition in discrete time

A discrete-time linear system x (k + 1) = A(k)x (k) + B(k)u (k) is
called controllable at kK = 0 if there exists a finite time k; such that
for any initial state x (0) and target state x;, there exists a control
sequence {u(k); k=0,1,..., ki } that will transfer the system from

x(0) at k =0 to x; at k = k.
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Controllability of LTI systems

x(k+4+1) = Ax (k) + Bu(k) = x(n) = A"x(0) + Zz;é A—1=kBy (k)

_u(n—l)_
=[x (n) — A"x (0) :lB,AB,A2B,...,A”_1Bl ”(”:_ 2)
" u©

» given any x (n) and x(0) in R”,
[u(n—1),u(n—2),...,u(0)]" can be solved if the columns
of Py span R"

» equivalently, system is controllable if Py has rank n (full row

rank)
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Controllability of LTI systems Cont'd
x(k+1) = Ax (k) + Bu (k) =

x(n) — A" (0) = [B,AB, A%B, ..., A" 'B]

-~

Fe u (0)
» also, no need to go beyond n: adding A"B, A""1B, ... does not
; & g,
increase the rank of Py (Cayley Halmilton Theorem):
| U(kl — ].) ]
u (kl — 2)
x(ki)—ARx(0)=[ B AB ... A"lB|... Ak~lB] _
rank:::;k(Pd) u (0)
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Theorem (Cayley Halmilton Theorem)

Let A€ R"™" A" s linearly dependent with {I, A, A% -.- A"t}

Consider characteristic polynomial

p(N) = A"+ A"+ g A+ o = det (A — A)
=(A=A)" . (A=X)™
= p(A)=A"+c A" b A+ ool
:(A—)\ll)ml...(A—)\p/)mp, my+my+---+mp,=n
Take any eigenvector or generalized eigenvector t;, say, associated to A;:
p(A) t; = (A = )\1/)m1 .. (A = )\p/)mp t; =
(A= XMD)™ . (A=2D""  Oiti = Apt) = (A= A)™ .. (A= A)™t =0
» Therefore p(A)[t1, t2, ..., t,] = 0.

» But T = [t1, to,...,ty] is invertible. Hence
p(A)=0= A"= —gl —gA— - —c,_1 A" L.

UW Linear Systems (X. Chen, ME547)
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Arthur Cayley: 1821-1895, British mathematician

» algebraic theory of curves and surfaces, group theory, linear
algebra, graph theory, invariant theory, ...

» extraordinarily prolific career: 71,000 math papers
William Hamilton: 1805-1865, Irish mathematician

» optics and classical mechanics in physics, dynamics, algebra,
quaternions, ...

» quaternions: extending complex numbers to higher spatial
dimensions: 4D case

?=j?=k®=ik=—1

now used in computer graphics, control theory, orbital
mechanics, e.g., spacecraft attitude-control systems
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Theorem (Controllability Theorem)

The n-dimensional r-input LTI system with
x(k+1) = Ax (k) + Bu(k), A R™", B € R™" s controllable if
and only if either one of the following is satisfied

1. The n x nr controllability matrix

Ps= [B,AB,A’B, ..., A" 'B]

has rank n. (proved in previous three slides)
2. The controllability gramian

k1
W= ABBT (AT)"

k=0

is nonsingular for some finite k;.

UW Linear Systems (X. Chen, ME547) Controllability and Observability
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Proof: from controllability matrix to gramian

Recall

x(n) — A’ (0) = [B,AB,A’B, ..., A" B] [u(n — 1),u(n=2),...,u(0)]"

Py

(2)

» Py is full row rank=P,P] = ZA"BBT (AT)k is nonsingular
k=0

7

~~

W.q at k1=n
» a solution to (2) is

[u(n—1),u(n—=2),...,u(0)] =PJ (PdeT)_1 [x (n) — A"x (0)]
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Example

A2+ A2 | = rank(Py) =2 < 3 =-uncontrollable

Intuition: x; = A\1xq is not impacted by the control input at all.
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Example

position_ velocity _ position  velocity
l 1 = X2 |
Z1, 2 T3 = T4 T3, T4
K K
—VvW1 o, LY, W
— —
B ONNO) ONNO) B
Matlab commands:
P=ctrb(A,B); rank(P)
xi(k+1) 04 04 0 0 x1 (k) 0.3
xa(k+1) | | =09 —007 0 0 xa(k) |, | 04
" B AB A%B A3B ]

—~N——— % ~ -~ - ~
0.3 0.28 —0.0072 —0.0953
0.4 -0.298 —-0.2311 0.0227

0.3 0.28 —0.0072 —0.0953

rank (Py) = rank

0.4 —-0.298 —-0.2311 0.0227

u (k)

= 2 = uncontrollable
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Example
Yy=—"Vm
u = FS — B
—_—
OFAN :
Kq Ky
4| Ve —b/m —1/m —1/m Vin 1/m
E Fkl = kq 0 0 Fk1 + 0 F
Fi, ko 0 0 Fu, 0
1/m —b/m* b*/m? — ki/m? — ky/m?
P=| 0 k/m —bky /m? = rank(P) =2
0 k2/m —bkz/n'l2
=-uncontrollable
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Analysis: controllability and controllable canonical

form
0 1 0 0
A= 0 0 1 |,B=10
—dg —di —ap 1

0 O 1
Pd = 0 1 —d»
1 —a —a+a5

has full row rank
» system in controllable canonical form is controllable
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Analysis: controllability gramian and Lyapunov Eq.

» |If Ais Schur, k; can be set to oo

W= A“BBT (AT)"
k=0 Q

which can be solved via the Lyapunov Eq.

AW AT — W, = —BB'"
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Analysis: controllability and similarity
transformation

A B
x(k+1)=Ax(k)+ Bu(k) x=1x . B /_—/1\“)(* f'j‘l\u
{y(k) _ Cx (K) + Du (k) — x*(k+1)=T AT x* (k) + T "Bu(k)

y (k) = CTx* (k) + Du (k)

» controllability matrix
P = [é,[\é,...,[\"—lé]
= [T'B, T 'AB,..., T 'A™'B] = TP,

hence (A, B) controllable < (T~*AT, T~!B) controllable

» The controllability property is invariant under any
coordinate transformation.
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* Popov-Belevitch-Hautus (PBH) controllability
test

» the full rank condition of the controllability matrix

Ps=[B,AB,A’B, ..., A" 'B]

is equivalent to: the matrix [A — \l, B] having full row rank at
every eigenvalue, \, of A

> to see this: if [A — Al, B] is not full row rank then there exists
nonzero vector (a left eigenvector) such that

vT[A — A B]=0
sviA= T
viB=0

i.e., the input vector B is orthogonal to a left eigenvector of A.
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Example

A=\, B]=
0 0 0 0
0 X — )\ 1 0 | does not have full row rank =-uncontrolla
0 0 A — A1 1

Intuition: x; = A1xq is not impacted by the control input at all.
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3. DT observability
Observability and observable canonical form
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Observability of LTI systems

A discrete-time linear system

x(k+1)=A(k)x(k)+ B(k)u(k)
y (k) = C(k)x (k) + D (k) u (k)

is called observable at kK = 0 if there exists a finite time k; such that

for any initial state x (0), the knowledge of the input

{u(k);k=0,1,... k} and {y (k); k=0,1,..

., ki } suffice to

determine the state x (0). Otherwise, the system is said to be

unobservable at time kK = 0.
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Observability of LTI systems

let us start with the unforced system

x(k+1)=Ax(k), AcR"
y (k) = Cx(k), y € R”

x (k) = A*x(0) and y (k) = Cx (k) give

y (0) C

y (1) CA
_y(n—l)_ _CA”_l_
\\: Qd:;rrnxn

x (0)

» if the linear matrix equation has a nonzero solution x (0), the

system is observable.

UW Linear Systems (X. Chen, ME547) Controllability and Observability
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Observability of LTI systems

generalizing to
x(k+1)=Ax(k)+ Bu(k), y (k) = Cx (k) + Du (k):

x (k) = ) + Z AR By
k—1
y (k) = CA*x(0) + C >~ A< Y Bu(j) + Du (k)
=0
Yiree(K) “ )= ~ ),
YForced(k)
[ y (O) — Yforced (O) | I C |
1) — orce 1 CA
y (1) Vorced (1) _ . < (0)
| y(n—1) = Yrorced (n — 1) | I CA1 .
Y': available from mezlz,urements and inputs Qd:;;xn
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Observability of LTI systems
[ y (O) — Yforced (O) | | C ]
1) — orce 1 CA
y (1) Viorced (1) _ _ < (0)
| v (0= 1) = Yeorced (n — 1) | I CA-1 .
4 Qq

» x(0) can be solved if Q4 has rank n (full column rank):
» pick n linearly independent rows from Qg to form Qg , yielding

anX (0) = Yn
» Qg is full column rank=-Qy, is full column
rank= x (0) = QJnl Yn

» one way to write the solution is

x(0) = (QJQs) T QI Y
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Observability of LTI systems Cont'd

y (O) — Yforced (O) C
y (1) — Yforced (1) B CA

i y (n - 1) — Ytorced (n - 1) | i CAn_l )
v Q

x(0)

» also, no need to go beyond nin Q: adding CA", CA™!, ...
does not increase the column rank of Q4 (Cayley Halmilton

Theorem)
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Theorem (Observability Theorem)

System x (k +1) = Ax (k) + Bu(k), y (k) = Cx (k) + Du (k),
A e R™" C e R™" |s observable if and only if either one of the

following is satisfied

C

CA
1. The observability matrix Q, =

CAn—l

has full column rank

(mn)Xn

2. The observability gramian

k1

k=0

A— Al

3. * PBF test: The matrix C

every eigenvalue, \, of A.

k
W,y = Z (AT) CTCA¥|is nonsingular for some finite kq

] has full column rank at

27 /48
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Proof: from observability matrix to gramian

C
CA a

Q= Woy =Y (AT)" CTCA*
cant -~

» Qg is full column rank:>QJQd = Z (AT)k CTCA* is

k=0
\ ~~ J/

W,4 at ki=n

nonsingular
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Observability check

» Analogous to the case in controllability, the observability
property is invariant under any coordinate transformation:

(A, C) is observable <= (T *AT, CT) is observable

» If Ais Schur, k; can be set to oo in the observability gramian

Woy =Y (AT)" CTcA*

k=0

and we can compute by solving the Lyapunov equation

ATW,4A - W, =—-C'C

The solution is nonsingular if and only if the system is
observable. In fact, W,y = 0 by definition = “nonsingular” can
be replaced with “positive definite”.
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Observability and observable canonical form

—3210
A=|-a 01|, C=[10 0]
—3000

» observability matrix

C 1 0 O
Qs=| CA | = —a 1 0
CA? a3 —a —a 1

has full column rank

» system in observable canonical form is observable
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* PBH test for observability

The matrix [ A —C)\/ } has full column rank at every eigenvalue, A, of A.

» if not full rank then there exists a nonzero eigenvector v:

Av = \v C

CA
Cv =0 = _ v = 0 = unobservable
= CAv = A\Cv =0

CA"™ 1y =0

» the reverse direction is analogous

» interpretation: some non-zero initial condition xo = v will

generate zero output, which is not distinguishable from the
origin.
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4. CT cases
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Theorem (Controllability of continuous-time systems)

The n-dimensional r-input LTI system with x = Ax + Bu, A € R™",
B € R"™" s controllable if and only if either one of the following is
satisfied

1. The n x nr controllability matrix
P = [B,AB,AZB,...,A”_lB]

has rank n.

2. The controllability gramian

t
W., = / A" BBTeA Tdr
0

is nonsingular for any t > 0.
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Theorem (Observability of continuous-time systems)

System x = Ax+ Bu, y = Cx+ Du, A€ R™", C e R™" s
observable if and only if either one of the following is satisfied

1. The (mn) x n observability matrix

C
CA

Q= _ has rank n (full column rank)

CAP=1

2. The observability gramian

t
W, = / e’ "CT Ce™dr | is nonsingular for any t > 0
0

» reading: Linear System Theory and Design by Chen, Chap 6.
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Summary: computing the gramians

Controllability Gramian

Observability Gramian

. : T
continuous time fot eATBBT (eAT) dr

fot (eAT) T CTCeAmdr

Lyapunov eq.

if t — oo AW, + W.AT = —BBT | ATW,+ W,A=—CTC
& A is Hurwitz
discrete time ki AKBBT (AT)" ki (AT)KCT cAk

Lyapunov eq.
if ki — 00 AWCdAT — Weqg = —BBT
& A'is Schur

AT W 4A — Wy = —CTC

> duality: (A, B) is controllable if and only if (A, C) = (AT,BT)

is observable

» prove by comparing the gramians
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36 /48



Exercise

-2 00 1
A= 1 02 ]|,B=1]0
0 0O 1
C=[10 1]
» exercise: show that the system is not observable.
1 00
» in fact, by similarity transform x = | 0 0 1 | x, we get
010
) —2 0|0 ) 1
A= 0 0|0 |,B=|1
1 2|0 0
C=[11|0]
where the third state is not observable.
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5. The degrees of controllability and observability
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The degree of controllability

consider two systems

0 1 [ 0 |
S;x(k+1) _[O O_X(k)—l—_l_U(k)
.01 ] [ 0 |
S, x (k+1) el 10 WV L T
0 1 |1
» both systems are controllable:
01 0 0.01
Pdl_[l 0]’ sz_[l 1 ]
» however, P, is nearly singular, hinting that S, is not “easy” to
control
> e.g., to move from x(0) = [0,0]7 to x(1) = [1,1]" in two steps,
we need
51 {U(O) J U(O)} - {17 1} S {U(O) ) U(O)} - {1007 _99}
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The degree of observability
consider two systems
[0 1
S x(k+1) = 0 O]x(k) y(k)y=[1 0 ]x(k)
:1 .01
Sux(k1)=[o ]x(k) y(K)=[1 0]x(k)

» both systems are observable:

10 1 0
Q‘ﬁ:[o 1]’ de:[l 0.01]

» however, @y, is nearly singular, hinting that S, is not “easy” to
observe

> e.g., toinfer x(0) = [2,1]7, the two measurements y(0) = 2 and
y(1) = CAx(0) = 2.001 are nearly identical in S,!
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6. Transforming controllable systems into controllable canonical forms
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Transforming single-input controllable system into
cct

Let x = MX, where M= | my my, ... m, |, then

I .
X=M"1x=M71(Ax+ Bu) = M'AMX + M~1B u

B

If system is controllable, we show how to transform the state
equation into the controllable canonical form.

> goal 1: B be in controllable canonical form<

0 0
M—1B = O = B =[my,my, ..., my] 0 = m,
1 1
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Transforming S| controllable system into ccf

Let x = MX, where M = [my, my, ..., m,], then

X=M"1x=M"1(Ax+ Bu) = M—1~AM>~< + M™'Bu
A

» goal 2: A be in controllable canonical forme

Almy, my, ... omy| =
[ 0 1 0 0 ]
o . 0
[my, mo, ..., mp) : B | 0
0 ... 0 0 1
| —do —a1 —dn-1
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Transforming S| controllable system into ccf

Let x = MX, where M = [my, ma, ..., m,], then
X=M"1x=M71(Ax+ Bu) = M AM% + M~'Bu
» solving goals 1 and 2 yields

m, =B
mp_1 = Am, + a,_1m,
mp,_> = Amn—l + ap—2Mmp

mi_1 = Am,-+a,-_1m,,, | = n,. ..,2

» when implementing, obtain ag, a1, ..., a,_1 first by calculating
det (sl —A) =s"+a,_1s" 1+ -+ a5+ a
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Transforming single-output (SO) observable system

into ocf
Let x = R7!X, where R=|r/,r),... 1] ] " (r: is a row vector).
X = Rx = R(Ax + Bu) = RA{?‘1>“<+ RBu
A

™

If system is observable, we show how to transform the state equation

into the observable canonical form.
» goal 1: C be in observable canonical form<

— 1 — T
1 0
CR=| . = C=n
0
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Transforming SO observable system into ocf
Let x = R7'X, where R = [r,r),....r]] " (r: is a row vector).
X = Rx = R(Ax + Bu) = RAR"' X + RBu
A
y=C=CR'x%
~——
C
> goal 2: A be in observable canonical form<

L [ —a,, 1 0 ... 0] _ _

:1 . 0 : :1

2 2

A= 0 0 :

rn —dl 1 rn
- | —a O 0 0|~ -~

46 /48

UW Linear Systems (X. Chen, ME547) Controllability and Observability



Transforming SO observable system into ocf

Let x = R7'X, where R = [r/,r),....r]] " (r: is a row vector).
X = Rx = R (Ax + Bu) = RA/E?_1>"<+ RBu
A

y=Cx=CR'x%
~——

¢
» solving goals 1 and 2 yields
n=~=aC
rh=nA+a,_1h
rs=rnA+a, on

r,-+1:r,-A+a,,_,-r1, i:1,...,n—1

» when implementing, obtain ag, a1, ..., a,_1 first by calculating
det (sl — A)
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Transforming SO observable system into ocf

x(k+1):[(1) 0'(())1]x(k) y(k)=[1 0]x(k)

det (A—A)=)\ - A= a; =1, ag=0

n = C = [1,0]
rh = I’1C + aih = [1,0]A -+ (—].) [].,O]

J1 0 L [1 0
R‘[o 0.01]’R _[o 100]

C = CR™! =[1,0] < ocfl

11
0 0
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A= RAR ! = [

] < ocf!




ME 547: Linear Systems

Controllable and Observable Subspaces
Kalman Canonical Decomposition

Xu Chen

University of Washington
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1. Controllable subspace
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Controllable subspace: Introduction

Example

- [(1) 8] B — [(1)] @{22213 igl(k)w(k)

A-[3 1] e (o] e {hry) et

» there exists controllable and uncontrollable states: x
controllable and x, uncontrollable

» how to compute the dimensions of the two for general systems?
» how to separate them?

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Controllable subspace: Assumptions

Consider an uncontrollable LTI system

x(k+1)=Ax(k)+ Bu(k), AecR™"
y (k) = Cx (k) + Du (k)

Let the controllability matrix
P = |B, AB,A’B, . .. ,A”_lB}

have rank n; < n.

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Controllable subspace

» The controllable subspace x¢ is the set of all vectors x € R”
that can be reached from the origin.

» From

x(n) — A" (0) = [B,AB, AB, ..., A" 'B]

A\ g
-~

P 4 (0)

Xc is the range space of P: x¢c = R (P)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 5/31

2. Observable subspace
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Observable subspace: Introduction

Example
] xi(k+1) = xqy(k)+ u(k)
A= 1 (” B:[é],@ olk+1) = (k) + x(k)
] y(k) = x1(k)
C=[1 0]

» exists observable and unobservable states: x; observable and x,
unobservable

» how to separate the two?

» how to separate controllable but observable states, controllable
but unobservable states, etc?

UW Linear Systems (X. Chen, ME547) Kalman decomposition 7/31

Observable subspace: Assumptions

Consider an unobservable LTI system

x(k+1)=Ax(k)+ Bu(k), Ae R™"
y (k) = Cx (k) + Du (k)

Let the observability matrix

CA

CAn—l

have rank n, < n.
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Unobservable subspace

» The unobservable subspace x,, is the set of all nonzero initial
conditions x (0) € R" that produce a zero free response.

» From ) ) ) )
y(0) ¢
1 CA
y( ) | _ A )

y(n—1) CA—1
v Q

Xuo 1S the null space of Q: xuo =N (Q)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 9/31

3. Separating the uncontrollable subspace
Discrete-time version
Continuous-time version
Stabilizability

10/31
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Separating the uncontrollable subspace
» recall 1: similarity transform x = Mx* preserves controllability

x (k + 1) = Ax (k) + Bu (k) N x*(k+1) = M~TAMx* (k) + M~1Bu (k)
y (k) = Cx (k) + Du (k) y (k) = CMx* (k) 4+ Du (k)

» recall 2: the uncontrollable system structure at introduction

~ 11 = 1 x1(k+1) =x1(k)+ x2(k) + u(k)
A — B =
[0 1]’ {0]@{XQ<k+1> = xa(k)
» decoupled structure for generalized systems

(5 )[4

X, impacted by neither u nor X..

UW Linear Systems (X. Chen, ME547) Kalman decomposition 11/31

Theorem (Kalman canonical form (controllability))

Let x € R", x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
uncontrollable with rank of the controllability matrix,

rank(P)=m <n. Let M= | M. M, |, where

M. = [my, ..., my,] consists of ny linearly independent columns of P,
and M, = [mp, y1,...,m,| are added columns to complete the basis
and yield a nonsingular M. Then x = MXx transforms the system
equation to

EIBEEAIEAE R

Xuc(k +1) 0 A || Xuc(k) 0
y(k)=[ C Cuc ] [ )f:c((l;()) ] + Du(k)

Furthermore, (A., B.) is controllable, and
C(zl —A)'B+D = C.(zl —A) *B.+ D

UW Linear Systems (X. Chen, ME547) Kalman decomposition

12/31



Theorem (Kalman canonical form (controllability))

Re(k+1) ] _ [ A A | [ (k) /_éj
et |75 a2 [ L6 |

intuition: the “B" matrix after transformation
» columns of B € column space of P, which is equivalent to
R (M)
» columns of M,. and M, are linearly independent = columns of
B &R (M)
» thus

denote as B, —
B=[M. Mc.]| = jmlg—[%]
0

UW Linear Systems (X. Chen, ME547) Kalman decomposition 13 /31

Theorem (Kalman canonical form (controllability))

BB A B R

intuition: the “A” matrix after transformation
» range space of M. is “A-invariant’:

columns of AM, € {AB,A237 L 7A”B} e R (M)

where columns of A”B € R (P) = R (M,) (-.- Cayley Halmilton

Thm) ) )
» ie., AM. = M.A. for some A.=

2 A5
=~ AN A A
A [MC7 Muc] = [MC7 Muc] Ac A;E\ = M_IAM - [ /L(\)C ﬁ\_\lz ]
uc uc
0 *
i

14 /31
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Theorem (Kalman canonical form (controllability))
M-1B

M~1AM
se(k+1) 1 T A Ap [ (k) B,
[fq,c(kJrl) ] - [ 0 AUC] [fq,c(k) Tl o |ulk)
(A, B.) is controllable
» controllability matrix after similarity transform
p_'éc A.B. An-1B | ... A1B.

R 0 0

[ P.| AmB, Ar-1B,
| 0 0 0

> similarity transform does not change
controllability=- rank(P) = rank(P) = m

» thus rank(P.) = n; = (A, B.) is controllable
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Theorem (Kalman canonical form (controllability))
X(k+1) 1 [ A A X-(k) B,
[xuc(k+1) ] 1o AUC] [xuc(k) 1 o |4k
— [ C = )?C(k)
y(k) =] C Cuc [ %oc(K) ] + Du(k)
C(zl —A) B+ D= C(zl —A)'B.+D
we can check that
- - -1 —_
= = zl — AC —A12 BC
LG G ]| T z/—Z\UC] [o]“)
_ [ | — A ) 1 * B
(G G| WA __[C]D
[ ]_ 0 (2 — Aue) 1] o |7
1 B.+D
16 /31

:CC (ZI - Ac)
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Matlab commands

M=1AM M-1B

hk+1) 1 T A An 1T %K) B

)_<c + L c /112 )_<c c
[iuc(k+1) ] a [ 0 Au ] [%uc(k) ] i [ 0 ] (k)

x = Mx where M = [ M. M, }
» M. =[my,..., mp,] consists of all the linearly independent
columns of P: Mc = orth(P)
» M, = [my1,...,m,] are added columns to complete the basis

and yield a nonsingular M
» from linear algebra: the orthogonal complement of the range
space of P is the null space of PT:

R" =R (P) &N <PT)

» hence Muc = null(P’) (the transpose is important here)

17 /31
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The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be uncontrollable with the rank of the controllability matrix

rank(P) =n < n. Let M = [ M. M, } where

M. = [my, ..., my,] consists of ny linearly independent columns of P,
M, = [mp, 41, ..., m,] are added columns to complete the basis for
R"™ and yield a nonsingular M. Then the similarity transformation

x = MXx transforms the system equation to

i )_<c _ _Ac 412 )_<c + éc
di | Fue | | 0 Auc || Fuc 0 |”

y=[ ¢ C_'uc][i_(C]—l—Du

uc

18/31
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Example

4 | vm —b/m —1/m —1/m Vi 1/m
a Fi, = ki 0 0 Fi, | + 0 F
Fu, ko 0 0 Fu, 0
let m=1,b=1
1 -1 1—k —ko 1 -1 0 1 1/kk 0
P=1]0 Kk —k1 ,M=10 Kk 0|, Mt*=]0 1/k O
0 ky —k; 0 k 1 0 —ko/ky 1
0 —(ki+ko)|1 1
A=MTAM= | 1 ~1 0|,B=M"'B=|0
0 0 |0 0

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Stabilizability

[;C(k+1) ] A 2\12] [5C(k) ]+[EC

Xoe(k+1) |

(k) =[ € Cu | [ %e(K) ] + Du(k)

The system is stabilizable if
» all its unstable modes, if any, are controllable

» j.e., the uncontrollable modes are stable (/_\UC is Schur, namely,
all eigenvalues are in the unit circle)

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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4. Separating the unobservable subspace
Discrete-time version
Detectability
Continuous-time version
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Separating the unobservable subspace
» recall 1: similarity transform x = O~1x* preserves observability

x (k + 1) = Ax (k) + Bu (k) x* (k 4+ 1) = OAO~1x* (k) + OBu (k)
y (k) = Cx (k) + Du (k) y (k) = CO~1x* (k) 4 Du (k)

» an unobservable system structure

xi(k+1) =xu(k)+ u(k)
A— [ , H B — [ é] o dsolk+1) = (k) + x(k)
y (k) = x1(k)

C=[1 0]

» decoupled structure for generalized systems
Xo(k+1) ] _[ A O (k) B,
[ )?uo(k_'_ 1) ] B | A21 Auo ] [ )_(uo(k) + Buo U(k)

v =16 0| 20 |+ oue

the “observed” X, doesn't reflect X,c (%o(k + 1) = Ao%o (k) + Bou (K))

22/31



Theorem (Kalman canonical form (observability))

Let x € R", x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
unobservable with rank of the observability matrix,

rank(Q) =n, < n. Let O = [ OO°
linearly independent rows of Q, and O,, = [O,Z;+1, e o,ﬂ " are
added rows to complete the basis and yield a nonsingular O. Then
X = Ox transforms the system equation to

[ Ro(k +1) ] :Z%\\'zol A'?Jo] [200((?) ] . [ gz ] k)

Xuo(k + 1)
Xo(k)
0] [iuo(k) ] + Du(k)

] where O, consists of n,

I
oﬁl

y(k)

Furthermore, (/_\o, (_)o) is observable, and
C(zl —A)'B+D = Cy(zl —A,) B, + D

UW Linear Systems (X. Chen, ME547) Kalman decomposition 23 /31
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Theorem (Kalman canonical form)

Case for observability
%(k+1) 1 [ A 0 Xo (k) B,
[ )?uo(k+ 1) ] N i /2\21 Auo ] [ )?uo(k) ] * [ éuo ] U(k)

y(k)y=[ C 0] [)_(uo(k) ] + Du(k)

v.s. case for controllability

ERINAIEAR

Xye(k + 1) 0 A Xuc (k) 0
y(k)=[ & Cu ] [ )fu‘-‘c((’;)) ] + Du(k)

Intuition: duality between controllability and observability
(A, B) unconrollable < (A", B") unobservable
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Detectability

[ 2)0((12111)) ] - /%1 A?,o ] [ 200((?) ] + [ §°O ] u(k)

y=[6 0] ]

The system is detectable if
» all its unstable modes, if any, are observable

> i.e., the unobservable modes are stable (A, is Schur)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 25 /31

Continuout-time version

Theorem (Kalman canonical form (observability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be unobservable with the rank of the observability matrix
rank (Q) = ny < n. Then there exists similarity transform x = Ox
that transforms the system equation to
B,
RS

JONEE
e[

Furthermore, (A, C,) is observable, and
C(sl —A)"'B+ D = Cy(sl —A,)"'B, + D.

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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5. Transfer-function perspective
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Transfer-function perspective
uncontrollable system: C(zI — A)'B+ D = C.(zl — A.)'B.+ D

unobservable system: C(zI — A)™*B+ D = Co(zl — A,) B, + D

where A € R™" A e Rm*xm A ¢ RMxm
» Order reduction exists

_ - _ B(#) _ .
G(z)=C(zl —A)'B+D = AZ)’ A(z) = det(zl — A) order : n

PN T S
G(z) = Ce(zl—A)1BA4D = A(2) Ac(z) = det (zI — Ac) order : ny

» =A(z) and B(z) are not co-prime | pole-zero
cancellation exists

» same applies to unobservable systems

Kalman decomposition 28 /31
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Example
Consider

» The transfer function is

G(S): S+ S+

2+3s5+2 (s+1)(s+2)

» System is in controllable canonical form and is controllable.
» observability matrix

Q:[ a 1 ],detQ:(cl—l)(c1—2)

=-unobservable if c; =1 or 2

UW Linear Systems (X. Chen, ME547) Kalman decomposition

6. Kalman decomposition

UW Linear Systems (X. Chen, ME547) Kalman decomposition
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Kalman decomposition

an extended example:

Al 0 [As]| 0 B,

_ A21 A22 A23 A24 o BZ

A=l 0T [Asl0 |"%7 |0
0 | 0 | Ass| A 0 |

» A;, G and B; are nonzero

» The A;; mode is controllable and observable. The A,, mode is
controllable but not observable. The A3 mode is not
controllable but observable. The A4, mode is not controllable
and not observable.
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ME 547: Linear Systems
State Feedback Control

Xu Chen

University of Washington

1/16
Motivation

» At the center of designing control systems is the idea of

feedback.

» In such transfer-function approaches as lead-lag and root locus
methods, the primal goal is to achieve a proper map of
closed-loop poles with output feedback.

Key questions:
» How much freedom do we have for state-space systems?

» Are there fundamental system properties that yield higher
achievable performance?

» How to implement the design algorithms?

UW Linear Systems (X. Chen, ME547) State Feedback
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1. Goal and realization of state feedback

UW Linear Systems (X. Chen, ME547) State Feedback 3/16

Goal

Consider an n-dimensional state-space system

| x(t) = Ax(t)+ Bu(t) B
. {Y(t) — () + Du(r) () =%

where x e R", u € R", and y € R,

» Denominators of the transfer function
G (s) = C(sl — A) " B+ D come from the characteristic
polynomial det (s/ — A) that arises when computing the inverse
(sl — A"

» We shall investigate the use of feedback to alter the qualitative
behavior of the system by changing the eigenvalues of the
closed-loop “A" matrix.

4/16
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Realization

_|_

u
O
V|_

K

x=Ax+ Bu,y = Cx+ Du

%y

Consider the state-feedback law

u=—Kx+v

» v: new input which we will deal with later
» K € R™": n-number of states, m-number of inputs

» closed-loop system:

_{X(t) — (A— BK)x(t) + Bv(t)
() =

Cx(t) + Du(t)

» key closed-loop property: eigenvalues of A — BK.

» How freely can we place the eigenvalues of A, = A — BK?

UW Linear Systems (X. Chen, ME547) State Feedback

2. Closed-loop eigenvalue placement by state feedback

UW Linear Systems (X. Chen, ME547) State Feedback

(1)

x(t) =x (2)
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Eigenvalue placement by state feedback

IfY = (A, B, C,D) is in controllable canonical form, we can
completely change all the eigenvalues of A — BK by choice of
state-feedback gain matrix K.

» Problem setup: single-input single-output system in c.c.f.

n—1_4 ...
H(s) = Bn-15"""+ -+ P1s+ Bo +d, Z:[‘A B}
s"+ap_15"" 1+ +ars+ o C|D

0 1 0 0 i [ 0 ]
0 0 1 0
A: ,B:
. . . 0 .
0 0 1 0
| —a0 ... ... —op_2 —Qp—1 | | 1 ]
C:[ﬁo 61 .. ... Bn_l},D:d

det (s/ — A) = s" +ap_18" 1+ - + 15 + ag

UW Linear Systems (X. Chen, ME547) State Feedback

Eigenvalue placement by state feedback: c.c.f.

» Goal: achieve desired closed-loop eigenvalue locations
P, P i€

det(s/ —(A—BK))=(s—p1)(s—p2)--- (s — pn)
="+ Yp18" 4+ s + %0
» Let K = [ko, k1, ..., ko_1]. The structured A and B give

-0 T 0 0 0 0
0 0O 0 0 0
BK = [ko,kl,...,kn_l]: . . 0
(1’ 0 0 0
- - ko kn—2 kn—1
0 1 0 0
0 0 1 0
A— BK = .
. 0
0 . 0 1
| —ao—ko ... ... —op—2—kp—2 —op—1—kp—1 |

UW Linear Systems (X. Chen, ME547) State Feedback
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Eigenvalue placement by state feedback: c.c.f.

» A and A — BK have the same structure
» the only difference is the last row:

matrix last row
A —Qpy ... ... —0p_2 —0Cp_1
A — BK —Qg — k() e vee —0Op_2 — kn_2 —Op—_1 — kn—l
» recall (3): det(s/ —A)=s"+a,_ 15"+ -+ a1s + ag.
» thus
det (s/ — (A — BK)) = s" + (ap_1 + kn_1)s" 1+ + (ag + ko)
~ ~~ ~ —
target: vp—1 target: 7o
» hence

ko = Y0 — o

kn—l = Yn—1 — Gp—1

UW Linear Systems (X. Chen, ME547) State Feedback 9/16

Eigenvalue placement by state feedback: c.c.f.

Eigenvalue-placement Algorithm

1 | determine desired eigenvalue locations py, - - - , p,

2 | calculate desired closed-loop characteristic polynomial
(s=pi)(s—p2)- -+ (s—pn) ="+ V018" "+ -+ 715 + %0
3 | calculate open-loop characteristic polynomial

det(s/l — A) =s"+a, 15"+ + 15 + o

4 | define the matrices:

K=[v%—0a0,...;Y—-1— Qp_1]

Powerful result: if the system is in controllable canonical form, we
can arbitrarily place the closed-loop eigenvalues by state feedback!

UW Linear Systems (X. Chen, ME547) State Feedback
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General eigenvalue placement by state feedback

» What if the given state-space realization ¥ = (A, B, C, D) is not
in the required form?

» We can then transform it to c.c.f. via a similarity transformation
(See lecture on controllability and observability).

» Powerful fact: if system ¥ = (A, B, C, D) is controllable, then
we can arbitrarily place the closed-loop eigenvalues via state

feedback.

UW Linear Systems (X. Chen, ME547) State Feedback 11 /16

Stabilization
» if a single-input system is uncontrollable, arbitrary closed-loop
eigenvalue plaement is not available
» Kalman decomposition gives

- controllable part 7
d [ A A ©1.[B
o Xe | c 112 Xc c
dt[)_(uc]_ 0 Auc [)_(UC]—I_[O]LI
~~~
| uncontrollable part _
applying controll law
b= — (R Rod] [ % ] ‘v
Xuc
gives
i )_<c - /Z\c - Bckc ’2\12 __Bckuc )_<c + éc v
dt | Xuc B 0 Auc Xuc 0
12/16
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Stabilization cont'd

» closed-loop dynamics

d [ )_<c ] [ Ac - BCRC /2\12 - Bckuc ] [ )_(c ] [ Bc ]
R _ — - _|_ v
dt | Xuc

» closed-loop eigenvalues come from

eigenvalues can be arbitrarily placed

7 N\

det (A — M) =det  ((Ac —BcKe) —Al) - det (Auc — M)

from the controllable subsystem uncontrollable eigenvalues

» = single-input systems are stabilizable if and only if the
uncontrollable portion of the system does not have any unstable

eigenvalue.
UW Linear Systems (X. Chen, ME547) State Feedback 13 /16

Discrete-time case

» the eigenvalue assignment of discrete-time systems is analogous:

» system dynamics:

x(k +1) = Ax (k) + Bu (k)
y (k) = Cx (k)

» controller: u (k) = —Kx (k) + v (k)
» closed-loop dynamics:

x(k +1) = Ax(k)—BKx (k)+Bv (k) = (A — BK) x (k)+Bv (k)

» arbitrary closed-loop eigenvalue assignment if system is
controllable

14 /16
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The case with output feedback

» if the full state is not measurable, state feedback control is not
feasible

» consider output feedback

x = Ax+ Bu
y = Cx = x =Ax — BFy + Bv = (A— BFC) x + Bv
u =—Fy+v

» A — BFC not as structured as A — BK (exercise: write out the
case for SISO systems)

» arbitrary closed-loop eigenvalue assignment not feasible

UW Linear Systems (X. Chen, ME547) State Feedback 15 /16

The case with output feedback

Controllable mass-spring-damper system

[x]-[ % 4][z]¢]

» arbitrary closed-loop eigenvalue assignment if u* = —kix; — koxo,
namely U*(s) = —ki X1(s) — ko Xo(s) = — (ki + kas) Xi(s) = a
proportional plus derivative (PD) control law

» if with only proportional control, u* = —k;x;, arbitrary
closed-loop eigenvalue assignment is not possible

UW Linear Systems (X. Chen, ME547) State Feedback
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ME 547: Linear Systems

Observers and Observer State Feedback
Control

Xu Chen

University of Washington
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Introduction

» full state feedback is usually not available

» the state estimation problem

» deterministic case: observer design
» stochastic case: the most frequent option is Kalman filter

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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Outline

1. Concepts
2. Continuous-time Luenberger observer

3. Discrete-time observers
DT full state observer
DT full state observer with predictor

4. Observer state feedback

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 3/25

Open-loop observer

d
Sox(t) = Ax(8) + Bu(t), x(k+ 1) = Ax(k) + Bu(k)
» conceptually simplest scheme to estimate x:

Cx(t) = AS() + Bult), %(k+ 1) = A%(K) + Bu(k)

with a best guess of initial estimate £(0) =" 0.

» error dynamics: e = x — X:
é(t) = Ae(t), e(k + 1) = Ae(k), e(0) = xo — x(0)

» sensitive to input disturbances
» if Ais not Hurwitz/Schur, the error diverges

» open-loop observers look simple but do not work in practice

4/25



Luenberger (closed-loop) observer concept

» given system dynamics

% = Ax+ Bu, x(0) = x, A€ R™" B € R"™
y = ij y c Rmxn

» in contrast to open-loop observers, the Luenberger observer adds
correction based on output differences

()
U plant
T T B
I |
e
! O |
1 N — 1
1 Y :
> copy 9f plant ,
: / :
I ! .
I = T
! observer ,
UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 5/25

Luenberger (closed-loop) observer algorithm

observer concept

] +
_ ! O
x = Ax + Bu, x(0) = xg | g |7
. CX L~ copy of plant !
a ) - »
! observer | *
____________________ )
» observer realization:
$=AR+Bu+L(y—9)=A%+Bu+L(y—Cg), 20)=0
=(A—LC)x+ Ly + Bu
6/25




Luenberger (closed-loop) observer error dynamics

» system dynamics

x = Ax + Bu, x(0) = x5, A€ R™" B e R™"
y = Cx, y € R™"

» Luenberger observer with correction:

A%+ Bu+L(y —§) =A%+ Bu+ L(y — C), £(0) =0
(A= LC)% + Ly + Bu

X

» error dynamics: e = x — X:
é=Ae—LCe=(A—LC)e, e(0) = x(0)

» if all eigenvalues of A — LC are on the left half plane, then the
error dynamics can be made asymptotically stable

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 7/25

Luenberger (closed-loop) observer

If (A, C) is an observable pair, then all the eigenvalues of A— LC can
be arbitrarily assigned, provided that they are symmetric with respct
to the real axis of the complex plane.

» we show the SISO case when A and C are in observable
canonical form (if not, a similarity transform can help out):

[ —a,.1 1 0 ... _Bn—1_
— Q1 . " 1 61
| —ag 0 ... 0 - bo |
C:[IO... 0],D:d

det (sl —A) = s" + a,_18" 1 + - + a5 + ag

8/25



Observer eigenvalue placement: o.c.f.

» Luenberger observer with correction:

$=AR+Bu+L(y—9)=AR+Bu+L(y—C&), £0)=0
— (A= LC)%+ Ly + Bu

» Goal: place eigenvalues of the observer at locations pq, - - - , pp:

det (s — (A~ LC)) = (s = P1)(s = B2) -+~ (5 — Pn)
=" +7,18" T+ s+ 7

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 9/25

Observer eigenvalue placement: o.c.f.

» Goal: place eigenvalues of the observer at locations py, - - - , p,:

det(s/ — (A= LC)) = (s —P)(s = P2) -~ (s — Pn)
=" +7,18" 715 + T

Let L = [ly, K, ..., /,,_1]T. The unique structures of A and C give

Io lo 0 0
tc=| : |[1 0 0]= 0
" hea 0
n— Ih— 0 0
T —ap_1— b 1 0 ce 0 7
—an_2—1 O
A—LC = 0 _ . 0
—1 — In—2 . . 0 1
| —QQ0 — /,,_1 0 e 0 0

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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Observer eigenvalue placement: o.c.f.
» Aand A— LC have the same structure:

—Qp—1 1 0 —Qp—1 — /0 1 0
—Q . 1 —Q1 — Ip—2 1
) o ... 0 i _—Odo—ln_l 0o ... 0 i

» Recall: det(s/ — A) =s" 4+ ;18" 1 + -+ - + a1 + ao.
» Thus

det (sl — (A—LC)) = 5"+ (ap1+h)s" 4+ + (a0 + r-1)

7

~"

target: 7,1 target: 7
» Hence P
0= 7Yn-1— @n-1
Ih—1= Yo — Q0
11/25

General observer eigenvalue placement

» What if (A, B, C, D) is not in the observable canonical form?
» We can transform it to o.c.f. via a similarity transform:

op = RAR! RB
x =Ax+ Bu x=R71x, %ob A/—/XOb +\/u
y = Cx — Ao Bo

y = LoXop = C.R'_lxob

> use previous formulas to design L in:
Rop = (AO — ZCO> Xop + Zy + B,u (analysis form)
correspondingly in the original state space (via X,, = RX):

R% = (RAR—l . ZCR—l) R% + Ly + RBu

L
~

= %=(A-R M C)%+Ly+Bu (implementation form)

» Powerful fact: if system ¥ = (A, B, C, D) is observable, then
we can arbitrarily place the observer eigenvalues.

12/25



Luenberger observer summary

> observer dynamics: ¥ = AR + Bu+ L(y — CR), %(0) =0
» block diagram

U >B——|>_Q_|_:b‘f x>C 3/)
A
L—0O
=+
A
13725

Luenberger observer summary
» system dynamics

x = Ax + BU, X(O) = Xp, A = Rnxn’ B c Ran
y = CX, y c RmX1

» observer dynamics

$=AR+Bu+L(y —C&), £(0)=0
— (A= LC)%+ LCx + Bu

» augmented system
>_'< A 0 X . B
17| Lc A—Lc || x B |Y

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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Luenberger observer summary

» augmented system
x| _| A 0 X B
ST e a—tc ||z 7| B
y = Cx

» to see the distribution of eigenvalues, note the error dynamics
e=(A—LC)e=

x| | A 0 x| B
é| |0 A-LC]|]|e 0"
=-eigenvalues are separated into: A (A) and observer eigenvalues

I, —I1, X

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 15 /25

» underlying similarity transform: [Z] = [ I 0 ] [X ]
Discrete-time observers: Introduction

» full state feedback is usually not available
» often observers are implemented in the discrete-time domain

» the discrete-time observer design

» basic form: analogous to the continuous-time Luenberger

observer
» predict and correct form:

» direct DT design
» leverages discrete-time signal properties

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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Discrete-time full state observer

» standard discrete-time observer:
x(k+1) = Ax (k) + Bu (k)
X(k+1)=Ax(k)+ Bu(k)+ L(y (k) — Cx(k))
y (k) = Cx (k)
» error dynamics:e (k) = x (k) — X (k),
e(k +1) = Ae(k) — LCe (k)
» overall dynamics

[zg:ii”:[é\ A—OLC] [2E:§]+[§]U(k)
y(k+1)=][C, O][zglf:”

» Powerful fact: the error dynamics can be arbitrarily assigned if
the system is observable.

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 17 /25

DT full state observer with predictor
» motivation: X (k + 1) = AX (k) + Bu (k) + L(y (k) — Cx(k))
doesn’t use most recent measurement y(k + 1) = Cx(k + 1)
» discrete-time observer with predictor:

predictor: X (k + 1|k) = AX (k|k) + Bu (k)
corrector: X(k+1lk+1)=x(k+1lk)+ L(y(k+1)— CX(k + 1|k))
> X(k|k): estimate of x(k) based on measurements up to time k
» X(k|k —1): estimate based on measurements up to time k — 1
> e(k) = x (k) — % (k|k): estimation error
» error dynamics
Rk+1k+1)=(—-LC)R(k+1]|k)+ Ly (k+ 1)
= (I — LC)AX(klk)+ (I — LC)Bu (k) + Ly (k + 1)
= e(k+1)=x(k+1) — Ly(k + 1) — (I — LC)A%(k|k) — (I — LC)Bu(k)
= (A— LCA) e (k)

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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DT full state observer with predictor

e(k+1)= A—L\Cﬁ/ e(k), e(0)=(/—LC)xo

» the error dynamics can be arbitrarily assigned if the pair
(A, C') = (A, CA) is observable

Q
» observability matrix ~ . L @~ ~—
C C
- CA CA
Qd - : - : A
| CArt | | CAT

» if Ais invertible, then Q, has the same rank as Qg
> (A, é) is observable if (A, C) is observable and A is

nonsingular (guaranteed if discretized from a CT system)

19/25
X1 (k + 1) —d? 1 0 X1 (k) b2
X (k—|— ].) = —a; 0 1 X2 (k) + | by U(k),
X3 (k—l— ].) —do 00 X3 (k) bo

y (k) = x1(k). Place all eigenvalues of an observer with predictor
at the origin.

-—32 1 0 /1
A-—LCA=| —a O 1][/2][32 1 0]
| —4ao 0 O /3
-(/1—1)32 1—/1 0
= /282—31 —/2 1]
/332—30 —/3 0

det(A—LCA— M) = ((h—1)a»— A) (b +A) A+
(]. — /1) (/333 — ao) + /3 ((/1 — 1) dy — )\) S )\(1 — /1) (/232 — 81)
roots must be all 0 =L =1, L =5 = 0.

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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4. Observer state feedback

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 21/25

Observer state feedback

given system dynamics:

X = Ax + Bu
y = Cx

> state feedback control: arbitrary eigenvalue assignment if system
controllable

» observer design: arbitrary observer eigenvalue assignment for
state estimation if system observerable

» when full states are not available, what's the performance if we
combine both?
u=—-Kx+v

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB
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Closed-loop dynamics

» full closed-loop system

x = Ax + Bu

y = Cx

X =A%+ Bu+ L(y — CR)
u=—-Kx+v

i x| | A —BK X B
gl 217l tc aActc—Bc || 2| | B
X
2

. . X I, O .
» using again similarity transform = gives
e I, —I,
i x| | A=-BK BK X n B ,
dt | e | 0 A—LC e 0
23/25
Block diagram
> Xx=AR+Bu+L(y—CR), u=—Kx+v
v+ U + x Y
O_ > B —>(A+)—> f > >
A |«
_|_
Lf—Q
+x i
K > B —><A)—|_—> f > ()
A I«
24 /25




The separation theorem

» closed-loop dynamics

d| x| _|A-BK BK x|y B
dt | e | 0 A—LC e 0|
» powerful result: separation theorem: closed-loop
eigenvalues consist of

» eigenvalues of A — BK from the state feedback control design
» eigenvalues of A — LC from the observer design

» can design K and L separately based on discussed tools

» if system is controllable and observable, we can arbitrarily assign
the closed-loop eigenvalues
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ME 547: Linear Systems
Linear Quadratic Optimal Control

Xu Chen

University of Washington
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Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

» the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator
(or LQR):

» no need to specify closed-loop poles

» performance is explicit: a performance index is defined ahead of
time

UW Linear Systems (X. Chen, ME547) 2/32



1. Problem formulation

UW Linear Systems (X. Chen, ME547) LQ 3/32

Goal

Consider an n-dimensional state-space system
x(t) = Ax(t)+ Bu(t), x(to) = xo
y (t) = Cx(t)

where x ¢ R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /t:f (XT(t)QX(t) + uT(t)Ru(t)) dt

» S>0,Q > 0,R = 0: for a nonnegative cost and well-posed
problem

> 1x7(tr)Sx(tr) penalizes the deviation of x from the origin at t

> xT(t)Qx(t) t € (to, tr) penalizes the transient

> often, Q = CTC = xT(t)Qx(t) = y (t) y ()

» u'(t)Ru(t) penalizes large control efforts

UW Linear Systems (X. Chen, ME547) LQ 4/32



Observations

J= %XT(tf)SX(tf) N % /totf (xT(£)Qx(¢) + uT (t)Ru(t)) dt

» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J- %/Oo (xT(£)@x(t) + u” (£)Ru(t)) dt

to

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

» often, we have t; = 0 and

J= %/OOO (x()@x(t) + uT (£)Ru(1)) dt

UW Linear Systems (X. Chen, ME547) LQ 5/32

2. Solution to the finite-horizon LQ problem

UW Linear Systems (X. Chen, ME547) 6 /32



Solution to the finite-horizon LQ

Consider the performance index

1 1 [H
J= 5xT(t,c)Sx(t,r) + 5/ (x"(£)@x(t) + u" (t)Ru(t)) dt
to
with x = Ax + Bu, x(tg) =x, S>=0,R=0,and Q = C'C.
> do a Lyapunov-like construction: V/ (t) = 1x7 (t) P (t) x (t)
» then

d 1-T 1 T > 1 T y
V() = X7 () P(8)x (£) + 5xT (£) P(6) x (1) + 5xT (1) P (1) % (1)

1 +dP 1
= = (Ax+ Bu)" Px+ ZxT —x+ =xT P (Ax + Bu)
27 dt” 2
P
{XT (t) (ATP + Z—t + PA) x(t)+u"BTPx + xTPBu}

NI~ N+~

UW Linear Systems (X. Chen, ME547) LQ 7/32

Solution to the finite-horizon LQ

with 2V (t) from the last slide, we have

V(tf) — V(to) = /ttf Vdt

1L (" +( T dP
— 5/ (x <A P+PA+E)x+uTBTPx+XTPBu> dt
to

» adding

J= %XT(tf)sx(tf) + % / (T ()@x(t) + u" (£)Ru(t)) dt

to
yields
J+ V(tr) = V() = %XT(tf)SX(tf)‘i‘

1 [t dP
—/ x" (ATP+PA+Q—|——)x—l—uTBTPx—i—xTPBu—l— u"Ru | dt
2 to dt N ~ v N~

products of x and u quadratic

UW Linear Systems (X. Chen, ME547) LQ
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Solution to the finite-horizon LQ

> “complete the squares” in u" B Px + x" PBu+ u' Ru (scalar

TV
products of x and u

quadratic
case):
ul BT Px + x T PBu + ul Ru scalar case Ru? + 2xPBu
2 2
—Ru2 42 (XPBR—1/2) RL/2, + (R—1/2BPX) _ (R—1/2BPX)
——"
v Ru?
2 2
— (R1/2u i R_l/zBPx) _ (R—1/2BPX)

» extending the concept to the general vector case:

uT BT Px+xT PBu+u Ru = |Rzu+ R2 BT Px||2 —x" PBR1BT Px
recall ||7W§:?T?

UW Linear Systems (X. Chen, ME547) 9/32

Solution to the finite-horizon LQ

J+ V(tr) = V(to) = %XT(tf)SX(tf)‘i‘

2 dt

1 [ dP
2/ x" (ATP+PA+Q+—)x+ u'B"Px+x"PBu+u"Ru | dt
to g

1 _1
|[R2u+R 2 BTPx||3—xTPBR—*BT Px

|} ‘completing the squares”
. 1, 1,
J+ EX (tf)P(tf)X(tf) - EX (to)P(to)X(to) = EX (tf)SX(tf)—l—

1 tr P 1 —1
/ (XT (d— +ATP+PA+Q - PBR_lBTP) x4+ ||Rzu+ RTBTPng) dt
to

2 dt

10/ 32
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Solution to the finite-horizon LQ

J+ V(tr) = V(o) = %XT(tf)SX(tf)‘i‘
1

te dP
5/ (XT (ATP +PA+Q+ E) x+uTB"Px+ x"PBu + uTRu) dt
to

|}‘completing the squares”

J+ %XT(tf)P (t7) x(r) — %XT(tO)P(to)x(to) _ %XT(tf)sx(tfH

1 tr P 1 —1
§/ (ﬂ(% +ATP+PA+Q— PBR‘lBTP>x +||R2u + RTBTPX|§> dt
to

» the best that the control can do in minimizing the cost is to have
u(t) = —K (t)x(t) = =R BT P(t)x(t)

_dk
dt

=ATP+PA-PBR'B'P+Q, P(tr)=S

to yield the optimal cost J° = 2xJ P(t)xo

UW Linear Systems (X. Chen, ME547) 11 /32

Observation 1

u(t) = —K (t)x (t) = =R BT P(t)x(t) optimal control law

dP
= ATP+ PA—PBR™IBTP+ Q, P(tf) =S the Riccati differential equation

» the control u(t) = —R™'BT P (t) x(t) is a state feedback law
(the power of state feedback!)

» the state feedback law is time-varying because of P (t)
» the closed-loop dynamics becomes
x(t) =Ax(t)+Bu(t)= (A—BR'B'P(t)) x(t)

\ 7
~"

time-varying closed-loop dynamics
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Observation 2

u(t) = —K (t)x (t) = =R BT P(t)x(t) optimal state feedback control

dP
- = ATP+ PA—PBR™'BTP+Q, P(tf) =S the Riccati differential equation

» boundary condition of the Riccati equation is given at the final
time t; = the equation must be integrated backward in time

» backward integration of

dP
= ATP+PA+Q@—PBR'BTP, P(tf)=S
is equivalent to the forward integration of
dP*

= ATP* + P*A4+ Q- P*BRIBTP*, P*(0)=S (2)

by letting P (t) = P* (tr — t)
» Eq. (2) can be solved by numerical integration, e.g., ODE45 in
Matlab

UW Linear Systems (X. Chen, ME547) LQ 13 /32

Observation 3

J= %XT(tf)sx(tf) + % /t (xT(£)@x(t) + u” (£)Ru(t)) dt
0 __ 1 T
J' = EXO P(to)Xo

» the minimum value J° is a function of the initial state x (tp)

» J (and hence J°) is nonnegative = P (t,) is at least positive
semidefinite

» ty can be taken anywhere in (0, tf) = P (t) is at least positive
semidefinite for any t
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Example: LQR of a pure inertia system
Consider

tr
X = [O 1] x + [O] u, J= le(tf) Sx (tr) + 1/ (XTQX—I— Ruz) dt
0

00 1 2 2
1 0 1 0
where S = [0 1], Q= [O O]’ R >0
» we let P(t) = P*(tr — t) and solve
aP =ATP*+ P*A+ Q- P*BRIBTP*, P*(0) = L0
dt 0 1
dP* Jo ol ., ..o 1] [1 o] . fo]1 )
T _[1 o]P P [o 0]+[o OI_P HE[O 1P
> letting
* * \2
o e P =1— % (pi2) pi1(0) =1
e R I TR
p12 p22 d _x * 1 * 2 p* (O):]_
SP> = 2pir — & (P3,) 22
UW Linear Systems (X. Chen, ME547) LQ 15 /32

Example: LQR of a pure inertia system: analysis

P* with R=0.0001

1.0 1 — Pn
— sz
0.8 — P
0.6 1

0.4 A

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

Figure: LQ example: P*(0) = [é (1)] , P(t) = P*(tr — t)

» if the final time tf is large, P* (t) forward converges to a
stationary value

» i.e., P(t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis

P* withR=1 P* with R =100

1.50 1 40

30 1
1.00 — pi

— P1
0.75 1 20 1 i
— P

10 |

x
— Pu

.
— P12

0.00 - P2 0-

0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40
time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) (1)]
» a larger R results in a longer transient

» i.e., a larger penalty on the control input yields a longer time to
settle

UW Linear Systems (X. Chen, ME547) LQ 17 /32

Example: LQR of a pure inertia system: analysis

P* with R=100 P* with R =100 and a different initial value
— pi
40 4 60 1 — P12
50 - — Py
30 A
— P11 40 4
20 — Pix 30 A
— P2
20 A
10
10 4
0 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time/s time/s
) 10 . 20 0
(a) P (0) - [0 1] (b) P (0) - [0 2]

Figure: LQ with different boundary values in Riccati difference Eq.

» for the same R, the initial value P (tf) = S becomes irrelevant
as tr — o0
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3. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ

P* with R=100 P* with R =100 and a different initial value

— Py
40 60 4 — P12

50 1 — P22

301
— pi1 401
— P1

. 304
— P22

20 A

20 1
104

104

0 0

T T T T T T T T T T T T T T T T

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time/s time/s

» in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time

» when tr — oo, LQ becomes the stationary LQ problem, under
two additional conditions that we now discuss in details:

» (A, B) is controllable/stabilizable
» (A, C) is observable/detectable
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Need for controllability/stabilizability

J= %XT(tf)sx(tf) + % /: (xT()Qx(t) + u” (B)Ru(r)) ot

dP
— = ATP+ PA—PBR™IBTP+ Q, P(tf) =S the Riccati differential equation

1
JO = EXJP(to)Xo

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded

> then if J° = 1xJ P (0)xo is unbounded, we will have
1P ()] = o0
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
> eg:x=x+0-u,x(0)=1, Q@ =1and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable

» x(t) will keep increasing to infinity
> =J =1 [ (x"Qx+ u” Ru) dt unbounded regardless of u(t)

» in this case, the Riccati equation is

P P*
—d—:P+P+1:2P+1<:>d
dt dt

=2P*+1

forward integration of P* (backward integration of P), will drive
P* (c0) and P (0) to infinity
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Need for observability /detectability

1 (©.@)
J 5/ (xT()@x(t) + u” (t)Ru(t)) dt
to
with x = Ax + Bu, x(ty) =x, R =0,and Q = C'C.
if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” Q@x = x" CT Cx will regulate all states

» formally: if (A, C) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P, (proof in course notes)
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From LQ to stationary LQ

LQ stationary LQ

J = 5xT(tr)Sx(tr)+

Cost = J=21 [ (xTQx+ u Ru) dt
O L[5 (xT(0)Qx(t) + uT (t)Ru(t)) dt 2 Jig (<T@t uT Ru)
x = Ax + Bu
Syst. x = Ax + Bu = (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq Riccati Eq. (RE) Algebraic RE (ARE)
- dP _ AT —1pT
_dP _ ATp 4 PA— PBR-1BTP
dt = ATP+PA—PBR™IBTP =0
+Q. P(t)=S$ N e
Opt.
control u(t) = —R1BTP(t)x(t) = u(t) = —RIBT Pyx(t)
& cost JO = %XJP(to)Xo = JO = %XJP+X0
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More formally: Solution of the infinite-horizon LQ

For

J:%/: (x(t)TQx(t)+u(t)TRu(t)> dt, Q=CTC

with x(t) = Ax (t) + Bu(t), x(to) = xo and R > 0:
» if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)
» then the optimal control input is given by
u(t) = —R1BTPyx(t)

> where P, (= P[) is the positive (semi)definite solution of the
algebraic Riccati equation (ARE)
ATP+PA—PBR'B'P+Q =0

» and the closed-loop system is asymptotically stable, with

1
Jmin = JO = EX(tO)T P+X(t0)

25 /32
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Observations
» the control u(t) = —R™'BTPx(t) is a constant state feedback
law

» under the optimal control, the closed loop is given by
x=Ax—BRB"Px=(A—BR'B"P)xand J =

\ . g
-~

Ac
Ji (xTQx+uTRu)dt =3 ["xT (Q+ PBR™B'P) xdt
Qc
» for the above closed-loop system, the Lyapunov Eq. is
AP+ PA. = - Q.
& (A-BR'B"P) P+ P(A-BRBTP)=-Q— PBR'BTP
= ATP+ PA— PBR'BTP = —Q (the ARE!)

1
2

» when the ARE solution P, is positive definite, lxTPer Is a

Lyapunov function for the closed-loop system
26 /32
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Observations

» Lyapunov Eq. and the ARE:

Cost J= %fooo xT Q.xdt J= %ftjo (xTQx + u" Ru) dt
x = Ax + Bu
Syst. dynamics X = Acx (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq. ATP+PA.+Q.=0 ATP+PA—PBRIBTP+Q=0
Optimal control N/A u(t) = —R71BT P, x(t)
Opt. cost  J° = 1x7 (0) P1x(0) 10 = 1x(to) Pix(to)

» the guaranteed closed-loop stability is an attractive feature

» more nice properties will show up later
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Example: Stationary LQR of a pure inertia system
» Consider

.01 0 1~/ 010 5
X_[O 0]x+[1]u,J—§/o (x [O O]x—i—Ru)dt,R>O

» the ARE is
= Jeer JoB I Bbo wren- ] 2

» the closed-loop A matrix can be computed to be
0 1
_ -1pT _
Ac=A—-—BR7B' P, = [_R_1/2 —\@R—l/“]

» = closed-loop eigenvalues:
N 1 L 1 .
1,2 = V2R1/4 \/§R1/4J
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.10 1 0 1 o° 71 O 2
x—[o O}X—I—L}U,J—E/O <X [0 O]x—l—Ru)dt

Root locus
1.00 £=0

0.75 A

0.50

0.25 4

-0

0.00 A

Imag axis

—0.251

—0.50 1

—0.75 4

—1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Real axis

1
R1/4

Figure: Eigenvalue A1 = — Jra T \/5}?1/4]' evolution (root locus)

» R 1 (more penalty on the control input) = Ay, move closer to
the origin = slower state convergence to zero

» R | (allow for large control efforts) = A; » move further to the
left of the complex plane = faster speed of closed-loop dynamics
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MATLAB commands
» care: solves the ARE for a continuous-time system:
[P, N\, K] = care (A, B,C'C, R)

where K = R7'B7 P and A is a diagonal matrix with the
closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.

» Igr and Igry: provide the LQ regulator with

[K,P,A] =lqr (A,B,C" C,R)
[K, P,A\] = lgry (sys, Q,, R)

where sys is defined by x = Ax + Bu, y = Cx + Du, and

1

J:—/ (yT yy—i—uTRu)dt
2 Jo
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Additional excellent properties of stationary LQ

» we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:

» at least a 60 degree phase margin
» infinite gain margin
» stability is guaranteed up to a 50% reduction in the gain

UW Linear Systems (X. Chen, ME547) LQ 31/32

Applications and practice

choosing R and Q:

» if there is not a good idea for the structure for @ and R, start
with diagonal matrices;

» gain an idea of the magnitude of each state variable and input
variable

» call them X;max (1 =1,...,n) and Ujmax (i =1,...,r)

» make the diagonal elements of @ and R inversely proportional to
and || U; max

[[X; max] |2 |12, respectively.

UW Linear Systems (X. Chen, ME547) 32/32
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1 Basic concepts of matrices and vectors

A linear equation set

31’1 + 41’2 + 10]33 =6
21 +4x9 — 1023 =5 (1)
4xs + 1023 = —1,

can be simply written as

3 4 10 T 6
14 10| |a|=|5|. (2)

Equation (2) wrote x1, x9, and x5 just once rather than two or three times in (1). There are only three
unknowns in the above linear equation set. The notational simplicity and many algebraic convenience
that will arise, however, are significant when we have thousands of unknowns...

Formally, we write an m x n matrix A as

a1 a12 N AT

a921 Ce ... Qop
A= lag] =

Am1 Am2 ... Qmnp

Here,

e m x n (reads m by n) is the dimension/size of the matrix. It means that A has m rows and n
columns.

e Each element a;; is an entry of the matrix. For two matrices A and B to be equal, it must be
that a;; = bj for any j and k.

e If m = n, A belongs to the class of square matrices. The entries a;1, aso, ..., Gy, are then called
the diagonal entries of A.

— Upper triangular matrices : square matrices with nonzero entries only on and above the
main diagonal.

— Lower triangular matrices : nonzero entries only on and below the main diagonal.
— Diagonal matrices : nonzero entries only on the main diagonal.

— ldentity matrice : diagonal and all diagonal entries are 1.
e Vectors: special matrices whose row or column number is one.

— A row vector: a = [a,as, ..., a,); its dimension is 1 X n.
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— A m x 1 column vector:

Example (Matrix and quadratic forms). We can use matrices to express general quadratic functions
of vectors. For instance

f(x)=aTAz + 20z +c

la]

1.1 Matrix addition and multiplication

is equivalent to

fx) =

The sum of two matrices A and B (of the same size) is
A+ B = [ajr + bji] .
The product between a m x n matrix A and a scalar ¢ is
cA = [caji],

i.e. each entry of A is multiplied by ¢ to generate the corresponding entry of cA.
The matrix product C' = AB is meaningful only if the column number of A equals the row number
of B. The computation is done as shown in the following example:

a11 ai2 a3 b b 11 C12
11 12
] (21 \ ] a22 \ ] a23 \ C21| Ca2
ba1 | Do =
)
a31 a32 a33 b b C31 (32
Q41 42 43 31 32 Cq1  Cy2

where

Co1 = Q21b11 + agbar + agsbs;
b1

= [a217 22, CL23] bay

bs1
= "second row of A" x "first column of B".
More generally:
Cjk = ajibig + ajobog + -+ + ajnbu

bk

bak
= lajn, ajo, - ap] || (3)

bnk
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namely, the jk entry of C is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. This is called a multiplication of rows

into columns.

Matrix multiplication is not commutative:

dimensions when doing matrix products:

A

[m x n]

B

[n X p

It is a good habit to always check the matrix

C
[m x p|

This way it is clear that AB in general does not equal to BA, e.g.,

Matrices as combination of vectors:

a1
Ax =

ABC = (AB)C = A(BC) # BCA.

a2
22
a3z
42

a3
23
ass
43

The matrix-vector product

X1
X2
€3

is nothing but the weighted sum of the columns of A:

ail | 12

a21 | 22
Ax =

a31 | A32

aq1 | Q42

a3
23
ass3
43

1.2 Matrix transposition

T
T2
T3

:{L’l

21
a31
aq1

1171 + a12%2 + Q1373
(2171 + A22%2 + Q2373
(3171 + azax2 + az3Ts
(4171 + Q42%2 + 4373

a12
22

+ ) -+ I3
32

Q42

Definition 1 (Transpose). The transpose of an m x n matrix

A = [a] =

a1
a1

Am1

a12

Am2

is the n x m matrix AT (reads " A transpose”) defined as

AT = [ay;]

Transposition has the following rules:

a1
12

A1n

21

Q2n,

Q1n
A2p,

Am1

a'mn

@13
23

Q43
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CORS

A+ B)' = AT + BT

(
(cA)" = cAT
° (AB) = BT AT

If A= AT, then A is called symmetric. If A = —A” then A is called skew-symmetric.
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2 Linear systems of equations
A linear system of m equations in n unknowns x1, ... , x, is a set of equations of the form

a111 + a12T2 —+ ... ALy = bl

211 + Q929 + ... QonTy = b2 (4)
Am1T1 + AmaZ2 + .. ATy = bm
Here,

e The equation set is linear: each variable x; appears in the first power only.

o If all the b; are zero, then the linear equation is called a homogeneous system. Otherwise, it is a
nonhomogeneous system.

e Homogeneous systems always have at least the trivial solution z; =29 =--- =2, = 0.

The m equations (4) can be written as a single vector equation

Ax = b,
where _ .
Ty
a1 a2 ... ... Qin To b1
a921 a9 ... ... Q9p . b2
A= , T = ; , b=
Al Om2 o oo o er Qmn : b
| Tn |

Gauss' elimination is a systematic method to solve linear equations. Consider

1 -1 1 0
~1 1 =1 || ]o
0 10 25 f ~ 1 90
20 10 0 3 80

A b

The Gauss elimination process is as follows:

! Johann Carl Friedrich Gauss, 1777-1855, German mathematician: contributed significantly to many fields, including
number theory, algebra, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy, Matrix
theory, and optics.

Gauss was an ardent perfectionist. He was never a prolific writer, refusing to publish work which he did not consider
complete and above criticism. Mathematical historian Eric Temple Bell estimated that, had Gauss published all of his
discoveries in a timely manner, he would have advanced mathematics by fifty years.
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1. Obtain the augmented matrix of the system

1 -1 110
-1 1 1|0
0 10 25190
20 10 0 |80

[Alb] =

2. Perform elementary row operation on the augmented matrix, to obtain the Row Echelon Form.
Adding the first row to the second row gives

pivot role : 1 O —1 0
l row 2 @ [0] @ [0]
0 2 90 add pivot role 10 25190
20 10 0 |80 _ 20 10 0 |80 |
1 -1 1 0
row 4 0 0 0 0
add -2mot role 0 10 25 90

0 30 —-20]80

What we have done is using the pivot row to eliminate z; in the other equations. At this stage,
the linear equations look like

$1—$2+£L’3:O (5)

0=0 (6)
1022 + 2523 = 90 (7)

Re-arranging yields

I1—$2+$3:0 (9)
10z5 + 2523 = 90 (10)
30xy — 20x3 = 80 (11)

0=0. (12)

Moving on, we can get ride of x5 in the third equation, by adding to it -3 times the second
equation. Correspondingly in the augmented matrix, we have

1 -1 1 0 1 -1 1 0 1 -1 1 0
0 10 25 |90 0 10 25 90 N 0 1 5/2 9
0 30 —20]80 0 0 —-95|—190 | normalizing | O 0 1 [38/19 |’
0 0 0 |0 0 0 0 0 0 0 0 0

vV
the row echelon form
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namely

z3 = 38/19
To + T3 = 9

1 — 9 + 23 = 0.
The unknowns can now be readily obtained by back substitution: z3 = 38/19, 23 = 9 — 3 ,
T1 = Ty — T3.
Elementary Row Operations for Matrices \What we have done can be summarized by the following
elementary matrix row operations:
e Interchange of two rows
e Addition of a constant multiple of one row to another row
e Multiplication of a row by a nonzero constant ¢
Let the final row echelon form be denoted by
RAVEE
We have:
1. The two systems Ax = b and Rx = f are equivalent.

2. At the end of the Gauss elimination (before the back substitution), the row echelon form of the
augmented matrix will be

_rll T2 ... .. ... Tip fl T
Too ... ... ... Topn f2

Trr oo Trp fr ’
fr+1

! fm ]

where all unfilled entries are zero.

3. The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the rank of R
and also the rank of A.

4. Solution concepts:

(a) No solution | system is inconsistent: 7 is less than m and f,41, fri2, ... , fm are not all
zero.
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(b) Unique solution: if the system is consistent and r = n, there is exactly one solution, which
can be found by back substitution.

(c) Infinitely many solutions: if f..1 = f,4o =... = f,, = 0. To obtain any of these solutions,
choose values of x,,1, ... , z, arbitrarily. Then solve the r-th equation for z, (in terms of
those arbitrary values), then the (r — 1)-st equation for z,_;, and so on up the line.
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3 Vector space, linear independence, basis, and span
Given a set of m vectors ay, as, ..., a,, with the same size,
kiay + koas + - - + kpan,
is called a linear combination of the vectors. If
ay = keag + ksas + - - - + k@,
then a; is said to be linearly dependent on as, as, ..., a,,. The set

{ai,a2,...,an} (13)

is then a linearly dependent set. The same idea holds if as or any vector in the set (13) is linearly
dependent on others.
Generalizing, if
k1a1+k2a2+---+kmam:0

holds if and only if
by = hy = e = ki = 0,

then the vectors in (13) are linearly dependent. This is saying that at least one of the vectors can be
expressed as a linear combination of the other vectors.

Why is linear independence important?  If a set of vectors is linearly dependent, then we
can get rid of one or perhaps more of the vectors until we get a linearly independent set. This set is
then the smallest “truly essential” set with which we can work.

Consider a set of n linearly independent vectors, ay, as, ..., a,, each with n components. All the
possible linear combinations of ay, as, ..., a, form the vector space R™. This is the span of the n
vectors.

Definition 2 (Basis). A basis of V is a set B of vectors in V, such that any v € V can be uniquely
expressed as a finite linear combination of vectors in B.

Example 3. In R?

w=[1] w=[b] w=[3]

is not a linearly independent set.
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4 Matrix properties
4.1 Rank

Definition 4 (Rank). The rank of a matrix A is the maximum number of linearly independent row or
column vectors.

Theorem. Row or column operations do not change the rank of a matrix.

With the concept of linear dependence, many matrix-matrix operations can be understood from the
view point of vector manipulations.

Example (Dyad). A = uv” is called a dyad, where u and v are vectors of proper dimensions. It is a
rank 1 matrix, as can be seen that A = uv’ is formed by linear combinations of the vector u, where
the weights of the combinations are coefficients of v.

Fact. For A, B € R™", if rank (A) = n then AB = 0 implies B = 0. If AB =0 but A # 0 and
B #0, then rank (A) < n and rank (B) < n.

4.2 Range and null spaces

Definition 5 (Range space). The range space of a matrix A, denoted as R (A), is the span of all the
column vectors of A.

Definition 6 (Null space). The null space of a matrix A € R™", denoted as N (A), is the vector
space
{r eR": Az =0}.

The dimension of the null space is called nullity of the matrix.

Fact 7. The following is true:

N (AAT) =N (AT); R(AAT) =R (A).

4.3 Determinants

Determinants were originally introduced for solving linear equations in the form of Ax = y, with a
square A. They are cumbersome to compute for high-order matrices, but their definitions and concepts
are partially very important.

We review only the computations of second- and third-order matrices:

e 2 X 2 matrices:
a b

det[C d} = ad — be.

10
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e 3 x 3 matrices:

a b c
det | d e f | =adet e /]_ bdet d f + cdet d e
g h ok h k g k g h

= aek +bfg+ cdh — gec — bdk — ahf,

Z i],det{j i],anddet[cgl

Q@ Q.
> 00 o
T O

e .
} are called the minors of det

where det { h

Caution: det (cA) = ¢ det (A) (not cdet (A)!)
Theorem 8. The determinant of A is nonzero if and only if A is full rank.

You should be able to verify the theorem for 2 x 2 matrices. The proof will be immediate after
introducing the concept of eigenvalues.

Definition 9. A linear transformation is called singular if the determinant of the corresponding trans-
formation matrix is zero.

Fact 10. Determinant facts:
e If A and B are square matrices, then

det (AB) = det (BA) = det Adet B
det (A") = det (A)
det (A*) = det (A).

o If X and Z are square, Y with compatible dimensions, then

XY
det({ 0 Z]):dethetZ.

5 Matrix and linear equations
Consider again, using now concepts in range and null spaces of matrices, the linear equations
Az =y. (14)
e Existence of solutions requires that y € R (A).

e The linear equation is called overdetermined if it has more equations than unknowns (i.e. A
is a tall skinny matrix), determined if A is square, undetermined if it has fewer equations than
unknowns (A is a wide matrix).

11
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e Solutions of the above equation, provided that they exist, is constructed from
r=x,+z: Az =0, (15)

where ¢ is any (fixed) solution of (14) and z runs through all the homogeneous solutions of
Az =0, namely, z runs through all vectors in the null space of A.

e Unigueness of a solution: if the null space of A is zero, the solution is unique.

You should be familiar with solving 2nd or 3rd-order linear equations by hand.

12
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6 Eigenvector and eigenvalue

6.1 Matrix, mappings, and eigenvectors

Think of Az this way: A defines a linear operator; Az is a vector produced by feeding the vector = to
this linear operator. In the two-dimensional case, we can look at Fig. 1. Certainly, Az does not (at all)
need to be in the same direction as x. An example is

A, — 1 0}7

which gives that

SRR

namely, Ax is x projected on the first axis in the two-dimensional vector space, which will not be in the
same direction as x as long as x5 # 0.

AoX

Figure 1: Example relationship between x and Az.

From here comes the concept of eigenvectors and eigenvalues. It says that there are certain “special
directions/vectors” (denoted as v; and v, in our two-dimensional example) for A such that Av; = \v;.
Thus Av; is on the same line as the original vector v;, just scaled by the eigenvalue ;. It can be shown
that if A\; # Ao, then v; and vy are linearly independent (your homework). This is saying that any
vector in R? can be decomposed as

T = @1U1 + Q20V2.

Therefore
Ax = alAvl + CLQAUQ = CL1/\1U1 + CLQ/\QUQ.

Knowing A; and v; thus can directly tell us how Ax looks like. More important, we have decomposed
Ax into small modules that are from time to time more handy for analyzing the system properties.
Figs. 2 and 3 demonstrate the above idea graphically.

Remark 11. The above geometric interpretations are for matrices with distinct real eigenvalues.

13
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\J

Figure 3: Construction of Ax.

The geometric interpretation above makes eigenvalue a very important concept. Eigenvalues are
also called characteristic values of a matrix. The set of all the eigenvalues of A is called the spectrum
of A. The largest of the absolute values of the eigenvalues of A is called the spectral radius of A.

6.2 Computation of eigenvalue and eigenvectors

Formally, eigenvalue and eigenvector are defined as follows. For A € R™*™, an eigenvalue \ of A is one

for which
Az = \z (16)

has a nonzero solution = # 0. The corresponding solutions are called eigenvectors of A.
Equation (16) is equivalent to
(A= Az =0. (17)

As z # 0, the matrix A — Al must be singular, so
det (A—AI)=0. (18)

det (A — AI) is a polynomial of )\, called the characteristic polynomial. Correspondingly, (18) is
called the characteristic equation. So eigenvalues are roots of the characteristic equation. If an n x n
matrix A has n eigenvalues A\, ..., \,, it must be that

det (A=A = (A — A) - (An — ).

14
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After obtaining an eigenvalue A\, we can find the associated eigenvector by solving (17). This is
nothing but solving a homogeneous system.

Example 12. Consider

Then

2 -2 —
=bB4+N2+N)—-4=0
= A=—-1or —6.

det(A—M):o;»det([_5_A 2 AD:o

So A has two eigenvalues: —1 and —6. The characteristic polynomial of A is A\? + 7\ + 6.
To obtain the eigenvector associated to A = —1, we solve

(A—)\[)x:0<:><{_25 _22}““ ?Dx:{_; _21}33:0.

One solution is
1
‘= { ! } |

: ) ) ) T
As an exercise, show that an eigenvector associated to A = —6 is [ 2 -1 } .

Example 13 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 -6
-1 -2 0

Analogous procedures give that
)\1:5, )\2:>\3:—3.

So there are repeated eigenvalues. For A\y = A3 = —3, the characteristic matrix is
1 2 =3
A+ 31 = 2 4 —6
-1 -2 3

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the
characteristic matrix has only rank 1. The characteristic equation

has two linearly independent solutions
-2 3
11,10
0 1
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Theorem 14 (Eigenvalue and determinant). Let A € R"*". Then

det A=]] .
i=1
Proof. Letting A = 0 in the characteristic polynomial
pA) =det(A—=A) =M —A) (A= A)...

gives

Example 15. For the two-dimensional case

. [ app a2 ] = p(A) =det (A — M) = (a1 — A) (aza — \) — ar2a9;.

Q21 A22

On the other hand
pP(A) = (A1 —=A) (A —A).
Matching the coefficients we get

/\1 +)\2 = a1l +CL22

A1 = @112 — Q12021 .

16
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6.3 Eigenbases and diagonalization

Eigenvectors of an n x n matrix A may (or may not!) form a basis for R™. If we are interested in a
transformation y = Az, such an “eigenbasis” (basis of eigenvectors), if exists, is of great advantage
because then we can represent any = in R™ uniquely as a linear combination of the eigenvectors =1, ...
, Tp, SAY, T = 121 + Ty + ... + ¢,x,. And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by Ay, ... , A\, we have Az; = \;x;, so that we simply obtain

y=Ar = A(c1z1 + Coma + ... + Cpy)
= 1Az + cAxe + - - + ¢, Ax),

=cMx1+ -+ AT

This shows that we have decomposed the complicated action of A on an arbitrary vector x into a sum
of simple actions (multiplication by scalars) on the eigenvectors of A.

Theorem 16 (Basis of Eigenvectors). If an n x n matrix A has n distinct eigenvalues, then A has a
basis of eigenvectors 1, ... , x, for R™.

Proof. We just need to prove that the n eigenvectors are linearly independent. If not, reorder the

eigenvectors and suppose 7 of them, {xy,zo,..., 2.}, are linearly independent and z,,y,...,z, are
linearly dependent on {z1, x5, ..., 2,}. Consider z, 1. There must exist ¢y, ... c,41, not all zero, such
that

c1T1+ ... Cr41Tp41 = 0. (19)

Multiplying A on both sides yields
caAry+ ..., 1Az = 0.

Using Az; = \;x;, we have
aMy+ - F AT = 0.

But from (19), we know that
A1 T1 + o G 1 A1 Trgr = 0.

Subtracting the last two equations gives

aa(M—Ap)xr+ -+ (A — A1) 2, = 0.

None of Ay — A\y1,..., A\ — A1 are zero, as the eigenvalues are distinct. Hence not all coefficients
1 (M1 —Aeg1) s ooy 6r (A — A1) are zero. Thus {x1, 29, ..., 2.} is not linearly independent—a con-
tradiction with the assumption at the beginning of the proof. ]

Theorem 16 provides an important decomposition—called diagonalization—of matrices. To show that,
we briefly review the concept of matrix inverses first.

Definition 17 (Matrix Inverse). The inverse A~! of a square matrix A satisfies

AATT =A1A=1T.

17
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If A=! exists, A is called nonsingular; otherwise, A is singular.

Theorem 18 (Diagonalization of a Matrix). Let an n x n matrix A have a basis of eigenvectors

{1, x9,...,2,}, associated to its n distinct eigenvectors {1, Aa, ..., A\, }, respectively. Then
A0 .00
-1 0 )\2 : -1
A=XDX " =[xy, 29,...,%,] [T, oy .. ] (20)
o .0
0 ... 0 X\,
Also,
A" = XD"X1 (m=23,...). (21)

Remark 19. From (21), you can find some intuition about the benefit of (20): A™ can be tedious to
compute while D™ is very simple!

Proof. From Theorem 16, the n linearly independent eigenvectors of A form a basis. Write

A[E1 = )\15B1
AZL’Q = Agl’g
Ax, = Az
as
A0 .00
0 A :
Alxy, xo, .. xy] = [21, 20, ..., Ty _ 2 .
0O ... 0 M\,
The matrix [z1, s, ..., x,] is square. Linear independence of the eigenvectors implies that [z, zo, . . ., 7]

is invertible. Multiplying [z1, zo, ... ,xn]fl on both sides gives (20).
(21) then immediately follows, as

A" = (XDX )" = XDX'XDX ... XDX ™' = XD"X ",

Example 20. Let
2 =3
A= { 2 }

The matrix has eigenvalues at 1 and -1, with associated eigenvectors

HAN
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Then

31 o1 074
o [2 1] amx] 0]

Now if we are to compute A3°°. We just need to do

3000
1 0
3000 -1
A _X[O 1} X =1

7 Similarity transformation

Definition 21 (Similar Matrices. Similarity Transformation). An n x n matrix A is called similar to
an n X n matrix A if X
A=T7"AT

for some nonsingular n x n matrix 7. This transformation, which gives A from A, is called a similarity
transformation.

Let S; and S, be two vector spaces of the same dimension. Take the same point P. Let u be its
coordinate in S; and 4 be its coordinate in S,. These coordinates in the two vector spaces are related
by some linear transformation 7":

v="Tu, =T "u

Consider Fig. 4. Let the point P go through a linear transformation A in the vector space S;
to generate an output point P,. P, is physically the same point in both S; and S,. However, the
coordinates of P, are different: if we see it from “standing inside” S, then

y = Au

If we see it in Sy, then the coordinate is some other value 3.

Figure 4: Same points in different vector spaces

How does the linear transformation A mathematically “look like" in Sy?
Result:
§=T 'y=T"'Au= (T AT)q

19
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namely, the linear transformation, viewed from Ss, is
A=T"AT

It is central to recognize that the physical operation is the same: P goes to another point P,.
Different is our perspective of viewing this transformation. A and A are in this sense called similar.

Purpose of doing similarity transformation: A can be simpler! Consider, for instance, the following
example

>

In S;, the transformation changes both coordinates of P while in Sy, only the first coordinate of P
is changed.

Theorem 22 (Eigenvalues and Eigenvectors of Similar Matrices). If A is similar to A, then A has the
same eigenvalues as A. Furthermore, if x is an eigenvector of A, then y = T 'z is an eigenvector of
A corresponding to the same eigenvalue.

O

8 Matrix inversion

This section provides a more detailed description of matrix inversion. Recall that the inverse A=! of a
square nonsingular matrix A satisfies

AATT =A1A=1T.
Theorem 23 (Inverse is unique). If A has an inverse, the inverse is unique.
Concepts only. If both B and C are inverses of A, then BA= AB =1 and CA = AC = I so that
B=IB=(CA)B=CAB=C(AB)=CI=C.

Connection with previous topics: The set of all n x n matrices is not a field. Multiplicative inverse is
unique. O
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Definition 24 (Existence of a matrix inverse). The inverse A~! of an n x n matrix A exists if and
only if the rank of A is n. Hence A is nonsingular if rank(A) = n, and singular if rank(A) < n.

Proof. Let A € R™*™ and consider the linear equation
Ax =b.

If A=! exists, then
A'Ar =2 = A7 1.

Hence A~!b is a solution to the linear equation. It is also unique. If not, then take another solution u;
we should have Au = b and u = A~'b. Since A~! is unique, it must be that u = z.
Conversely, if A has rank n. Then we can solve Ax = b uniquely by Gauss elimination, to get

xr = Bb,
where B is the backward substitution linear transformation in Gauss elimination. Hence
Ax = A(Bb) = (AB)b=1b

for any b. Hence
AB = 1.

Similarly, substituting Az = b into © = Bb gives
r=B(Az) = (BA)x = Iz,

and hence
BA=1.

Together B = A~! exists. O

There are several ways to compute the inverse of a matrix. One approach for low-order matrices is
the method of using adjugate matrix (sometimes also called adjoint matrix):

-1 1 . T
A _det(A)adJ(A) :

We explain the computation by two examples. You can find additional details in your undergraduate
linear algebra course.

e 2 x 2 example:
a b1 (1) (=1)"%p
c d Tad—be | (1) e (=1)*a |’

where b in (—=1)"?b is obtained by:

— noticing b is at row 1 column 2 of A;

— looking at the element at row 2 column 1 of A (notice the transpose in adj (A)");
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— constructing a submatrix of A by removing row 2 and column 1 from it, i.e., [b] in this 2 x 2
example;

— computing the determinant of this submatrix.

— adding (—1)""* as a scalar

e 3 x 3 example:

[ e f b c b c| |
-1 h k h k e f
A1 32; _ 1 _‘df‘ ’ac _ac’
g bk det A g k g k d f ’
d e a b a b
L |9 D g h d e| |

where |-| denotes the determinant of a matrix. Similar as before, the row 1 column 2 element

is obtained via

_bc
h k

s}

(=1)*""det | A with [d,e, f], | d | removed

g
Example 25. Find the inverse matrices of
2 1 -1 1 2 —-05 0 0
A_{24},B_ 3 -1 1],Cc=| 0 40
-1 3 4 0 01
The answers are:
—-0.7 0.2 03 -2 0 0
Al = { _0642 _()Oi.%l } , B! ~13 —02 07 |,Ct'=1] 0 025 0
' ' -1 3 4 0 0 1

The related MATLAB command for matrix inversion is inv().

Theorem 26. Inverse of products of matrices can be obtained from inverses of each factor:
(AB)™' = B7'A7Y,

and more generally
(AB...YZ) ' =Zz7'y=t...BtA7L. (22)
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Proof. By definition (AB) (AB)™" = I. Multiplying A~! on both sides from the left gives
B(AB) ' =A%
Now multiplying the result by B~! on both sides from the left, we get
(AB)™' = B7tA™L.
The general case (22) follows by induction. O
Fact 27. *Inverse of upper (lower) triangular matrices are upper (lower) triangular

Proof. (main idea) We can either use the adjoint matrix method or use the following decomposition of
upper(lower) triangular matrices
A=D(I+N),

where D is diagonal and N is strictly upper (lower) triangular with zeros diagonal elements. Then using
matrix Taylor expansion we have

At =(I+N)"' D!
= -N+N*-N*+N'—..)D".

N is nilpotent: N* are upper (lower) triangular and N™ = 0 for n larger than the row dimension of A.
D~ is diagonal. Hence A~ is upper (lower) triangular. O

8.1 Block matrix decomposition and inversion
3 4
A= {1 : }
Recall the key step in performing row operations on matrices in Gauss elimination:
3 4 _ 3 4
12 0 2/3 |

where we had substracted one third of the first row in the second row. In matrix representations, the

above looks like
1 0][34] [3 4
—1/3 1|1 2] |0 23]

For more general two by two matrices, we have

Consider

1 0][a b] [ a b
_—ca‘l 1 c d___O d—ca‘lb_’

If we want to keep the second row unchanged and simplify the first row, we can do

(1 —bd ' | [a 0] [ a—bd e 0]
_O 1 cd_ I c d_'
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Generalizing the concept to blok matrices (with compatible dimensions), we have

I 0][A B] [A B
—BTA T || B" ¢|~ |0 C—BTAB |’

and _
A B I -A7'B| [ A 0
0 C—B™AB||0 I |~ |0 C-BTAB |
Thus
I 0l[ A B][I -A'B] [4 0
—BTA 1 T BT C 0 I 10 C=BTAB |-

Inversion is now very easy:
I 0][ A B][I -A'B]"" [A 0 -
—BTA7Y BT C 0 1 | 0 C-BTAB
I —A'B17'[ 4 B I 0] 4 0 -
0 I BT C | 0 C—-BTAB ’
and hence
A Bl [1I -A'B][4A 0 - I 0
BT C 10 1 0 C—-BTAB —BTATY T
[1 -A'B At 0 I 0
o 1 0 (C-BTAB)" || -BTAT 1]
The above steps work for general partitioned 2 by 2 matrices as well. The result is as follows

I 0][A B|[I —BA™'] [A 0
—CAt I||lCc D|l0o I |10 D-CA'B

A Bl [I -BA'|[A 0 Bl Y S
cD| ~|lo I 0 D—CA'B —CA™t T |

(52 )[4 8] [ e 2] [+ 3]

0 I C D||-D'C I 0 D
A Bl [I =BD'][A-BD}C 0] I 0
c D| o I 0 D -D7'C 1|

8.2 *LU and Cholesky decomposition

Fact 28. The following is true for upper and lower triangular matrices:

][]
BN
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From the last section

I 0
—CA™ ' I

Applying Fact 28 to the last equa

& o)

(A B
¢ D

]|

tion gives the block LU decomposition:

15 p-can ][0 "7

A 0
0 D-CA™'B |~

I 0
cAt g

I 0 A B

} {0 DCAUB})

| cA' 1|0 D-CA'B

which shows any square matrix can be decomposed into the product of a lower triangular matrix and

an upper triangular matrix.

There is also block Cholesky decomposition

A B I _ [0 0
[0 D}:{CA*}A[I ATB I+ D—OA‘lB]’
or using half matrices
A B Az . [0 0 0 0
o n) =i )14 a0 g6 o]
Q=D-CA'B,
where ) )
A2A2 = A, Q2Q2 = Q.
Hence N
B
{C D]:LU,
where
Az 0][ A3 A—3B 0 0 0 0 Az 0
L — * 1 * - 1
v [(JA‘Q 0] 0 0 ]+[O Q2 {0 Qz] [CA‘z Qz]{

8.3 Determinant and matrix inverse identity

Although AB # BA in general, the determinants of products have the following property:

det (AB) = det (BA) = det Adet B,

where A and B should be square

to start with.

Theorem 29 (Sylvester's determinant theorem). For A € R™*™ and B € R™*™,

det (I, + AB) = det (I, + BA),

where I,, and I,, are the m X m and n X n identity matrices, respectively.
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Proof. Construct

I, —A
w-[h )

From the decomposition

L 01[L, -A
M:[B [nHo In+BA}’

we have

det M = det (I,, + BA) .
Alternatively

| In+AB —-A I, O
w=[

Hence

det M = det (I, + AB).
Therefore

det (I,, + AB) = det M = det (I, + BA).

More generally, for any invertible m x m matrix X
det (X + AB) = det (X)det (I, + BX'A),
which comes from

X+AB=X (I+X 'AB)
= det (X + AB) =det [X (I + X 'AB)| = det X det (I + X 'AB).

8.4 Matrix inversion lemma

Fact 30 (Matrix inversion lemma). Assume A is nonsingular and (A + BC)™" exists. The following is
true

(A+BC) ™' = A~ (1 ~B(CA'B+1)"" CA—1> . (23)
Proof. Consider
(A+BC)z =y. (24)
We aim at getting
z = (%), where (x) will be our (A + BC)™". (25)
First, let
Cx =d. (26)
Equation (24) can be written as
Ar+ Bd=y
Cr—d=0.
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Solving the first equation yields
r=A"1(y— Bd). (27)

Then (26) becomes
CA™ ' (y — Bd) =d.

Combining the terms about d and applying matrix inversion yield
d=(CAT'B+ 1) cA™ly.
Putting the result in (27) yields
p=A" (y=B(CAB+1) CATYy)
—at(1-B(catB+1) ey,
Comparing the above with (25), we obtain (23). O

Exercise 31. The matrix inversion lemma is a powerful tool useful for many applications. One appli-
cation in adaptive control and system identification uses

(A+ppT) " = A7 (1 _ ¢ AT ) |

PpTA g +1
Prove the above result. Prove also the general case (called rank one update):

1

Ty _ A-1
(A—I—bc)—A 17 TAT

(A1) (A7),

Fact 32 (More extended matrix inversion lemma). Assume A, C, and A + BCB” are nonsingular.
The following is true

(A+ BOBT) ' = A7 (1 ~B(CBTA'B+1)! CBTA‘l) (28)
= A"~ AT'B(CBTAT'B+1) " CBTA (29)
—_Al_glB (BTA—IB + 0—1)*1 BT AL (30)

Proof. Consider
(A+BCB")z=y.

We aim at getting = = (x) y, where (x) will be our (A + BC’BT)_l. First, let

OBz =d.
We have
Ar+ Bd=y
CBTx —d=0.
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Solving the first equation yields
r=A"1(y— Bd).

Then
CBTA™ (y — Bd) =d
gives
d= (CBTAT'B+ 1) CB"A™'y.

Hence

z=A" (y=B(CB' A B+1)" CB"A™Yy)

— A (1= B(CB"A B+ 1) CB"A™ )y

and (28) follows. O

The extended matrix inversion lemma is key in transforming the Kalman filter to the information
filter when inverting the innovation of covariance matrices.

8.5 Special inverse equalities

Fact 33. The following matrix equalities are true
e I+GK)'G=GUI+KG)™"
to prove the result, start with G (I + KG) = (I + GK) G
e GK(I+GK) ' =G +KG) 'K = (I + GK) " GK (the proof uses the first equality twice)
e generalization 1: (021 + GK) ' G = G (0% + KG) ™"
e generalization 2: if M is invertible then (M + GK) 'G = M'G(I + KM~'G)™"

Exercise 34. Check validity of the following equality, assuming proper dimensions and invertibility of
matrices:

e Z(I+2) ' =1—-(I+42)"
e I+ XY) "= -XY(I+XY) ' =I-X{I+YX)'Y

e extension

1 1 1

(I+XZ7Y) =1-XZ"'Y(I+XZ7Y) =1-XZ"(I+YXZ") Y

=I-X(Z+YX)'Y
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9 Spectral mapping theorem

Theorem 35 (Spectral Mapping Theorem). Take any A € C**™ and a polynomial (in s) f (s) (more
generally, analytic functions). Then

eig (f (4)) = f (eig (4)).
Proof. Let
f(A) :I0]+I1A+$2A2+....
Let A\ be an eigenvalue of A. We first observe that A" is an eigenvalue of A™. This can be seen from
det (A1 — A™) =det [(A] — A)p(A)] = det (A — A) det (p(A)) where p (A) is a polynomial of A.
Now consider f () = 2o + 21\ + 22A? + ... We have
det (f (\) I — f(A)) =det [x1 (Al — A) + 35 (N1 — A?) + 23 (\*] — A%) + ... ]

— det [(A — ) ¢ (4)]

= det (A — A)det (¢ (A)).
Hence f ()) is an eigenvalue of f (A).

Conversely, if 7 is an eigenvalue of f (A), we need to prove that «y is in the form of f ()\). Factorize
the polynomial

fA)=v=aA—a1))(A—az)... (A —ay,).
On the other hand, we note that as a matrix polynomial with the same coefficients:
fA) =yl =ap(A—al) (A—al)...(A—a,l).
But det (f (A) — vI) = 0, which means that there is at least one «; such that
det (A — o I) =0,
which says that «; is an eigenvalue of A. Hence

FO)=r=asA—a) [J(A=ax) =0,
ki

v=r),
where \ is an eigenvalue of A. O

Example 36. Compute the eigenvalues of

A - 99.8 2000
| —=2000 99.8 |-
Solution:

0 1
A99.8[+2000{_1 o]'

So

cig(A) = 99.8 + 2000 eig { 01

o 1 = 99.8 % 2000i.
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10 Matrix exponentials

Since the Taylor series

st _q ; s2t? 33
e = + st + 7 —+ ? +
converges everywhere, we can define the exponential of a matrix A € C"*" by
A2t2 A3t3
eM=T+ At + 5] +T+

Fact 37. Properties of matrix exponentials
1 e =7
2 62A(tJrs) _ eAteAs

3. If AB = BA then e(AtB)t = AteBt — oBtoAl

4. det (eAt) — etracr—:(A)t

5. et is nonsingular for all t € R and (eAt)_1 =e A

6. et is the unique solution X of the linear system of ordinary differential equations

X = AX, subject to X(0) = I
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11 Inner product

11.1 Inner product spaces

Basics: Inner product, or dot product, brings a metric for vector lengths. It takes two vectors and
generates a number. In R™, we have

by

A T by
<a7b>:ab:[a17a27"wan] .
br,

Clearly, {(a,b) = a”b = (b,a). Letting b = a above, we get the square of the length of a:

lall = y/a? + a3 +-- - + a2,

Formal definitions:

Definition 38. A real vector space V is called a real inner product space, if for any vectors a and b in
V there is an associated real number (a, b), called the inner product of a and b, such that the following
axioms hold:

e (linearity) For all scalars ¢; and ¢, and all vectors a,b,c € V
(q1a + g2b,c) = q1 (a,b) + g2 (b, ¢)

e (symmetry) Ya,b € V
(a,b) = (b,a)

e (positive definiteness) Va € V
{a,a) =0

where (a,a) = 0 if and only if a = 0.

Definition 39 (2-norm of vectors). The length of a vector in V is defined by

lall = V/{a,a) = 0.

For R™,

lall = VaTa = \Ja? + a3 + -+ a2.

This is the Euclidean norm or 2-norm of the vector. R™ equiped with the inner product (a, b) = Va™b
is called the n-dimensional Euclidean space.
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Example 40 (Inner product for functions, function spaces). The set of all real-valued continuous
functions f (z), g(x), ... = € [, 5] is a real vector space under the usual addition of functions and
multiplication by scalars. An inner product on this function space is

B
()= [ f@)g@)da
and the norm of f is
B
1F@l=y [ fie)dn

Inner products is also closely related to the geometric relationships between vectors. For the two-
dimensional case, it is readily seen that

DR

is a basis of the vector space. The two vectors are additionally orthogonal, by direct observation.
More generally, we have:

Definition 41 (Orthogonal vectors). Vectors whose inner product is zero are called orthogonal.
Definition 42 (Orthonormal vectors). Orthogonal vectors with unity norm is called orthonormal.

Definition 43. The angle between two vectors is defined by

(a,b) _ (a,b)
lall - 1[oll  \/(a,a) - /(b b)

11.2 Trace (standard matrix inner product)

cos Z (a,b) =

The trace of an n x n matrix A = [a;i] is given by

=1
Trace defines the so-called matrix inner product:
(A,B) =Tr (A"B) =Tr (B"A) = (B, A), (32)

which is closely related to vector inner products. Take an example in R3*3: write the matrices in the
column-vector form B = [by, bs, bs], A = [a1, as, a3), then

a{bl * *
ATB = x alby x|, (33)
* *  albs
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So
Tr (ATB) = a{bl + a2Tb2 + a3Tb3,
ap b1
which is nothing but the inner product of the two “stacked” vectors | a; | and | by |. Hence
as b

ap b1
(A,B):Tr(ATB):< a |, | by >

ag bs
Exercise 44. If x is a vector, show that

Tr(zz”) = 272

12 Norms

Previously we have used || - || to denote the Euclidean length function. At different times, it is useful
to have more general notions of size and distance in vector spaces. This section is devoted to such
generalizations.

12.1 Vector norm

Definition 45. A norm is a function that assigns a real-valued length to each vector in a vector space
C™. To develop a reasonable notion of length, a norm must satisfy the following properties: for any
vectors a, b and scalars o € C,

e the norm of a nonzero vector is positive: ||a|| > 0, and ||a|| = 0 if and only if a =0
e scaling a vector scales its norm by the same amount: ||aal| = || ||al|
e triangle inequality: ||a + b|| < [|a|| + ||b]|
Let w; be a n x 1 vector. The most important class of vector norms, the p norms, of w are defined by
n 1/p
[|wll, = (Z |wi|p> , 1<p<oo.
i=1
Specifically, we have
|lwlly = > |w;| (absolute column sum)
I R—
|wl]|, = VwHw (Euclidean norm)

Remark 46. When unspecified, || - || refers to 2 norm in this set of notes.
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Intuitions for the infinity norm By definition

1/p

n
[[ewlloo = lim | 3 fu,]?
p—0o0 i1

Intuitively, as p increases, max; |w;| takes more and more weighting in """, |w;[’. More rigorously, we

have
n 1/p n 1/p

- NP < g 1P ; 1)P
Jim ((max fug])7)'7 < Tim 2 fwi” | < Tim 2 (max w])
1= 1=

1/p 1/p

equals max; |w;|. Hence ||w||e =

Both lim,_, ((max |w;|)")"* and lim, o (3>, (max |w;|)")

max |w;|.

12.2 Induced matrix norm

As matrices define linear transformations between vector spaces, it makes sense to have a measure of
the “size” of the transformation. Induced matrix norms? are defined by

[ Mzl

Tl (34)

M = max
1Ml =
In other words, ||M||,, is the maximum factor by which M can “stretch” a vector .

In particular, the following matrix norms are common:
| M||121 = max; >, |M;;| maximum absolute column sum

| M [|os-0o = max; Y 35%, [ M;;] maximum absolute row sum

|M |22 = v/ Amax (M*M) maximum singular value

The induced 2 norm can be understood as follows:

Y [ Mz]
= —
(1Ml = max Nzlls =0

= \/Aumax (M*M).

Remark 47. When p = ¢ in (34), often the induced matrix norm is simply written as ||M]||,.

12.3 Frobenius norm and general matrix norms

Matrix norms do not have to be induced by vector norms.

2|t is 'induced’ from other vector norms as shown in the definition.
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Formal definition: Let M, be the set of all n x n real- or complex-valued matrices. We call a

function || - || : M,, = R a matrix norm if for all A, B € M,, it satisfies the following axioms:
L [lAl[=0
2. ||A||=0if and only if A =0
3. ||cAl| = |¢|||A|| for all complex scalars ¢
4. [[A+ B| < ||All+ 1B
5. |AB|| < [[Allll B

The formal definition of matrix norms is slightly amended from vector norms. This is because although
M,, is itself a vector space of dimension n?, it has a natural multiplication operation that is obsent in
regular vector spaces. A vector norm on matrices that satisfies the first four axioms and not necessarily
axiom 5 is often called a generalized matrix norm.

Frobenius norm: The most important matrix norm which is not induced by a vector norm is the
Frobenius norm, defined by

|A||p 2 /Tr (A*A) = /< A A > = Z |a; ;|-

2%
Frobenius norm is just the Euclidean norm of the matrix, written out as a long column vector:
1
1 m m 2
1 2
|A][F = (Tr (A"A4))2 = (ZZ |ai;] > :
i=1 j=1
We also have bounds for Frobenius norms:

IAB|[5 < | Al[EIBIIE-

Transforming from one matrix norm to another:

Theorem 48. If|| - || is a matrix norm on M,, and if S € M,, is nonsingular, then
14]|s = [|ST'AS|| VA € M,

IS @ matrix norm.

Exercise 49. Prove Theorem 48.
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12.4 Norm inequalities

1.

Cauchy-Schwartz Inequality:
[z, 9)| < [lz]l2]ly]]2;
which is the special case of the Holder inequality

1 1
(2, )| < M=l|plyllq, 5+5=1, 1 <p,q<oo (35)
Both bounds are tight: for certain choices of x and y, the inequalities become equalities.

Bounding induced matrix norms:
AB[1en < |[Alleml | Bllmen, (36)
which comes from
ABz||; < [[Allicml| B2|lm < [[Allicm||Bllmen|2]]n-

In general, the bound is not tight. For instance, ||A"|| = ||A||" does not hold for n > 2 unless A
has special structures.

(35) and (36) are useful for computing bounds of difficult-to-compute norms. For instance, ||A|3
is expensive to compute but ||A||; and ||A||« are not. As a special case of (36), we have

1AL < Al 1A |-
We can obtain an upper bound of ||A||3 by computing || A]]1||4]|ce-

Any matrix induced norms of A are larger than the absolute eigenvalues of A:
A (A) | < []Allp.
Hence as a special case, the spectral radius is upper bounded by any matrix norms:
p(A) < [IA].
Let A € M,, and € > 0 be given. There is a matrix norm such that
p(A) <A <p(A) +e

Hint: A can be decomposed as A = U*AU where U is unitary and A is upper triangular [Schur
triangulariztion theorem]. Let D; = diag(t,t?,...,t") and compute

i A t_ldlg ce e t_TH_ldln i
0 Ayt 'das o Ty,
D,AD;! = e
: . . Zf_ldnfl,n
0 0 A

For ¢ large enough, the sum of the absolute values of the off-diagonal entries is less than ¢ and
in particular
IDAD L < p(A) +e
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12.5 Exercises

1. Let x be an m vector and A be an m x n matrix. Verify each of the following inequalities, and
give an example when the equality is achieved.

(@) [lzlloe < [l

(b) llzll2 < vm|lz|lo
(©) [[Alleo < v/nlAll
(d) [[A[l2 < v/ml|Alls

2. Let x be a random vector with mean E [z] = 0 and covariance E (zz”) = I, then
1AIIE = B [|[Az]|3]

Hint: use Exercise 44.

13 Symmetric, skew-symmetric, and orthogonal matrices

13.1 Definitions and basic properties

A real square matrix A is called symmetric if A = AT, skew-symmetric if A = —A”.

Fact 50. Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

R=J(A+AT), §=_(A-AT).

N | —

If A = [aj;], then the complex conjugate of A is denoted asA = [a;;], i.e., each element
ajr = a+ 13 is replaced with its complex conjugate a;, = o — 3. B
A square matrix A is called Hermitian if A7 = A; skew-Hermitian if AT = —A.

Example 51. Find the symmetric, skew-symmetric, Hermitian, and skew-Hermitian matrices in the

set:
1 2 1 2 1 21 0 2 0 242
2 1’ 2t 1 ’ -2t 1 ’ -2 0|’ 2—2 0 '

We introduce one more class of important matrices: a real square matrix A is called orthogonal®
if
ATA = AAT = 1. (37)

Writing A in the column-vector notation

A:[al,aQ,...,an},

3Some people also call use the notion of orthonormal matrix. But orthogonal matrix is more often used (we can say
orthonormal basis).
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we get the equivalent form of (37):

T T T T

al ala; atay, ... ala,
T
ATA= . |:a1; A2, ..., an}: . . . . =1
T T T T

a,, a,a, a,0z ... Q,0n

Hence it must be that
T = _
a;a; = 1

a;pam =0V #m,

namely, a; and a,, are orthonormal for any j # m.

The complex version of an orthogonal matrix is the unitary matrix. A square matrix A is called
—T

unitary if AA =A A=1, namely A=t = A",
Remark 52. Often the complex conjugate transpose A" is written as A*.
Theorem 53. The eigenvalues of symmetric matrices are all real.

Proof. ¥V : A € R™™ with AT = A. Au = \u = u’ Au = \u’u, where % is the complex conjugate of
u. ! Au is a real number, as

ﬁ =ul'Au
=ulAu ARV
=u'ATg ~A=AT
=xla o (Au)" = Ow)”
=’y cu'meR
=ulAu . Au = .

al Au

it S also a real number. O

By definition of complex conjugate numbers, /v € R. So \ =
Theorem 54. The eigenvalues of skew-symmetric matrices are all imaginary or zero.
The proof is left as an exercise.

Fact 55. An orthogonal transformation preserves the value of the inner product of vectors a and b
in R™. That is, for any a and b in R™, orthogonal n x n matrix A, and u = Aa, v = Ab we have
(u,v) = (a,b), as

ulv=aTATAb = a’.

Hence the transformation also preserves the length or 2-norm of any vector a in R™ given by ||a||s =
(a,a).

Theorem 56. The determinant of an orthogonal matrix is either 1 or -1.
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Proof. UUT = I = det U det UT = (det U)* = 1. O

Theorem 57. The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and
have absolute value 1.

Proof. Au = hu = ATAu = MATu = u = MTu = @u = Xa"ATu = @Tu = \a"A u =
Matu = (A — 1) au = 0. O

Properties of the special matrices From the above results, we have the following table:

real matrix complex matrix properties
symmetric (A = AT) Hermitian (A* = A) eigenvalues are all real
orthogonal unitary eigenvalues have unity magnitude; Ax
(ATA = AAT =) (A*A = AA*=1) maintains the 2-norm of x
skew-symmetric skew-Hermitian eigenvalues are all imaginary or zero
(AT = —4) (A" = —-4)

Based on the eigenvalue characteristics, we have:

e symmetric and Hermitian matrices are like the real line in the complex domain
e skew-symmetric/Hermitian matrices are like the imaginary line

e orthogonal/unitary matrices are like the unit circle

Exercise 58 (Representation of matrices using special matrices). Many unitary matrices can be mapped
as functions of skew-Hermitian matrices as follows

U=I-S)"I+S5),

where S = I. Show that if S is skew-Hermitian, then U is unitary.

13.2 Symmetric eigenvalue decomposition (SED)

When A € R™ ™ has n distinct eigenvalues, we have seen the useful result of matrix diagonalization:

A1
A=UANU = [uy, ..., up) [ur, . un] (38)
An

where \;’s are the distinct eigenvalues associated to the eigenvector u;'s.

The inverse matrix in (38) can be cumbersome to compute though.

The spectral theorem, aka symmetric eigenvalue decomposition theorem,* significantly simplifies the
result when A is symmetric.

4Recall that the set of all the eigenvalues of A is called the spectrum of A. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A.

39



Xu Chen Review of Linear Algebra for Controls February 17, 2023

Theorem 59. V: A ¢ R™" AT = A, there always exist \; and u;, such that

A=Y Nuu] =UAU”, (39)
=1

where:®
e \;'s: eigenvalues of A

e u;: eigenvector associated to \;, normalized to have unity norms

o U=|uy,us,- ,uy|" is an orthogonal matrix, i.e, UTU = UUT = I
e {uy,us, - ,u,} forms an orthonormal basis

A1
o A=

An
To understand the result, we show an important theorem first.

Theorem 60. V: A € R™" with AT = A, then eigenvectors of A, associated with different eigenval-
ues, are orthogonal.

Proof. Let Au; = Nu; and Au; = Mu;. Then u] Au; = ul Nju; = Nulwu;. In the meantime,
ul Auj = ul ATu; = (Au;)" u; = Nulu;. So Mulu; = MNulu;. But A; # A;. It must be that
T,

ui uj = 0. [

Theorem 59 now follows. If A has distinct eigenvalues, then U = [uy, ug, - - - ,uy]" is orthogonal if
we normalize all the eigenvectors to unity norm. If A has r(< n) distinct eigenvalues, we can choose
multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

Observations:

o If we “walk along” u;, then
AU]‘ = Z )\,LUZUlT Uj = )\jUjU?Uj = )\j’dj, (40)

where we used the orthonormal condition of u]u; = 0 if ¢ # j. This confirms that u; is an
eigenvector.

Su;ul’ € R™ ™ is a symmetric dyad, the so-called outerproduct of u; and u;. It has the following properties:

o VveR™, (vol), =wvw;. (Proof: (vv) . = e (vv")e; = viv;, where ¢; is the unit vector with all but the
i, elements being zero.)

e link with quadratic functions: ¢ (z) = 27 (v0”) z = (vTx)2
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o {u;}; | is a orthonormal basis =Vz € R", 3z = >, ayu;, where a; =< z,u; >. And we have

which gives the (intuitive) picture of the geometric meaning of Az: decompose first = to the
space spanned by the eigenvectors of A, scale each components by the corresponding eigenvalue,
sum the results up, then we will get the vector Azx.

With the spectral theorem, next time we see a symmetric matrix A, we immediately know
that

e )\, is real for all
e associated with );, we can always find one or more real eigenvectors
e 3 an orthonormal basis {u;};_,, which consists of the eigenvectors

o if A c R?>*2 then if you compute first A;, Ay and u;, you won't need to go through the regular
math to get ug, but can simply solve for a uy that is orthogonal to u; with ||us|| = 1.

5 V3

Example 61. Consider the matrix A = { /3 7 } . Computing the eigenvalues gives
5—X V3 2
det =35 —12A+ XN —=3=\—-4)(\A—8) =
e[\/g 7_@ 35 A -3=A=-4)(A=8)=0
:>)\1 == 4, )\2 == 8

We can know one of the eigenvectors from

V3

_V3
: |

:|t1:0:>t1:|: 2

1
2

Note here we normalized ¢; such that ||¢;||s = 1. With the above computation, we no more need to do
(A — A1)ty = 0 for getting to. Keep in mind that A here is symmetric, so has eigenvectors orthogonal
to each other. By direct observation, we can see that

1
-[4
2

is orthogonal to ¢; and ||z||]s = 1. So t; = x.

Theorem 62 (Eigenvalues of symmetric matrices). If A = AT € R™ ", then the eigenvalues of A
satisfy
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\ . 2T Ax
max

max z€R™, z#0 ||ZL‘||%

xT Ax

Proof. Perform SED to get
i=1

where {u;};_, form a basis of R™. Then any vector € R" can be decomposed as

n
xTr = E o Uy;.
=1

Thus
ITAZL“ (Zz OéiUZ‘)T ZZ /\ZOéZUZ ZZ )\10412

a = ma =max =—> = A\, .v.
o 23 T Ter > a? N e T

The proof for (43) is analogous and omitted.

13.3 Symmetric positive-definite matrices

Definition 63. A symmetric matrix P € R™*" is called positive-definite, written P = 0, if 27 Pz > 0
for all z (# 0) € R™. P is called positive-semidefinite, written P = 0, if 27 Pz > 0 for all x € R®

Definition 64. A symmetric matrix P € R™*" is called negative-definite, written P < 0, if —P > 0,
i.e., TPz < 0 for all z (# 0) € R™. P is called negative-semidefinite, written P < 0, if 27 Pz <0

for all x € R®

When A and B have compatible dimensions, A = B means A — B > 0.
Positive-definite matrices can have negative entries, as shown in the next example.

Example 65. The following matrix is positive-definite
2 -1
S
as P = PT and take any v = [z,]”, we have

T
v Py = {‘;} [_21 _21} {‘;} = 2%+ 27 — 2wy =22+ P + (x+y)* >0,

and the equality sign holds only when z =y = 0.

Conversely, matrices whose entries are all positive are not necessarily positive-definite.
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Example 66. The following matrix is not positive-definite

12
=]

BB EEE

Theorem 67. For a symmetric matrix P, P = 0 if and only if all the eigenvalues of P are positive.

as

Proof. Since P is symmetric, we have

TA
)\max (P) = max % (44)
z€R™, z#0 H])HQ
TA
)\min (P) = min %7 (45)
zeR", 20 ||7||3
which gives
xTA‘T € P‘mion”g) /\maX”ng] :
For x # 0, ||z||3 is always positive. It can thus be seen that 27 Az > 0, x # 0 < Ay > 0. O

Lemma. For a symmetric matrix P, P = 0 if and only if all the eigenvalues of P are none-negative.
Theorem. If A is symmetric positive definite, X is full column rank, then XT AX is positive definite.

Proof. Consider y (XTAX) y = x7 Az, which is always positive unless z = 0. But X is full rank so
Xy =2 =0if and only if y = 0. This proves X7 AX is positive definite. O

Fact. All principle submatrices of A are positive definite.

Proof. Use the last theorem. Take X = e;, X = [e;,es], etc. Here e; is a column vector whose
ith-entry is 1 and all other entries are zero. ]

Example 68. The following matrices are all not positive-definite:

ol AR

Positive-definite matrices are like positive real numbers. We can have the concept of square root of
positive-definite matrices.

Definition 69. Let P = 0. We can perform symmetric eigenvalue decomposition to obtain P = UDU”
where U is orthogonal with UU” = I and D is diagonal with all diagonal elements being none negative

M O ...0

p=| 0 M =0
SRR
0 ... 0 A
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. Then the square root of P, written P%, is defined as

.where

13.4 General positive-definite matrices

Definition 70. A general square matrix () € R™" is called positive-definite, written as @ > 0, if
2TQx > 0 Vo # 0.

We have discussed the case when @) is symmetric. If not, recall that any real square matrix can be
decomposed as the sum of a symmetric matrix and a skew symmetric matrix:

- QR+Q"  Q-Q
2 + 2

Q

T . .
where % is symmetric.

Notice that mTQ_—QQTx =27 Qu — (xTQx)T = (. So for a general square real matrix:
Q-0s0Q+Q" 0.
Example 71. The following matrices are positive definite but not symmetric
{ 11 } { 10 }
O 1”1 1]
For complex matrices with Q = Q* = Qr + jQ;, we have

Q-0 2"Qr >0, Ve #0
& (v — jai) (Qr +jQr) (xr + jzr) > 0

() (e en(5) () ()
() (% &) ()

& 1HhQrTr — 11 Qg + TRQrr + 21 Qrar > 0.
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13.5 *Positive-definite functions and non-constant matrices

We can further extend the concept of positive definiteness to general and even time-varying functions,
by placing upper and/or lower bounds that are “positive-definite like".
Define first two special functions:

1. class-K function: ¢ € C°: [0,a] — [0, 00) with ¥ (0) = 0 and % strictly increasing,
2. class-K function: if the domain a = oo and ¢ (1) — 00 as r — 0.
Note: 1 is continuous but does not need to be continuously differentiable, e.g.
1) = min {x, a:2}
is a class-K function.

Lemma 72. Let V : D — R be a continuous, positive definite function. Let B, C D for some r > .
Then there exist class-K functions 1 and ¢ defined on [0, ] such that

o (llzl]) <V (x) < (||=])
for all x € B,.
o if the domain D = R" then r = o0 ,

e if VV () is radially unbounded, then ) and ¢ can be class- K.

Definition 73. A time-dependent function V (¢, z) is positive-semidefinite if

Vit x) = o(]x]]),
where ¢ is class-K.

Definition 74. A time-varying matrix P (t) is positive definite if there exists a lower-bounding positive
definite matrix such that
P(t) = csl =0, Vt > 0.
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14 Singular value and singular value decomposition (SVD)

14.1 Motivation

Symmetric eigenvalue decomposition is great but many matrices are not symmetric. A general matrix
A may actually not even be square. Singular value decomposition is an important matrix decomposition
technique that works for arbitrary matrices.®

For a general none-square matrix A € C™*", eigenvalues and eigenvectors are generalized to

AU]' = O'jUj (46)

Be careful about the dimensions: if m > n, we have

01

V1 | Vg | ... | Uy 02

=
4

U
It turns out that, if A has full column rank n, then we can find a V' that is unitary (VV* = V*V = 1)
and a U that has orthonormal columns. Hence

A=USV* (47)

14.2 SVD

(47) forms the so-called reduced singular value decomposition (SVD). The idea of a “full” SVD is as
follows. The columns of U are n orthonormal vectors in the m-dimensional space C™. They do not
form a basis for C™ unless m = n. We can add additional m — n orthonormal columns to U and
augment it to a unitary matrix U. Now the matrix dimension has changed, 3 needs to be augmented
to compatible dimensions as well. To maintain the equality (47), the newly added elements to 3 are
set to zero.

Theorem 75. Let A € C™*™ with rank r. Then we can find orthogonal matrices U € C™*™ and
V € C™*™ such that
A=UXV",

SHistory of SVD: discovered between 1873 and 1889, independently by several pioneers; did not became widely known
in applied mathematics until the late 1960s, when it was shown that SVD can be computed effectively and used as the
basis for solving many problems.
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where

¥ € R™™ is diagonal
U e C™™ is unitary
V e C™" is unitary.

In addition, the diagonal entries o; of ¥ are nonnegative and in nonincreasing order; that is, o1 > oy >
>0, > 0.

Proof. Notice that A*A is positive semi-definite. Hence, A* A has a full set of orthonormal eigenvectors;
its eigenvalues are real and nonnegative. Order these eigenvalues as

)\12)\22"'2)\r>)\r+1:>\r+2:"':>\n:0-
"Let {vy,...,v,} be an orthonormal choice of eigenvectors of A* A corresponding to these eigenvalues:
A*A’Ui = )\ﬂ)z

Then,
||AU1||2 = U;A*AUZ' = )\iU;(UZ' = )\z

For ¢ > r, it follows that Av; = 0.
For 1 <i <r, we have

A*A’Ui = )\ﬂ)l
Recall (46), we define o; = /\; and get
AUi = 0O;U;
A*Ui = 0;0;.
For 1 <i,j <r, we have
1 1 o, 1 1=y
(i, 05) = iy = — ;A" Ay = — Ay = Dy =4 1
0i0; 0i0; o 0 i#j.
Hence {u; ..., u,} is an orthonormal set of eigenvectors. Extending this set to form an orthonormal
basis for C™ gives
U= [ U, eny Up ‘ Ups1, ooy Um }
For i < r, we already have
AUZ' = O;U4,

"Fact: rank (A) = rank (A*A). To see this, notice first, that rank (A) > rank (4*A) by definition of rank. Second,
A*Az =0= 2"A*Az = 0 = ||Az|| = 0 = Az = 0, hence rank (4) < rank (A*A).
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namely
o1
02
A [Uh UT] — [ula au'r]
o,
o .
)
:[ul, ceey Up | Upg1y, - - ey um} (o
0
i 0 ]
For v,,1,..., we have already seen that Av,,; = Av,, o =--- =0, hence
o) .
0-7’
0
A\[Ul,...w U,.+1,...,Unl= [ ULy, ooy Up | Upg1, ooy Up }
~~ - s
nxn mXm O
. O -
mXn
= A=UXV".

]

Theorem 76. The range space of A is spanned by {uy,...,u.}. The null space of A is spanned by
{U'r'—‘rla c ,’Un}.

O

Theorem 77. The nonzero singular values of A are the square roots of the nonzero eigenvalues of
A*A or AA*.

[
Theorem 78. ||A||s = 01, i.e., the induced two norm of A is the maximum singular value of A.

The next important theorem can be easily proved via SVD.

48



Xu Chen Review of Linear Algebra for Controls February 17, 2023

Theorem (Fundermental theory of linear algebra). Let A € R™*"™. Then
R(A)+N (4") =R™,

and

R (A) LN (AT).
Proof. By singular value decomposition, we have
A=UxV"
AT =vzUT.
The range space of A is the first  columns of U, from the first equation. The null space of A7 is the

last m — r columns of U, from the second equation. 0

New intuition of matrix vector operation With A = UXV*, a new intuition for Az = UXV*x
is formed. Since V' is unitary, it is norm-preserving, in the sense that VV*z does not change the 2-norm
of the vector x. In other words, V*z only rotates x in C". The diagonal matrix ¥ then functions to
scale (by its diagonal values) the rotated vector. Finally, U is another rotation in C™.

14.3 Properties of singular values

Fact. Let A and B be matrices with compatible dimensions. The following are true
c(A+B)<a(A)+7(B),
o(AB) <3 (A)7 (B).

Proof. The first inequality comes from

Av+ B A B
E(A—I—B):max—” v UHQSmaXH ofl + sz.
w0 ol vA0 ]2

The second inequality uses

AB Alls||B
0 lla T w0 ol

14.4 Exercises

1. Compute the singular values of the following matrices
0 2
3 2 11 11
W [* L] e, 00| @ oolo@]i]
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2. Show that if A is real, then it has a real SVD (i.e., U and V are both real).

3. For any matrix A € R™*™, construct

M = R(n—l—m)x(n—l—m)
AT 0| € ’
o

xn

m mxXm

which satisfies

M is Hermitian, and hence has real eigenvalues and eigenvectors:
0 A Uj o Uj
{ATO}[UJ]_%[UJ} 48)
(a) Show that

i. v; is in the co-kernal (perpendicular to kernal/null space) of A and w; is in the range
of A.
T

ii. if o; and { vj } form a eigen pair for M, then—o; and [ul, —v]
pair for M
iii. eigenvalues of M always appear in pairs that are symmetric to the imaginary axis.

(b) Use the results to show that, if

T .
| also form an eigen

12 4
A:[l 4 32}’

then M must have eigenvalues that are equal to 0.
4. Suppose A € C"™*™ and has an SVD A = UXV*. Find an eigenvalue decomposition of
0 A*
A 0 |7
5. Worst input direction in matrix vector multiplications. Recall that any matrix defines a linear
transformation:

Mw =z
What is the worst input direction for the vector w? Here worst means: if we fix the input norm,
say ||w|| = 1, ||z|| will reach a maximum value (the worst case) for a specific input direction in

w.

(a) Show that the worst ||z]|| is |[|M]| when ||w|| = 1.

(b) Provide procedures to obtain the w that gives the maximum ||z||, for the cases of 1 norm,
oo norm, and 2 norm.
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characteristic equation, 14
characteristic polynomial, 14

characteristic values of a matrix, 14

D
Determinants, 10

Diagonal matrices, 1
dyad, 10

E

eigenbasis, 17

eigenvalue, 13

eigenvectors, 13

Elementary Row Operations, 7

H
homogeneous system, 5

|
Identity matrix, 1
inverse, 17

L

linear combination, 9
linear equation set, 1
linearly independent, 9
lower triangular matrices, 1

M
Matrix inversion lemma, 26
matrix product, 2

N
nonhomogeneous system, 5
null space, 10
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nullity, 10
O

overdetermined, 11

R

range space, 10
rank, 10

row echelon form, 7

S

singular, 11
skew-symmetric, 4
span, 9

spectral radius, 14
spectrum, 14
symmetric, 4

T
transpose, 3

U
undetermined, 11

Upper triangular matrices, 1

V
Vectors, 1
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