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The power of controls

▶ nanometer precision control
▶ information storage
▶ semiconductor manufacturing

▶ optics and laser beam steering
▶ robotics for manufacturing
▶ laser-material interaction in additive manufacturing
▶ everyday life: driving, cooking, showering, to name just a few
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Course Scope: analysis and control of linear dynamic
systems

▶ System: an interconnection of elements and devices for a desired
purpose

▶ Control System: an interconnection of components forming a system
configuration that will provide a desired response

▶ Feedback: the use of information of the past or the present to
influence behaviors of a system
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Why automatic control?

A system can be either manually or automatically controlled. Why
automatic control?
▶ Stability/Safety: difficult/impossible for humans to control the

process or would expose humans to risk
▶ Performance: cannot be done “as well” by humans
▶ Cost: Humans are more expensive and can get bored
▶ Robustness: can deliver the requisite performance even if process

behaves slightly differently
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Terminologies

Input filter Process

Disturbance

Reference Output
Controller Actuator

Sensor

Sensor noise

−
+

Plant

▶ Process: whose output(s) is/are to be controlled
▶ Actuator: device to influence the controlled variable of the process
▶ Plant: process + actuator
▶ Block diagram: visualizes system structure and the flow information

in control systems
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Open-loop control v.s. closed-loop control

Controller Controlled System

Disturbance

u(t)Desired Output y(t)

▶ the output of the plant does not influence the input to the controller
▶ input and output as signals: functions of time, e.g., speed of a car,

temperature in a room, voltage applied to a motor, price of a stock,
electrical-cardiograph, all as functions of time.
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Open-loop control v.s. closed-loop control

Thermostat

Heat Loss

Desired T Room T
Gas Valve Furnace House

+

−

▶ multiple components (plant, controller, etc) have a closed
interconnection

▶ there is always feedback in a closed-loop system
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Closed-loop control: regulation example

Thermostat

Heat Loss

Desired T Room T
Gas Valve Furnace House

+

−
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Regulation control example: automobile cruise control

??
Controller

Road Grade

Desired Speed Actual Speed
Engine Auto Body

Speedometer

Throttle

Measured Speed

▶ What is the control objective?
▶ What are the process, process output, actuator, sensor, reference, and

disturbance?

UW Linear Systems (X. Chen, ME547) Introduction 11 / 16

Control objectives

▶ Better stability
▶ Improved response characteristics
▶ Regulation of output in the presence of disturbances and noises
▶ Robustness to plant uncertainties
▶ Tracking time varying desired output

There are some aspects of control objectives that are universal. For
example, we would always want our control system to result in closed-loop
dynamics that are insensitive to disturbances. This is the disturbance
rejection problem. Also, as pointed out previously, we would want the
controller to be robust to plant modeling errors.
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Means to achieve the control objectives

▶ Model the controlled plant
▶ Analyze the characteristics of the plant
▶ Design control algorithms (controllers)
▶ Analyze performance and robustness of the control system
▶ Implement the controller
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Resources for control education: societies

▶ AIAA (American Institute of Aeronautics and Astronautics)
▶ Publications: AIAA Journal of Guidance, Control and Navigation

▶ ASME (American Society of Mechanical Engineers)
▶ Publications: ASME Journal of Dynamic Systems, Measurement and

Control1

▶ IEEE (Institute of Electrical and Electronics Engineers)
▶ www.ieee.org
▶ Control System Society
▶ Publications:

▶ IEEE Control Systems Magazine1

▶ IEEE Transactions on Control Technology
▶ IEEE Transactions on Automatic Control

▶ IFAC (International Federation of Automatic Control)
▶ Publications: Automatica, Control Engineering Practice

1start looking at these, online or at library
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IEEE Control Systems Magazine
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Why modeling?

Modeling of physical systems:
▶ a vital component of modern engineering
▶ often consists of complex coupled differential equations
▶ only when we have good understanding of a system can we optimally

control it:
▶ can simulate and predict actual system response, and
▶ design model-based controllers
▶ example: nanometer precision control
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History

▶ Newton developed Newton’s laws in 1686. He is an extremely brilliant
scientist and in the meantime very eccentric. He was described as
“…so absorbed in his studies that he forgot to eat”.

▶ Faraday discovered induction (Faraday’s law), which led to electric
motors. He was born into a poor family and had virtually no
schooling. He read many books and self-taught himself when he
became an apprentice to a bookbinder at the age of 14.
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Two general approaches of modeling

based on physics:
▶ using fundamental engineering principles such as Newton’s laws,

energy conservation, etc
▶ focus in this course

based on measurement data:
▶ using input-output response of the system
▶ a field itself known as system identification
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Example: Mass spring damper

m

position: y(t)k

b

u = F

Newton’s second law gives

mÿ (t) + bẏ (t) + ky (t) = u (t) , y(0) = y0, ẏ(0) = ẏ0

▶ modeled as a second-order ODE with input u(t) and output y(t)
▶ if instead, that velocity is the desired output, the model will be different
▶ Application example: semiconductor wafer scanner
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Example: HDDs, SCARA robots

▶ Newton’s second law for rotation
∑

i
τi

︸ ︷︷ ︸
net torque

= J︸︷︷︸
moment of inertia

α︸︷︷︸
angular acceleration

▶ single-stage HDD
▶ dual-stage HDD, SCARA (Selective Compliance Assembly Robot

Arm) robots
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Model properties: static v.s. dynamic, causal v.s. acausal

Consider a general system M with input u(t) and output y(t):

u //M // y

M is said to be
▶ memoryless or static if y(t) depends only on u(t).
▶ dynamic (has memory) if y at time t depends on input values at other

times. e.g.: y(t) = M(u(t)) = γu(t) is memoryless; y(t) =
∫ t

0 u(τ)dτ
is dynamic.

▶ causal if y(t) depends on u(τ) for τ ≤ t,
▶ strictly causal if y(t) depends on u(τ) for τ < t, e.g.: y(t) = u(t− 10).
▶ Exercise: is differentiation causal?
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Linearity and time-invariance

The system M is called
▶ linear if satisfying the superposition property:

M(α1u1(t) + α2u2(t)) = α1M(u1(t)) + α2M(u2(t))

for any input signals u1(t) and u2(t), and any real numbers α1 and α2.
▶ time-invariant if its properties do not change with respect to time.
▶ Assuming the same initial conditions, if we shift u(t) by a constant time

interval, i.e., consider M(u(t + τ0)), then M is time-invariant if the output
M(u(t + τ0)) = y(t + τ0).

▶ e.g., ẏ(t) = Ay(t) + Bu(t) is linear and time-invariant;
ẏ(t) = 2y(t)− sin(y(t))u(t) is nonlinear, yet time-invariant;
ẏ(t) = 2y(t)− t sin(y(t))u(t) is time-varying.
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Models of continuous-time systems

The systems we will be dealing with are mostly composed of ordinary
differential or difference equations.
General continuous-time systems:

dny(t)
dtn + an−1

dn−1y(t)
dtn−1 + · · ·+ a0y(t) = bm

dmu(t)
dtm + bm−1

dm−1u(t)
dtm−1 + · · ·+ b0u(t)

with the initial conditions y(0) = y0, . . . , y(n)(0) = y(n)0 .
For the systems to be causal, it must be that n ≥ m. (Check, e.g., the
case with n = 0 and m = 1.)

UW Linear Systems (X. Chen, ME547) Modeling 12 / 13



Models of discrete-time systems

General discrete-time systems:
▶ inputs and outputs defined at discrete time instances k = 1, 2, . . .
▶ described by ordinary difference equations in the form of

y(k)+an−1y(k−1)+· · ·+a0y(k−n) = bmu(k+m−n)+· · ·+b0u(k−n)

Example: bank statements
▶ k – year counter; ρ – interest rate; x(k) – wealth at the beginning of

year k; u(k) – money saved at the end of year k; x0 – initial wealth in
account

▶ x(k + 1) = (1 + ρ)x(k) + u(k), x(0) = x0
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Introduction

▶ The Laplace transform is a powerful tool to solve a wide variety of
Ordinary Differential Equations (ODEs).

▶ Pierre-Simon Laplace (1749-1827):
▶ often referred to as the French Newton or Newton of France
▶ 13 years more junior than Lagrange
▶ developer / pioneer of astronomical stability, mechanics based on

calculus, Bayesian interpretation of probability, mathematical physics,
just to name a few.

▶ studied under Jean le Rond d’Alembert (co-discovered fundamental
theorem of algebra, aka d’Alembert/Gauss theorem)
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The Laplace approach to ODEs

ODE Algebraic equation

ODE solution Algebraic solution

Laplace Transform

Easy?

Inverse Laplace Transform

Easy

Easy
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Sets of numbers and the relevant domains

▶ set: a well-defined collection of distinct objects, e.g., {1, 2, 3}
▶ R: the set of real numbers
▶ C: the set of complex numbers
▶ ∈: belong to, e.g., 1 ∈ R
▶ R+: the set of positive real numbers
▶ ≜: defined as, e.g., y(t) ≜ 3x(t) + 1

UW Linear Systems (X. Chen, ME547) Laplace 6 / 29



Continuous-time functions

Formal notation:
f : R+ → R

where the input of f is in R+, and the output in R
▶ we will mostly use f(t) to denote a continuous-time function
▶ domain of f is time
▶ assume that f(t) = 0 for all t < 0
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Laplace transform definition

For a continuous-time function

f : R+ → R

define Laplace Transform:

F(s) = L{f(t)} ≜
∫ ∞

0
f(t)e−stdt

s ∈ C
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Existence: Sufficient condition 1

▶ f(t) is piecewise continuous

f(t)

t
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Existence: Sufficient condition 2

▶ f(t) does not grow faster than an exponential as t → ∞:

|f(t)| < keat, for all t ≥ t

for some constants: k, α, t ∈ R+.

f(t)

t

Keat
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Examples: Exponential

f(t) = e−at, a ∈ C

F(s) = 1
s + a
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Examples: Exponential

f(t) = 1(t) =
{

1, t ≥ 0
0, t < 0

F(s) = 1
s
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Examples: Sine

f(t) = sin(ωt)

F(s) = ω

s2 + ω2

Use: sin(ωt) = ejωt−e−jωt
2j , L{ejωt} = 1

s−jω
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Recall: Euler formula

eja = cos a + j sin a

Leonhard Euler (04/15/1707 - 09/18/1783):
▶ Swiss mathematician, physicist, astronomer, geographer, logician and

engineer
▶ studied under Johann Bernoulli
▶ teacher of Lagrange
▶ wrote 380 articles within 25 years at Berlin
▶ produced on average one paper per week at age 67, when almost

blind!
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Examples: Cosine

f(t) = cos(ωt)

F(s) = s
s2 + ω2

UW Linear Systems (X. Chen, ME547) Laplace 16 / 29



Examples: Dirac impulse

δ(t − T)

T t
▶ Background: a generalized function or distribution, e.g., for

derivatives of step functions
▶ Properties:

▶ ∫∞
0 δ(t − T)dt = 1

▶ ∫∞
0 δ(t − T)f(t)dt = f(T)
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Examples: Dirac impulse

▶ f(t) = δ(t)
▶ F(s) = 1
▶ Calculation:

L{δ(t)} =

∫ ∞

0
e−stδ(t)dt = e−s0 = 1

because
∫∞

0 δ(t)f(t)dt = f(0)
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Linearity

For any α, β ∈ C and functions f(t), g(t), let

F(s) = L{f(t)}, G(s) = L{g(t)}

then
L{αf(t) + βg(t)} = αF(s) + βG(s)
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Differentiation
Defining

ḟ(t) = df(t)
dt

F(s) = L{f(t)}
then

L{ḟ(t)} = sF(s)− f(0)

▶ via integration by parts:

L{ḟ(t)} =

∫ ∞

0
e−stḟ(t)dt

= −
∫ ∞

0

de−st

dt f(t)dt +
{

e−stf(t)
}t→∞

t=0

= s
∫ ∞

0
e−stf(t)dt − f(0) = sF(s)− f(0)

(1)

UW Linear Systems (X. Chen, ME547) Laplace 21 / 29

Integration

Defining
F(s) = L{f(t)}

then

L
{∫ t

0
f(τ)dτ

}
=

1
s F(s)
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Multiplication by e−at

Defining
F(s) = L{f(t)}

then
L
{

e−atf(t)
}
= F(s + a)

▶ Example:
L{1(t)} =

1
s L{e−at} =

1
s + a

L{sin(ωt)} =
ω

s2 + ω2 L{e−at sin(ωt)} =
ω

(s + a)2 + ω2
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Multiplication by t

Defining
F(s) = L{f(t)}

then

L{tf(t)} = −dF(s)
ds

▶ Example:
L{1(t)} =

1
s L{t} =

1
s2
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Time delay τ

Defining
F(s) = L{f(t)}

then
L{f(t − τ)} = e−sτF(s)
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Convolution

Given f(t), g(t), and

(f ⋆ g)(t) =
∫ t

0
f(t − τ)g(τ)dτ = (g ⋆ f)(t)

then
L{(f ⋆ g)(t)} = F(s)G(s)

▶ Proof: exercise
▶ Hence we have

δ(t) // G(s) // g(t) = L−1 {G(s)}

because
1 // G(s) // Y(s) = G(s)× 1
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Initial Value Theorem

If f(0+) = limt→0+ f(t) exists, then

f(0+) = lim
s→∞

sF(s)
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Final Value Theorem

If limt→∞ f(t) exists, then

lim
t→∞

f(t) = lim
s→0

sF(s)

▶ Example: find the final value of the system corresponding to:

Y1(s) =
3(s + 2)

s(s2 + 2s + 10) , Y2(s) =
3

s − 2
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Common Laplace transform pairs

f(t) F(s) f(t) F(s)

sinωt ω

s2 + ω2 e−at 1
s + a

cosωt s
s2 + ω2 t 1

s2

tx (t) −dX (s)
ds t2 2

s3
x(t)

t

∫ ∞

s
X (s) ds te−at 1

(s + a)2

δ (t) 1 e−at sin (ωt) ω

(s + a)2 + ω2

1 (t) 1
s e−at cos (ωt) s + a

(s + a)2 + ω2
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Common Laplace transform pairs

f(t) F(s) f(t) F(s)

sinωt ω

s2 + ω2 e−at 1
s + a

cosωt s
s2 + ω2 t 1

s2

tx (t) −dX (s)
ds t2 2

s3
x(t)

t

∫ ∞

s
X (s) ds te−at 1

(s + a)2

δ (t) 1 e−at sin (ωt) ω

(s + a)2 + ω2

1 (t) 1
s e−at cos (ωt) s + a

(s + a)2 + ω2
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Overview of inverse Laplace transform: modularity and
decomposition

▶ Goal: to break a large Laplace transform into small blocks, so that we
can use elemental examples of Laplace transfer functions:

G(s) = B(s)
A(s) =

B1(s)
A1(s)

+
B2(s)
A2(s)

+ . . .

▶ We will use examples to demonstrate strategies for common fractional
expansions.
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Real and distinct roots in A(s)

▶ Example 1

G(s) = B(s)
A(s) =

32
s(s + 4)(s + 8) =

K1
s +

K2
s + 4 +

K3
s + 8

▶ K1 = lims→0 sG(s) = 1
▶ K2 = lims→−4(s + 4)G(s) = −2
▶ K3 = lims→−8(s + 8)G(s) = 1
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Real and repeated roots in A(s)

▶ Example 2

G(s) = 2
(s + 1)(s + 2)2 =

K1
s + 1 +

K2
s + 2 +

K3
(s + 2)2

▶ K3 = lims→−2(s + 2)2G(s) = −2
▶ K1 = lims→−1(s + 1)G(s) = 2
▶ For K2, we hit both sides with (s + 2)2 then differentiate once w.r.t.

s, to get
K2 = lim

s→−2
d
ds(s + 2)2G(s) = −2
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Solution of a first-order ODE
Example 1: Let a > 0, b > 0, y(0) = y0 ∈ R, obtain the solution to the
ODE:

ẏ(t) = −ay(t) + b1(t)

where 1(t) =
{

1, t ≥ 0
0, t < 0

▶ Laplace transform: L{ẏ(t)} = sY(s)− y(0)
▶ ⇒ Solution in Laplace domain:

Y(s) = 1
s + ay(0) + b

s(s + a) =
1

s + ay(0) + b
a

(
1
s − 1

s + a

)

▶ Apply inverse Laplace transform: y(t) = L−1{Y(s)} = . . .

▶ Solution:
y(t) = e−aty(0) + b

a (1(t)− e−at)
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Solution of a first-order ODE

Example 1: a > 0, b > 0, y(0) = y0 ∈ R:

ẏ(t) = −ay(t) + b1(t) ⇒ Y(s) = 1
s + ay(0) + b

s(s + a)

y(t) = e−aty(0) + b
a (1(t)− e−at)

Observations:
▶ From the ODE, y(∞) = b

a
▶ Using final value theorem,

lim
t→∞

y(t) = lim
s→0

sY(s) = b
a

UW Linear Systems (ME) Inverse Laplace 9 / 14

Solution of a first-order ODE

Example 2: Let a > 0, b > 0, y(0) = y0 ∈ R, obtain the solution to the
ODE:

ẏ(t) = −ay(t) + bδ(t)

▶ Laplace transform: L{ẏ(t)} = sY(s)− y0
▶ ⇒ Solution in Laplace domain: Y(s) = 1

s+a(y0 + b)
▶ Apply inverse Laplace transform: y(t) = L−1{Y(s)} = e−at(y0 + b)
▶ Q: what’s the initial value from initial value theorem? what does the

impulse do to the initial condition?
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Connecting two domains

▶ N-th order differential equation:

dny
dtn +an−1

dn−1y
dtn−1 +· · ·+a1ẏ+a0y = bm

dmu
dtm +bm−1

dm−1u
dtm−1 +· · ·+b1u̇+bou

where y(0) = 0, dy
dt |t=0 = 0, . . . , dn−1y

dtn−1 |t=0 = 0
▶ Applying Laplace transform yields

(sn + an−1sn−1 + · · ·+ a0)Y(s) = (bmsm + bm−1sm−1 + · · ·+ b0)U(s)

⇒ Y(s) = bmsm + bm−1sm−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

U(s)
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Transfer functions

G(s) = Y(s)
U(s) =

bmsm + bm−1sn−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

▶ A(s) = 0: Characteristic equation (C.E.)
▶ Roots of C.E.: poles of G(s)
▶ Roots of B(s) = 0: zeros of G(s)
▶ m ≤ n: realizability condition; G(s) is called

▶ proper if n ≥ m
▶ strictly proper if n > m

▶ Examples: G1(s) = K, G2(s) = k
s+a
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The DC gain

G(s) = Y(s)
U(s) =

bmsm + bm−1sn−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

▶ DC gain: the ratio of the output of a system to its input (presumed
constant, e.g., Laplace transform = 1/s) after all transients have
decayed.

▶ can use the Final Value Theorem to find the DC gain of a system:

DC gain of G(s) = lim
s→0

sY(s) = lim
s→0

sG(s)1
s = lim

s→0
G(s)

▶ Example: find the DC gain of G1(s) = K and G2(s) = k
s+a . Try (i)

solve the ODE and (ii) the Final Value Theorem
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Overview

▶ The Z transformation is a powerful tool to solve a wide variety of
Ordinary difference Equations (OdEs)

▶ Analogous to Laplace transform for continuous-time signals
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Definition

Let x(k) be a real discrete-time sequence that is zero if k < 0. The
(one-sided) Z transform of x(k) is

X (z) ≜ Z{x(k)} =
∞∑

k=0
x(k)z−k

= x(0) + x(1)z−1 + x(2)z−2 + . . .

where z ∈ C.
▶ a linear operator: Z {αf(k) + βg(k)} = αZ {f(k)}+ βZ {g(k)}
▶ the series 1 + x + x2 + . . . converges to 1

1−x for |x| < 1 [region of
convergence (ROC)]

▶ (also, recap that
∑N

k=0 β
k = 1−βN+1

1−β if β ̸= 1)
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Example: Derive the Z transform of the geometric
sequence {ak}∞k=0

Z{ak} =
∞∑

k=0
akz−k =

1
1 − az−1 =

z
z − a

for
∣∣az−1∣∣ < 1 ⇔ |z| > |a|.
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Example: Step sequence (discrete-time unit step function)

1(k) =
{

1, ∀k = 1, 2, . . .
0, ∀k = . . . ,−1, 0

Z{1(k)} = Z{ak}
∣∣∣
k=1

=
1

1 − z−1 =
z

z − 1

for |z| > 1
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Example: Discrete-time impulse

δ(k) =
{

1, k = 0
0, otherwise

Z{δ(k)} = 1
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Exercise: Derive the Z transform of cos(ω0k)
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f(k) F(z) ROC
δ(k) 1 All z
ak1 (k) 1

1 − az−1 |z| > |a|

−ak1(−k − 1) 1
1 − az−1 |z| < |a|

kak1 (k) az−1

(1 − az−1)2 |z| > |a|

−kak1(−k − 1) az−1

(1 − az−1)2 |z| < |a|

cos(ω0k) 1 − z−1 cos(ω0)

1 − 2z−1 cos(ω0) + z−2 |z| > 1

sin(ω0k) z−1 sin(ω0)

1 − 2z−1 cos(ω0) + z−2 |z| > 1

ak cos(ω0k) 1 − az−1 cos(ω0)

1 − 2az−1 cos(ω0) + a2z−2 |z| > |a|

ak sin(ω0k) az−1 sin(ω0)

1 − 2az−1 cos(ω0) + a2z−2 |z| > |a|
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Properties of Z transform: time shift
▶ Similar to Laplace transform, Z transform processes nice properties

that provide conveniences in system analysis.
▶ Let Z{x(k)} = X(z) and x(k) = 0 ∀k < 0.
▶ one-step delay:

Z{x(k − 1)} =
∞∑

k=0
x(k − 1)z−k =

∞∑

k=1
x(k − 1)z−k + x(−1)

=
∞∑

k=1
x(k − 1)z−(k−1)z−1 + x(−1)

= z−1X(z) +���x(−1) = z−1X(z)

▶ analogously, Z{x(k + 1)} =
∑∞

k=0 x(k + 1)z−k = zX(z)− zx(0)
▶ Thus, if x(k + 1) = Ax(k) + Bu(k) and the initial conditions are zero,

zX(z) = AX(z) + BU(z) ⇒ X(z) = (zI − A)−1BU(z)
provided that (zI − A) is invertible.
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Solving difference equations

Solve the difference equation

y(k) + 3y(k − 1) + 2y(k − 2) = u(k − 2)

where y(−2) = y(−1) = 0 and u(k) = 1(k).

Z{y(k − 2)} = Z{y(k − 1 − 1)} = z−1Z{y(k − 1)}+ y(−2)
= z−1(z−1Y(z) + y(−1)) + y(−2)

Taking Z transforms on both sides and applying the initial conditions ⇒

(1 + 3z−1 + 2z−2)Y(z) = z−2U(z)

⇒ Y(z) = 1
z2 + 3z + 2U(z)
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Solving difference equations
Solve the difference equation

y(k) + 3y(k − 1) + 2y(k − 2) = u(k − 2)

where y(−2) = y(−1) = 0 and u(k) = 1(k). Cont’d

Y(z) = 1
z2 + 3z + 2U(z) = 1

(z + 2)(z + 1)U(z)

u(k) = 1(k) ⇒ U(z) = 1/(1 − z−1) ⇒

Y(z) = z
(z − 1)(z + 2)(z + 1) =

1
6

z
z − 1 +

1
3

z
z + 2 − 1

2
z

z + 1

(careful with the partial fraction expansion) Inverse Z transform then gives

y(k) = 1
61(k) + 1

3(−2)k − 1
2(−1)k, k ≥ 0
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From difference equation to transfer functions
We now generalize the concept in the last example. Assume that y(k) = 0
∀k < 0. Applying Z transform to the ordinary difference equation

y(k)+ an−1y(k− 1)+ · · ·+ a0y(k− n) = bmu(k+m− n)+ · · ·+ b0u(k− n)

yields
(
zn + an−1zn−1 + · · ·+ a0

)
Y(z) =

(
bmzm + bm−1zm−1 + · · ·+ b0

)
U(z)

Hence
Y(z) = bmzm + bm−1zm−1 · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0︸ ︷︷ ︸
Gyu(z): discrete-time transfer function

U(z)

Analogous to the continuous-time case, you can write down the concepts
of characteristic equation, poles, and zeros of the discrete-time transfer
function Gyu(z).
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Transfer functions in two domains

y(k) + an−1y(k − 1) + · · ·+ a0y(k − n) = bmu(k + m − n) + · · ·+ b0u(k − n)

⇐⇒ Gyu(z) =
B(z)
A(z) =

bmzm + bm−1zm−1 · · ·+ b1z + b0
zn + an−1zn−1 + · · ·+ a1z + a0

v.s.

dny(t)
dtn + an−1

dn−1y(t)
dtn−1 + · · ·+ a0y(t) = bm

dmu(t)
dtm + bm−1

dm−1u(t)
dtm−1 + · · ·+ b0u(t)

⇐⇒ Gyu(s) =
B(s)
A(s) =

bmsm + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

Properties Gyu(s) Gyu(z)

poles and zeros roots of A(s) and B(s) roots of A(z) and B(z)

causality condition n ≥ m n ≥ m

DC gain / steady-state
response to unit step Gyu(0) Gyu(1)
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Additional useful properties of Z transform

▶ time shifting (assuming x(k) = 0 if k < 0):

Z {x (k − nd)} = z−ndX (z)

▶ Z-domain scaling: Z
{

akx (k)
}
= X

(
a−1z

)

▶ differentiation:Z {kx (k)} = −zdX(z)
dz

▶ time reversal:Z {x (−k)} = X
(
z−1)

▶ convolution: let f(k) ∗ g(k) ≜
∑k

j=0 f (k − j) g (j), then

Z {f(k) ∗ g(k)} = F (z)G (z)

▶ initial value theorem: f (0) = limz→∞ F (z)
▶ final value theorem: limk→∞ f (k) = limz→1 (z − 1)F (z) if f(k) exists

and is finite
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Mortgage payment

▶ image you borrow $100,000 (e.g., for a mortgage)
▶ annual percent rate: APR = 4.0%
▶ plan to pay off in 30 years with fixed monthly payments
▶ interest computed monthly
▶ What is your monthly payment?
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Mortgage payment
▶ borrow $100,000 ⇒ initial debt y(0) = 100, 000
▶ APR = 4.0% ⇒ MPR = 4.0%

12 = 0.0033
▶ pay off in 30 years (N = 30 × 12 = 360 months) ⇒ y(N) = 0
▶ monthly mortgage dynamics

y (k + 1) = (1 + MPR)︸ ︷︷ ︸
a

y (k)− b︸︷︷︸
monthly payment

1(k)

=⇒ Y (z) = z
z − ay(0) + 1

z − a
b

1 − z−1

=
1

1 − az−1 y(0) + b
1 − a

(
1

1 − az−1 − 1
1 − z−1

)

⇒ y (k) = aky(0) + b
1 − a

(
ak − 1

)

▶ need
y (N) = 0 ⇒ aNy(0) = − b

1−a
(
aN − 1

)
⇒ b = aNy(0)(a−1)

aN−1 = $477.42.
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limk→∞ f (k) = limz→1 (z − 1)F (z) if f(k) exists and is
finite.

Proof:
If limk→∞ f(k) = f∞ exists then

∑∞
k=0 [f (k + 1)− f (k)] = f∞ − f(0).

on one hand: lim
z→1

∞∑

k=0
z−k [f (k + 1)− f (k)] =

∞∑

k=0
[f (k + 1)− f (k)]

on the other hand:
∞∑

k=0
z−k [f (k + 1)− f (k)] = zF(z)− zf(0)− F(z)

Thus f∞ − f(0) = limz→1 [zF(z)− zf(0)− F(z)] ⇒ limk→∞ f (k) =
limz→1 (z − 1)F (z)
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limk→∞ f (k) = limz→1 (z − 1)F (z) if f(k) exists and is
finite.
Intuition:
▶ f (k) is the impulse response of

δ(k) // F (z) // f(k)

▶ namely, the step response of

1
1−z−1

//
(
1 − z−1)F (z) // y(k)

▶ if the system is stable, then the final value of f (k) is the steady-state
value of the step response of

(
1 − z−1)F (z), i.e.

lim
k→∞

f(k) = lim
z→1

(
1 − z−1)F (z) = lim

z→1
(z − 1)F (z)
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Why state space?

▶ Static/memoryless system: present output depends only on its present
input: y(k) = f(u(k))

▶ Dynamic system: present output depends on past and its present
input,
▶ e.g., y(k) = f(u(k), u(k − 1), . . . , u(k − n), . . . )
▶ described by differential or difference equations, or have time delays

▶ How much information from the past is needed?
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The concept of states of a dynamic system

▶ The state x(t) at time t is the information you need at time t that
together with future values of the input, will let you compute future
values of the output y.

▶ loosely speaking:
▶ the “aggregated effect of past inputs”
▶ the necessary “memory” that the dynamic system keeps at each time

instance
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Example

▶ a point mass subject to a force input
▶ to predict the future motion of the particle, we need to know

▶ current position and velocity of the particle
▶ the future force

▶ ⇒ states: position and velocity

UW Linear Systems (X. Chen, ME547) State Space Intro 5 / 12

The order of a dynamic system

▶ the number, n of state variables that is necessary and sufficient to
uniquely describe the system.

▶ For a given dynamic system,
▶ the choice of state variables is not unique.
▶ However, its order n is fixed; i.e. you need not more than n but not less

than n state variables.
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States of a discrete-time system

Consider a discrete-time dynamic system:

System
x1, x2, . . . , xn

y(k)u(k)

The state of the system at any instance ko is the minimum set of variables,

x1(ko), x2(ko), · · · , xn(ko)

that fully describe the system and its response for k ≥ ko to any given set
of inputs.
Loosely speaking, x1(ko), x2(ko), · · · , xn(ko) defines the system’s memory.
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Discrete-time state-space description

System
x1, x2, . . . , xn

y(k)u(k)

general case

x(k + 1) = f(x(k), u(k), k)
y(k) = h(x(k), u(k), k)

LTI system

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

▶ u(k): input
▶ y(k): output
▶ x(k): state
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Continuous-time state-space description

System
x1, x2, . . . , xn

y(t)u(t)

general case

dx(t)
dt = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)

LTI system

dx(t)
dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
▶ u(t): input
▶ y(t): output
▶ x(t): state
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Example: mass-spring-damper

m

k

b

u = F

 

x(t) =




mass position︷︸︸︷
p(t)
v(t)︸︷︷︸

mass velocity


 ∈ R2
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Example: mass-spring-damper

m

k

b

u = F

d
dt

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

=

[
0 1

− k
m − b

m

]

︸ ︷︷ ︸
A

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

+

[
0
1
m

]

︸︷︷︸
B

u(t)

y(t) =
[
1 0

]
︸ ︷︷ ︸

C

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

(1)
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Continuous-time LTI state-space description

System
x1, x2, . . . , xn

y(t)u(t)

d
dtx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

▶ u(t): input
▶ y(t): output
▶ x(t): state
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Recap: LTI input/output description

System
x1, x2, . . . , xn

y(t)u(t)

Let u(t) ∈ R and y(t) ∈ R, then

y(t) = (g ⋆ u)(t)

=

∫ t

0
g(t − τ)u(τ)dτ

(2)

where g(t) is the system’s impulse response.
Laplace domain:

Y(s) = G(s)U(s)

Y(s) = L{y(t)},U(s) = L{u(t)},G(s) = L{g(t)}
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From state space to transfer function
Given A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R,

d
dtx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3)

L⇒

sX(s)− x(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

(4)

When x(0) = 0, we have

Y(s)
U(s) = C(sI − A)−1B + D ≜: G(s) (5)

–the transfer function between u and y.
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Analogously for discrete-time systems
For A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R, taking the Z transform yields

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(6)

Z⇒

zX(z)− zx(0) = AX(z) + BU(z)
Y(z) = CX(z) + DU(z)

(7)

⇒ Thus, when x(0) = 0, we have

Y(z)
U(z) = C(zI − A)−1B + D ≜: G(z)

–the transfer function between u and y.
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From state space to transfer function: Observations

d
dtx(t) = An×nx(t) + Bn×1u(t)

y(t) = C1×nx(t) + Du(t)
(8)

▶ Dimensions:
G(s) = C︸︷︷︸

1×n
(sI − A)−1
︸ ︷︷ ︸

n×n

B︸︷︷︸
n×1

+D

▶ Uniqueness: G(s) is unique given the state-space model
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Matrix inverse

M−1 =
1

det(M)
Adj(M)

where Adj(M) = {Cofactor matrix of M}T

e.g.: M =




1 2 3
0 4 5
1 0 6


, {Cofactor matrix of M} =




c11 c12 c13
c21 c22 c23
c31 c32 c33




where c11 =

∣∣∣∣
4 5
0 6

∣∣∣∣ = 24, c12 = −
∣∣∣∣
0 5
1 6

∣∣∣∣ = 5, c13 =

∣∣∣∣
0 4
1 0

∣∣∣∣ = −4,

c21 = −
∣∣∣∣
2 3
0 6

∣∣∣∣ = −12, c22 =

∣∣∣∣
1 3
1 6

∣∣∣∣ = 3, c23 = −
∣∣∣∣
1 2
1 0

∣∣∣∣ = 2,

c31 =

∣∣∣∣
2 3
4 5

∣∣∣∣ = −2, c32 = −
∣∣∣∣
1 3
0 5

∣∣∣∣ = −5, c33 =

∣∣∣∣
1 2
0 4

∣∣∣∣ = 4
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Mass-spring-damper

m

position: y(t)
k

b

u = F

d
dt

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

=

[
0 1

− k
m − b

m

]

︸ ︷︷ ︸
A

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

+

[
0
1
m

]

︸︷︷︸
B

u(t)

y(t) =
[
1 0

]
︸ ︷︷ ︸

C

[
p(t)
v(t)

]

︸ ︷︷ ︸
x(t)

(9)
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Mass-spring-damper

d
dt

[
p(t)
v(t)

]
=

[
0 1

− k
m − b

m

] [
p(t)
v(t)

]
+

[
0
1
m

]
u(t)

y(t) =
[
1 0

] [p(t)
v(t)

] (10)

G(s) = C(sI − A)−1B + D

⇒
G(s) =

[
1 0

] [[s 0
0 s

]
−

[
0 1

− k
m − b

m

]]−1 [ 0
1
m

]
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Mass-spring-damper

[[
s 0
0 s

]
−

[
0 1

− k
m − b

m

]]−1
=

[
s −1
k
m s + b

m

]−1

=
1

s2 + b
ms + k

m

[
s + b

m 1
− k

m s

] (11)
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Mass-spring-damper

Putting the inverse in yields

G(s) =
[
1 0

] [ s −1
k
m s + b

m

]−1 [ 0
1
m

]

=

[
1 0

] [s + b
m 1

− k
m s

] [
0
1
m

]

s2 + b
ms + k

m

(12)

namely

G(s) =
1
m

s2 + b
ms + k

m
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Exercise

Given the following state-space system parameters: A =




0 −6 0
−2 1 0
0 0 −1


,

B =



−6 0 −3
−2 1 0
0 2 3


, C =

[
0 1 0
0 0 1

]
, D =

[
1 0 0
0 0 −1

]
, obtain the

transfer function G(s).
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Goal
The realization problem:
▶ existence and uniqueness: the same system can have infinite amount

of state-space representations: e.g.
{
ẋ = Ax + Bu

y = Cx

{
ẋ = Ax + 1

2Bu

y = 2Cx

(
packed representation: Σ1 =

[
A B

C D

]
,Σ2 =

[
A B

2
2C D

])

▶ canonical realizations exist
▶ relationship between different realizations?
▶ example problem for this set of notes:

G (s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0
. (1)
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Outline

1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations
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Controllable canonical form (ccf)
Choose x1 such that

u // 1
s3 + a2s2 + a1s + a0

x1 // b2s
2 + b1s + b0

// y (2)

X1(s) =
U(s)

s3 + a2s2 + a1s + a0
⇒ ...

x 1 + a2ẍ1 + a1ẋ1 + a0x1 = u

Let x2 = ẋ1, x3 = ẋ2. Then ẋ3 = −a2x3 − a1x2 − a0x1 + u.

Y (s) =
(
b2s

2 + b1s + b0
)
X1(s) ⇒ y = b2 ẍ1︸︷︷︸

x3

+b1 ẋ1︸︷︷︸
x2

+b0x1

Putting in matrix form yields

d

dt




x1(t)
x2(t)
x3(t)


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1(t)
x2(t)
x3(t)


+




0
0
1


 u(t) (3)

y(t) =
[
b0 b1 b2

]



x1(t)
x2(t)
x3(t)
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Block diagram realization of controllable canonical forms

d

dt




x1(t)
x2(t)
x3(t)


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1(t)
x2(t)
x3(t)


+




0
0
1


 u(t) (4)

y(t) =
[
b0 b1 b2

]



x1(t)
x2(t)
x3(t)




U(s) 1
s

X3 1
s

X2 1
s

X1
b0

−

+ Y (s)

a2

a1

a0

b1

b2

+

+

+

+
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General ccf

For a single-input single-output transfer function

G (s) =
bn−1s

n−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
+ d ,

we can verify that

Σc =

[
Ac Bc

Cc Dc

]
=




0 1 0 . . . 0 0

0 0
. . . . . .

... 0
...

...
. . . . . . 0

...
0 0 · · · 0 1 0

−a0 −a1 · · · −an−2 −an−1 1
b0 b1 · · · bn−2 bn−1 d




(5)

realizes G (s). This realization is called the controllable canonical form.
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1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations
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Observable canonical form (ocf)

Y (s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0
U(s)

⇒ Y (s) = −a2

s
Y (s)− a1

s2Y (s)− a0

s3Y (s) +
b2

s
U(s) +

b1

s2 U(s) +
b0

s3 U(s).

In a block diagram, the above looks like

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

+ +

− −
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Observable canonical form

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

X3

+

− −

+
X2 X1

Here, the states are connected by

Y (s) = X1(s) y(t) = x1(t)

sX1(s) = −a2X1(s) + X2(s) + b2U(s) ẋ1(t) = −a2x1(t) + x2(t) + b2u(t)

sX2(s) = −a1X1(s) + X3(s) + b1U(s) ⇒ ẋ2(t) = −a1x1(t) + x3(t) + b1u(t)

sX3(s) = −a0X1(s) + b0U(s) ẋ3(t) = −a0x1(t) + b0u(t)
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Observable canonical form





ẋ1(t) = −a2x1(t) + x2(t) + b2u(t)

ẋ2(t) = −a1x1(t) + x3(t) + b1u(t)

ẋ3(t) = −a0x1(t) + b0u(t)

y(t) = x1(t)

⇒ẋ(t) =




−a2 1 0
−a1 0 1
−a0 0 0




︸ ︷︷ ︸
Ao

x(t) +




b2
b1
b0




︸ ︷︷ ︸
Bo

u(t)

y(t) =
[

1 0 0
]

︸ ︷︷ ︸
Co

x(t)

The above is called the observable canonical form realization of G (s).

Exercise
Verify that Co(sI − Ao)

−1Bo = G (s).
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General ocf

In the general case, the observable canonical form of the transfer function

G (s) =
bn−1s

n−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
+ d

is

Σo =

[
Ao Bo

Co Do

]
=




−an−1 1 0 . . . 0 bn−1

−an−2 0
. . . . . .

... bn−2
...

...
. . . . . . 0

...
−a1 0 · · · 0 1 b1
−a0 0 · · · 0 0 b0

1 0 · · · 0 0 d




. (6)

UW Linear Systems (X. Chen, ME547) State-space canonical forms 11 / 31

1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations
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Diagonal form
When

G (s) =
B(s)

A(s)
=

b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

and the poles p1 ̸= p2 ̸= p3, partial fractional expansion yields

G (s) =
k1

s − p1
+

k2

s − p2
+

k3

s − p3
, ki = lim

p→pi
(s − pi )

B(s)

A(s)
,

namely 1
s

k1

1
s

k3

1
s

k2

p2

p3

p1

+

+

+

+

+

+

+

+

sX1 X1

sX2 X2

sX3 X3

Y (s)U(s)
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Diagonal form
1
s

k1

1
s

k3

1
s

k2

p2

p3

p1

+

+

+

+

+

+

+

+

sX1 X1

sX2 X2

sX3 X3

Y (s)U(s)

The state-space realization of the above is

A =




p1 0 0
0 p2 0
0 0 p3


 , B =




1
1
1


 , C =

[
k1 k2 k3

]
, D = 0.
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Jordan form

If poles repeat, say,

G (s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0
=

b2s
2 + b1s + b0

(s − p1)(s − pm)2
, p1 ̸= pm ∈ R,

then partial fraction expansion gives

G (s) =
k1

s − p1
+

k2

(s − pm)
2 +

k3

s − pm
w/





k1 = lims→p1 G (s)(s − p1)

k2 = lims→pm G (s)(s − pm)
2

k3 = lims→pm
d
ds

{
G (s)(s − pm)

2
}
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Jordan form

G (s) =
k1

s − p1
+

k2

(s − pm)
2 +

k3

s − pm

has the block diagram realization:

1
s

k1

1
s

k2
1
s

k3

pm pm

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)
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Jordan form
1
s

k1

1
s

k2
1
s

k3

pm pm

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

The state-space realization of the above, called the Jordan canonical form,
is

A =




p1 0 0
0 pm 1
0 0 pm


 , B =




1
0
1


 , C =

[
k1 k2 k3

]
, D = 0.
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1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations

UW Linear Systems (X. Chen, ME547) State-space canonical forms 18 / 31



Modified canonical form
If the system has complex poles, say,

G (s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0
=

k1

s − p1
+

αs + β

(s − σ)2 + ω2

then we have

1
s

k1

1
s

k2
1
s

k3

σ σ

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

ω

ω

+

−

where k2 = (β + ασ)/ω and k3 = α.
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Modified canonical form
1
s

k1

1
s

k2
1
s

k3

σ σ

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

ω

ω

+

−

⇒ modified Jordan form:

A =




p1 0 0
0 σ ω
0 −ω σ


 , B =




1
0
1


 , C =

[
k1 k2 k3

]
, D = 0.
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1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations
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DT state-space canonical forms
▶ The procedures for finding state space realizations in discrete time is

similar to the continuous time cases. The only difference is that we use

Z {x(k − n)} = z−nX (z),

instead of

L
{

dn

dtn
x(t)

}
= snX (s),

assuming zero state initial conditions.
▶ Fundamental relationships:

x (k) // z−1 // x (k − 1)

X (z) // z−1 // z−1X (z)

x (k + n) // z−1 // x (k + n − 1)
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DT ccf

G (z) =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

▶ Same transfer-function structure ⇒ same A, B , C , D matrices of the
canonical forms as those in continuous-time cases

▶ Controllable canonical form:



x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1 (k)
x2 (k)
x3 (k)


+




0
0
1


 u (k)

y (k) =
[
b0 b1 b2

]



x1 (k)
x2 (k)
x3 (k)
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DT ocf

G (z) =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

▶ Observable canonical form:



x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




−a2 1 0
−a1 0 1
−a0 0 0






x1 (k)
x2 (k)
x3 (k)


+




b2
b1
b0


 u (k)

y (k) =
[

1 0 0
]



x1 (k)
x2 (k)
x3 (k)
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DT diagonal form

G (z) =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

▶ Diagonal form (distinct poles):

G (z) =
k1

z − p1
+

k2

z − p2
+

k3

z − p3




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 p2 0
0 0 p3






x1 (k)
x2 (k)
x3 (k)


+




1
1
1


 u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)
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DT Jordan form 1

G (z) =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

▶ Jordan form (2 repeated poles):

G (z) =
k1

z − p1
+

k2

(z − pm)
2 +

k3

z − pm




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 pm 1
0 0 pm






x1 (k)
x2 (k)
x3 (k)


+




1
0
1


 u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)
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DT Jordan form 2

G (z) =
b2z

2 + b1z + b0

z3 + a2z2 + a1z + a0

▶ Jordan form (2 complex poles):

G (s) =
k1

z − p1
+

αz + β

(z − σ)2 + ω2




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 σ ω
0 −ω σ






x1 (k)
x2 (k)
x3 (k)


+




1
0
1


 u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)




where k2 = (β + ασ)/ω, k3 = α.

UW Linear Systems (X. Chen, ME547) State-space canonical forms 27 / 31

Exercise

obtain the controllable canonical form:
▶ G (s) = z−1−z−3

1+2z−1+z−2
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1. CT controllable canonical form

2. CT observable canonical form

3. CT diagonal and Jordan canonical forms

4. Modified canonical form

5. DT state-space canonical forms

6. Similar realizations
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Relation between different realizations
Similar realizations

Given one realization Σ of a transfer function G (s) and a nonsingular
T ∈ Rn×n, we can define new states:

Tx∗ = x .

Then

ẋ(t) = Ax(t) + Bu(t) ⇒ d

dt
(Tx∗(t)) = ATx∗(t) + Bu(t),

⇒ Σ∗ :
{

ẋ∗(t) = T−1ATx∗(t) + T−1Bu(t)
y(t) = CTx∗(t) + Du(t)

namely

Σ∗ =
[
T−1AT T−1B

CT D

]

also realizes G (s) and is said to be similar to Σ.
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Relation between different realizations
Similar realizations

Exercise (Another observable canonical form.)
Verify that the following realize the same system

Σ =




−a2 1 0 b2
−a1 0 1 b1
−a0 0 0 b0

1 0 0 d


 , Σ∗ =




0 0 −a0 b0
1 0 −a1 b1
0 1 −a2 b2

0 0 1 d
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Xu Chen January 12, 2023

1 From Transfer Function to State Space: State-Space Canonical Forms
It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse
problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization
theory.

A single transfer function has infinite amount of state-space representations. Consider, for example, the two
models

{
ẋ = Ax+Bu

y = Cx
,

{
ẋ = Ax+ 1

2Bu

y = 2Cx

which share the same transfer function C(sI −A)−1B.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan

form, using the following unit problem:

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

. (1)

1.1 Controllable Canonical Form.
Consider first:

Y (s) =
1

s3 + a2s2 + a1s+ a0
U (s) . (2)

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

x1 = y, x2 = ẋ1 = ẏ, x3 = ẋ2 = ÿ, (3)

which gives

d

dt




x1

x2

x3


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1

x2

x3


+




0
0
1


u (4)

y =
[
1 0 0

]



x1

x2

x3




For the general case in (1), i.e., ...
y + a2ÿ + a1ẏ + a0y = b2ü + b1u̇ + b0u, there are terms with respect to the

derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose
(1) as

u // 1

s3 + a2s2 + a1s+ a0
// b2s

2 + b1s+ b0
// y (5)

The first part of the connection

u // 1

s3 + a2s2 + a1s+ a0
// ỹ (6)

looks exactly like what we had in (2). Denote the output here as ỹ. Then we have

d

dt




x1

x2

x3


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1

x2

x3


+




0
0
1


u,

where
x1 = ỹ, x2 = ẋ1, x3 = ẋ2. (7)

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the
second part of (5) is nothing but

x1
// b2s

2 + b1s+ b0
// y

1
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So

y = b2ẍ1 + b1ẋ1 + b0x1 = b2x3 + b1x2 + b0x1 =
[
b0 b1 b2

]



x1

x2

x3


 .

The above procedure constructs the controllable canonical form of the third-order transfer function (1):

d

dt




x1(t)
x2(t)
x3(t)


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1(t)
x2(t)
x3(t)


+




0
0
1


u(t) (8)

y(t) =
[
b0 b1 b2

]



x1(t)
x2(t)
x3(t)




In a block diagram, the state-space system looks like

U(s) 1
s

X3 1
s

X2 1
s

X1
b0

−

+ Y (s)

a2

a1

a0

b1

b2

+

+

+

+

Example 1. Obtain the controllable canonical forms of the following systems

• G (s) =
s2 + 1

s3 + 2s+ 10

– Comparing the transfer function with the general form yields A =




1
1

−10 −2 0


, B =



0
0
1


, C =

[
1 0 1

]

• G (s) =
b0s

2 + b1s+ b2
s3 + a0s2 + a1s+ a2

– Notice the difference in the coefficients. We have A =




1
1

−a2 −a1 a0


, B =



0
0
1


, C =

[
b2 b1 b0

]

General Case.

For a single-input single-output transfer function

G(s) =
bn−1s

n−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

+ d,

we can verify that

Σc =

[
Ac Bc

Cc Dc

]
=




0 1 · · · 0 0 0
0 0 · · · 0 0 0
...

... · · ·
...

...
...

0 0 · · · 0 1 0
−a0 −a1 · · · −an−2 −an−1 1
b0 b1 · · · bn−2 bn−1 d




(9)

2
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realizes G(s). This realization is called the controllable canonical form.

1.2 Observable Canonical Form.
Consider again

Y (s) = G(s)U(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

U(s).

Expanding and dividing by s3 yield
(
1 + a2

1

s
+ a1

1

s2
+ a0

1

s3

)
Y (s) =

(
b2
1

s
+ b1

1

s2
+ b0

1

s3

)
U(s)

and therefore

Y (s) = −a2
1

s
Y (s)− a1

1

s2
Y (s)− a0

1

s3
Y (s)

+ b2
1

s
U(s) + b1

1

s2
U(s) + b0

1

s3
U(s).

In a block diagram, the above looks like

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

+ +

− −

or more specifically,

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

X3

+

− −

+
X2 X1

3



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

Here, the states are connected by

Y (s) = X1(s) y(t) = x1(t)

sX1(s) = −a2X1(s) +X2(s) + b2U(s) ẋ1(t) = −a2x1(t) + x2(t) + b2u(t)

sX2(s) = −a1X1(s) +X3(s) + b1U(s) ⇒ ẋ2(t) = −a1x1(t) + x3(t) + b1u(t)

sX3(s) = −a0X1(s) + b0U(s) ẋ3(t) = −a0x1(t) + b0u(t)

or in matrix form:

ẋ(t) =




−a2 1 0
−a1 0 1
−a0 0 0




︸ ︷︷ ︸
Ao

x(t) +




b2
b1
b0




︸ ︷︷ ︸
Bo

u(t) (10)

y(t) =
[
1 0 0

]
︸ ︷︷ ︸

Co

x(t)

The above is called the observable canonical form realization of G(s).

Exercise 1. Verify that Co(sI −Ao)
−1Bo = G(s).

General Case.

In the general case, the observable canonical form of the transfer function

G(s) =
bn−1s

n−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

+ d

is

Σo =

[
Ao Bo

Co Do

]
=




−an−1 1 · · · 0 0 bn−1

−an−2 0 · · · 0 0 bn−20
...

... · · ·
...

...
...

−a1 0 · · · 0 1 b1
−a0 · · · 0 b0
1 · · · d



. (11)

Exercise 2. Obtain the controllable and observable canonical forms of

G(s) =
k1

s− p1
.

1.3 Diagonal and Jordan canonical forms.
1.3.1 Diagonal form.

When

G(s) =
B(s)

A(s)
=

b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0

and the poles of the transfer function p1 ̸= p2 ̸= p3, we can write, using partial fractional expansion,

G (s) =
k1

s− p1
+

k2
s− p2

+
k3

s− p3
, ki = lim

p→pi

(s− pi)
B(s)

A(s)
,

namely

4



Xu Chen 1.3 Diagonal and Jordan canonical forms. January 12, 2023

1
s

k1

1
s

k3

1
s

k2

p2

p3

p1

+

+

+

+

+

+

+

+

sX1 X1

sX2 X2

sX3 X3

Y (s)U(s)

The state-space realization of the above is

A =




p1 0 0
0 p2 0
0 0 p3


 , B =




1
1
1


 , C =

[
k1 k2 k3

]
, D = 0.

1.3.2 Jordan form.

If poles repeat, say,

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

=
b2s

2 + b1s+ b0
(s− p1)(s− pm)2

, p1 ̸= pm ∈ R,

then partial fraction expansion gives

G (s) =
k1

s− p1
+

k2

(s− pm)
2 +

k3
s− pm

,

where

k1 = lim
s→p1

G(s)(s− p1)

k2 = lim
s→pm

G(s)(s− pm)2

k3 = lim
s→pm

d

ds

{
G(s)(s− pm)2

}

In state space, we have

1
s

k1

1
s

k2
1
s

k3

pm pm

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

5



Xu Chen 1.4 Modified canonical form. January 12, 2023

The state-space realization of the above, called the Jordan canonical form,1 is

A =




p1 0 0
0 pm 1
0 0 pm


 , B =




1
0
1


 , C =

[
k1 k2 k3

]
, D = 0.

1.4 Modified canonical form.
If the system has complex poles, say,

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

=
b2s

2 + b1s+ b0
(s− p1) [(s− σ)2 + ω2]

,

then partial fraction expansion gives

G (s) =
k1

s− p1
+

αs+ β

(s− σ)
2
+ ω2

,

which has the graphical representation as below:

1
s

k1

1
s

k2
1
s

k3

σ σ

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

ω

ω

+

−

Here k2 = (β + ασ)/ω and k3 = α.
You should be able to check that the block diagram matches with the transfer function realization.
The above can be realized by the modified Jordan form in state space:

A =




p1 0 0
0 σ ω
0 −ω σ


 , B =




1
0
1


 , C =

[
k1 k2 k3

]
, D = 0.

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms
The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only
difference is that we use

Z {x(k − n)} = z−nX(z),

instead of
L
{

dn

dtn
x(t)

}
= snX(s),

assuming zero state initial conditions.
We have the fundamental relationships:

x (k) // z−1 // x (k − 1)

1The A matrix is called a Jordan matrix.
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Xu Chen 1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms January 12, 2023

X (z) // z−1 // z−1X (z)

x (k + n) // z−1 // x (k + n− 1)

The discrete-time state-space description of a general transfer function G(z) is

x (k + 1) = Ax (k) +Bu (k)

y (k) = Cx (k) +Du (k)

and satisfies G (z) = C (zI −A)
−1

B +D.
Take again a third-order system as the example:

G (z) =
b2z

2 + b1z + b0
z3 + a2z2 + a1z + a0

=
b2z

−1 + b1z
−2 + b0z

−3

1 + a2z−1 + a1z−2 + a0z−3
.

The A, B, C, D matrices of the canonical forms are exactly the same as those in continuous-time cases.

Controllable canonical form:



x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




0 1 0
0 0 1

−a0 −a1 −a2






x1 (k)
x2 (k)
x3 (k)


+




0
0
1


u (k)

y (k) =
[
b0 b1 b2

]



x1 (k)
x2 (k)
x3 (k)




Observable canonical form:



x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




−a2 1 0
−a1 0 1
−a0 0 0






x1 (k)
x2 (k)
x3 (k)


+




b2
b1
b0


u (k)

y (k) =
[
1 0 0

]



x1 (k)
x2 (k)
x3 (k)




Diagonal form (distinct poles):

G(z) =
k1

z − p1
+

k2
z − p2

+
k3

z − p3




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 p2 0
0 0 p3






x1 (k)
x2 (k)
x3 (k)


+




1
1
1


u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)




Jordan form (2 repeated poles):

G(z) =
k1

z − p1
+

k2

(z − pm)
2 +

k3
z − pm




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 pm 1
0 0 pm






x1 (k)
x2 (k)
x3 (k)


+




1
0
1


u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)
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Xu Chen 1.6 Similar Realizations January 12, 2023

Jordan form (2 complex poles):

G (s) =
k1

z − p1
+

αz + β

(z − σ)
2
+ ω2




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




p1 0 0
0 σ ω
0 −ω σ






x1 (k)
x2 (k)
x3 (k)


+




1
0
1


u (k)

y (k) =
[
k1 k2 k3

]



x1 (k)
x2 (k)
x3 (k)




where k2 = (β + ασ)/ω, k3 = α.
Exercise: obtain the controllable canonical form for the following systems

• G (s) = z−1−z−3

1+2z−1+z−2

• G (s) = b0z
2+b1z+b2

z3+a0z2+a1z+a2

1.6 Similar Realizations
Besides the canonical forms, other system realizations exist. Let us begin with the realization Σ of some transfer
function G(s). Let T ∈ Cn×n be nonsingular. We can define new states by:

Tx∗ = x.

We can rewrite the differential equations defining Σ in terms of these new states by plugging in x = Tx∗:

d

dt
(Tx∗(t)) = ATx∗(t) +Bu(t),

to obtain
Σ∗ :

{
ẋ∗(t) = T−1ATx∗(t) + T−1Bu(t)
y(t) = CTx∗(t) +Du(t)

This new realization
Σ∗ =

[
T−1AT T−1B
CT D

]
, (12)

also realizes G(s) and is said to be similar to Σ.
Similar realizations are fundamentally the same. Indeed, we arrived at Σnew from Σ via nothing more than a

change of variables.

Exercise 3 (Another observable canonical form.). Verify that

Σ =




−a2 1 0 b2
−a1 0 1 b1
−a0 0 0 b0
1 0 0 d




is similar to

Σ∗ =




0 0 −a0 b0
1 0 −a1 b1
0 1 −a2 b2
0 0 1 d
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Introduction
The Solution to ẋ = ax + bu

▶ To solve the vector equation ẋ = Ax + Bu, we start with the
scalar case when x , a, b, u ∈ R.

▶ fundamental property of exponential functions

d

dt
eat = aeat ,

d

dt
e−at = −ae−at

▶ ẋ(t) = ax(t) + bu(t), a ̸= 0 ∵e−at ̸=0
=⇒ e−at ẋ (t)− e−atax (t) =

e−atbu (t) ,namely,

d

dt

{
e−atx (t)

}
= e−atbu (t) ⇔ d

{
e−atx (t)

}
= e−atbu (t) dt

=⇒ e−atx (t) = e−at0x (t0) +

∫ t

t0

e−aτbu (τ) dτ

UW Linear Systems (X. Chen, ME547) SS Solution 3 / 56

The solution to ẋ = ax + bu

e−atx (t) = e−at0x (t0) +

∫ t

t0

e−aτbu (τ) dτ

when t0 = 0, we have

x (t) = eatx (0)︸ ︷︷ ︸
free response

+

∫ t

0
ea(t−τ)bu (τ) dτ

︸ ︷︷ ︸
forced response

(1)
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The solution to ẋ = ax + bu
Solution Concepts of eatx (0)

Impulse Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

e−1 ≈ 37%,
e−2 ≈ 14%,
e−3 ≈ 5%,
e−4 ≈ 2%
Time Constant ≜ 1

|a|
when a < 0: After
three time constants,
eatx (0) reduces to
5% of its initial value
~ the free response
has died down.
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* Fundamental Theorem of Differential Equations
addresses the question of whether a dynamical system has a unique solution or not.

Theorem
Consider ẋ = f (x , t), x (t0) = x0, with:
▶ f (x , t) piecewise continuous in t (continuous except at finite

points of discontinuity)
▶ f (x , t) Lipschitz continuous in x (satisfy the cone

constraint:||f (x , t)− f (y , t) || ≤ k (t) ||x − y || where k (t) is
piecewise continuous)

then there exists a unique function of time ϕ (·) : R+ → Rn which is
continuous almost everywhere and satisfies
▶ ϕ (t0) = x0

▶ ϕ̇ (t) = f (ϕ (t) , t), ∀t ∈ R+\D , where D is the set of
discontinuity points for f as a function of t.
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The solution to nth-order LTI systems
▶ Analogous to scalar case, the general state-space equations

Σ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

x(t0) = x0 ∈ Rn, A ∈ Rn×n

have the solution

x(t) = eA(t−t0)x0︸ ︷︷ ︸
free response

+

∫ t

t0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸
forced response

(2)

y (t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−τ)Bu(τ)dτ + Du (t)

▶ In both the free and the forced responses, computing eAt is key.
▶ eA(t−t0): called the transition matrix

UW Linear Systems (X. Chen, ME547) SS Solution 7 / 56

The state transition matrix eAt

For the scalar case with a ∈ R, Taylor expansion gives

eat = 1 + at +
1
2
(at)2 + · · ·+ 1

n!
(at)n + . . . (3)

The transition scalar Φ(t, t0) = ea(t−t0) satisfies

Φ(t, t) = 1 (transition to itself)
Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1) (consecutive transition)

Φ(t2, t1) = Φ−1(t1, t2) (reverse transition)
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The state transition matrix eAt

For the matrix case with A ∈ Rn×n

eAt = In + At +
1
2
A2t2 + · · ·+ 1

n!
Antn + . . . (4)

▶ As In and Ai are matrices of dimension n × n, eAt must ∈ Rn×n.
▶ The transition matrix Φ(t, t0) = eA(t−t0) satisfies

eA0 = In

eAt1eAt2 = eA(t1+t2)

e−At =
[
eAt
]−1

.

Φ(t, t) = In

Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1)

Φ(t2, t1) = Φ−1(t1, t2).

▶ Note, however, that eAteBt = e(A+B)t if and only if AB = BA.
(Check by using Taylor expansion.)
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Computing a structured eAt via Taylor expansion
convenient when A is a diagonal or Jordan matrix

The case with a diagonal matrix A =



λ1 0 0
0 λ2 0
0 0 λ3


:

▶ A2 =



λ2

1 0 0
0 λ2

2 0
0 0 λ2

3


, . . . , An =



λn1 0 0
0 λn2 0
0 0 λn3




▶ all matrices on the right side of

eAt = I + At +
1
2
A2t2 + · · ·+ 1

n!
Antn + . . .

are easy to compute
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Computing a structured eAt via Taylor expansion
convenient when A is a diagonal or Jordan matrix

The case with a diagonal matrix A =



λ1 0 0
0 λ2 0
0 0 λ3


:

eAt = I + At +
1
2
A2t2 + · · ·+ 1

n!
Antn + . . .

=




1 0 0
0 1 0
0 0 1


+




λ1t 0 0
0 λ2t 0
0 0 λ3t


+




1
2λ

2
1t

2 0 0
0 1

2λ
2
2t

2 0
0 0 1

2λ
2
3t

2


+ . . .

=




1 + λ1t +
1
2λ

2
1t

2 + . . . 0 0
0 1 + λ2t +

1
2λ

2
2t

2 + . . . 0
0 0 1 + λ3t +

1
2λ

2
3t

2 + . . .




=




eλ1t 0 0
0 eλ2t 0
0 0 eλ3t


.
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Computing a structured eAt via Taylor expansion

The case with a Jordan matrix A =



λ 1 0
0 λ 1
0 0 λ


:

▶ Decompose A =



λ 0 0
0 λ 0
0 0 λ




︸ ︷︷ ︸
λI3

+




0 1 0
0 0 1
0 0 0




︸ ︷︷ ︸
N

. Then

eAt = e(λI3t+Nt).

▶ also, (λI3t) (Nt) = λNt2 = (Nt) (λI3t) and hence
e(λI3t+Nt) = eλIteNt

▶ thus
eAt = e(λI3t+Nt) = eλIteNt ∵eλIt=eλt I

== eλteNt
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Computing a structured eAt via Taylor expansion

A =



λ 0 0
0 λ 0
0 0 λ




︸ ︷︷ ︸
λI3

+




0 1 0
0 0 1
0 0 0




︸ ︷︷ ︸
N

eAt = eλteNt

▶ N is nilpotent1: N3 = N4 = · · · = 0I3, yielding

eNt = I3 + Nt +
1
2
N2t2 +

�
�
�
�>

0
1
3!
N3t3 +��:0. . . =




1 t t2

2
0 1 t
0 0 1


 .

▶ Thus

eAt =




eλt teλt t2

2 e
λt

0 eλt teλt

0 0 eλt


 . (5)

1“nil” ∼ zero; “potent” ∼ taking powers.
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Computing a structured eAt via Taylor expansion

Example (mass moving on a straight line with zero friction
and no external force)

d

dt

[
x1

x2

]
=

[
0 1
0 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
.

x(t) = eAtx(0) where

eAt = I +

[
0 1
0 0

]
t +

1
2!

[
0 1
0 0

] [
0 1
0 0

]

︸ ︷︷ ︸
=


 0 0

0 0




t2 + . . .=

[
1 t
0 1

]
.
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Computing low-order eAt via column solutions
We discuss an intuition of the matrix entries in eAt . Consider
example:

ẋ = Ax =

[
0 1
0 −1

]
x , x(0) = x0

x(t) = eAtx(0) =

[
1st column 2nd column︷︸︸︷

a1(t)
︷︸︸︷
a2(t)

] [
x1(0)
x2(0)

]
(6)

= a1(t)x1(0) + a2(t)x2(0) (7)

Observation

x(0) =
[

1
0

]
⇒ x(t) = a1(t),

x(0) =
[

0
1

]
⇒ x(t) = a2(t).
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Computing low-order eAt via column solutions

ẋ = Ax =

[
0 1
0 −1

]
x , x(0) = x0

Hence, we can obtain eAt from the following

1. write out
ẋ1(t) =x2(t)

ẋ2(t) =− x2(t)
⇒ x1(t) =e0tx1(0) +

∫ t

0
e0(t−τ)x2(τ)dτ

x2(t) =e−tx2(0)

2. let x(0) =
[

1
0

]
, then

x1(t) ≡ 1
x2(t) ≡ 0

, namely x(t) =

[
1
0

]

3. let x(0) =
[

0
1

]
, then x2(t) = e−t and x1(t) = 1 − e−t , or more

compactly, x(t) =
[

1 − e−t

e−t

]

4. using (6), write out directly eAt =

[
1 1 − e−t

0 e−t

]
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Computing low-order eAt via column solutions

Exercise
Compute eAt where

A =



λ 1 0
0 λ 1
0 0 λ


 .
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Discrete-time LTI case
For the discrete-time system

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

iteration of the state-space equation gives

x (k) = Ak−k0x (ko) +
[
Ak−k0−1B ,Ak−k0−2B , · · · ,B

]




u (k0)
u (k0 + 1)

...
u (k − 1)




⇔ x (k) = Ak−k0x (ko)︸ ︷︷ ︸
free response

+
k−1∑

j=k0

Ak−1−jBu (j)

︸ ︷︷ ︸
forced response
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Discrete-time LTI case

x (k) = Ak−k0x (ko)︸ ︷︷ ︸
free response

+
k−1∑

j=k0

Ak−1−jBu (j)

︸ ︷︷ ︸
forced response

the transition matrix, defined by Φ(k , j) = Ak−j , satisfies

Φ(k , k) = 1
Φ(k3, k2)Φ(k2, k1) = Φ(k3, k1) k3 ≥ k2 ≥ k1

Φ(k2, k1) = Φ−1(k1, k2) if and only if A is nonsingular
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The state transition matrix Ak

Similar to the continuous-time case, when A is a diagonal or Jordan
matrix, the Taylor expansion formula readily generates Ak .

▶ Diagonal matrix A =



λ1 0 0
0 λ2 0
0 0 λ3


: Ak =



λk1 0 0
0 λk2 0
0 0 λk3
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Computing a structured Ak via Taylor expansion
▶ Jordan canonical form

A =



λ 1 0
0 λ 1
0 0 λ


 =



λ 0 0
0 λ 0
0 0 λ




︸ ︷︷ ︸
λI3

+




0 1 0
0 0 1
0 0 0




︸ ︷︷ ︸
N

:

Ak = (λI3 + N)k

= (λI3)
k + k (λI3)

k−1 N +

(
k
2

)

︸ ︷︷ ︸
2 combination

(λI3)
k−2 N2 +

(
k
3

)
(λI3)

k−3 N3 + . . .

︸ ︷︷ ︸
N3=N4=···=0I3

=




λk 0 0
0 λk 0
0 0 λk


+ kλk−1




0 1 0
0 0 1
0 0 0


+

k(k − 1)
2

λk−2




0 0 1
0 0 0
0 0 0




=




λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk
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Computing a structured Ak via Taylor expansion

Exercise

Recall that
(

k
3

)
= 1

3!k (k − 1) (k − 2). Show

A =




λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ




⇒ Ak =




λk kλk−1 1
2!k (k − 1)λk−2 1

3!k (k − 1) (k − 2)λk−3

0 λk kλk−1 1
2!k (k − 1)λk−2

0 0 λk kλk−1

0 0 0 λk
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The State Transition Matrix Ak

Computing Ak when A is diagonal or in Jordan form

2. Explicit Computation of the State Transition Matrix eAt

3. Explicit Computation of the State Transition Matrix Ak

4. Transition Matrix via Inverse Transformation
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Explicit computation of a general eAt

▶ Why another method: general matrices may not be diagonal or
Jordan

▶ Approach: transform a general matrix to a diagonal or Jordan
form, via similarity transformation
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Computing eAt via similarity transformation

Principle Concept.
1. Given

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 ∈ Rn, A ∈ Rn×n

find a nonsingular T ∈ Rn×n such that a coordinate
transformation defined by x(t) = Tx∗(t) yields

d

dt
(Tx∗(t)) = ATx∗(t) + Bu(t)

d

dt
x∗(t) = T−1AT︸ ︷︷ ︸

≜Λ: diagonal or Jordan

x∗(t) + T−1B︸ ︷︷ ︸
B∗

u(t)

x∗(0) = T−1x0
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Computing eAt via similarity transformation
1. When u(t) = 0

ẋ(t) = Ax(t)
x=Tx∗
=⇒ d

dt
x∗(t) = T−1AT︸ ︷︷ ︸

≜Λ: diagonal or Jordan

x∗(t)

2. Now x∗(t) can be solved easily: e.g., if Λ =

[
λ1 0
0 λ2

]
, then

x∗(t) = eΛtx∗(0) =
[
eλ1t 0
0 eλ2t

] [
x∗1 (0)
x∗2 (0)

]
=

[
eλ1tx∗1 (0)
eλ2tx∗2 (0)

]
.

3. x(t) = Tx∗(t) then yields

x(t) = TeΛtx∗(0) = TeΛtT−1x0

4. On the other hand, x(t) = eAtx0. Hence

eAt = TeΛtT−1
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Similarity transformation
▶ Existence of Solutions: T comes from the theory of eigenvalues

and eigenvectors in linear algebra.
▶ If two matrices A, B ∈ Cn×n are similar:

A = TBT−1, T ∈ Cn×n, then
▶ their An and Bn are also similar: e.g.,

A2 = TBT−1TBT−1 = TB2T−1

▶ their exponential matrices are also similar

eAt = TeBtT−1

as

TeBtT−1 = T (In + Bt +
1
2
B2t2 + . . . )T−1

= TInT
−1 + TBtT−1 +

1
2
TB2t2T−1 + . . .

= I + At +
1
2
A2t2 + · · · = eAt
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Similarity transformation

▶ For A ∈ Rn×n, an eigenvalue λ ∈ C of A is the solution to the
characteristic equation

det (A− λI ) = 0 (8)

The corresponding eigenvectors are the nonzero solutions to

At = λt ⇔ (A− λI ) t = 0 (9)
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Similarity transformation
The case with distinct eigenvalues (diagonalization).
Recall: When A ∈ Rn×n has n distinct eigenvalues such that

Ax1 = λ1x1

...
Axn = λnxn

or equivalently

A [x1, x2, . . . , xn]︸ ︷︷ ︸
≜T

= [x1, x2, . . . , xn]




λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λn




︸ ︷︷ ︸
Λ

[x1, x2, . . . , xn] is square and invertible. Hence

A = TΛT−1, Λ = T−1AT
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Example (Mechanical system with strong damping)
d

dt

[
x1

x2

]
=

[
0 1
−2 −3

]

︸ ︷︷ ︸
A

[
x1

x2

]

▶ Find eigenvalues: det(A− λI ) = det

[
−λ 1
−2 −λ− 3

]
=

(λ+ 2) (λ+ 1) ⇒ λ1 = −2, λ2 = −1
▶ Find associate eigenvectors:

▶ λ1 = −2: (A− λ1I ) t1 = 0 ⇒ t1 =

[
1
−2

]

▶ λ1 = −1: (A− λ2I ) t2 = 0 ⇒ t2 =

[
1
−1

]

▶ Define T and Λ: T =
[
t1 t2

]
=

[
1 1
−2 −1

]
,

Λ =

[
λ1 0
0 λ2

]
=

[
−2 0
0 −1

]
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Example (Mechanical system with strong damping)
d

dt

[
x1

x2

]
=

[
0 1
−2 −3

]

︸ ︷︷ ︸
A

[
x1

x2

]

▶ T =

[
1 1
−2 −1

]
, Λ =

[
−2 0
0 −1

]

▶ Compute T−1 =

[
1 1
−2 −1

]−1

=

[
−1 −1
2 1

]

▶ Compute eAt = TeΛtT−1 = T

[
e−2t 0
0 e−1t

]
T−1 =

[
−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t

]
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Similarity transform: diagonalization
Physical interpretations

▶ diagonalized system:

x∗(t) =
[
eλ1t 0
0 eλ2t

] [
x∗1 (0)
x∗2 (0)

]
=

[
eλ1tx∗1 (0)
eλ2tx∗2 (0)

]

▶ x(t) = Tx∗(t) = eλ1tx∗1 (0)t1 + eλ2tx∗2 (0)t2 then decomposes the
state trajectory into two modes parallel to the two eigenvectors.
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Similarity transform: diagonalization
Physical interpretations

▶ If x(0) is aligned with one eigenvector, say, t1, then x∗2 (0) = 0
and x(t) = eλ1tx∗1 (0)t1 + eλ2tx∗2 (0)t2 dictates that x(t) will stay
in the direction of t1.

▶ i.e., if the state initiates along the direction of one eigenvector,
then the free response will stay in that direction without “making
turns”.

▶ If λ1 < 0, then x(t) will move towards the origin of the state
space; if λ1 = 0, x(t) will stay at the initial point; and if
positive, x(t) will move away from the origin along t1.

▶ Furthermore, the magnitude of λ1 determines the speed of
response.
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Similarity transform: diagonalization
Physical interpretations: example

x

x 2

1

x(0)

-tea2 t2

-2tea1 t1

t 1

t 2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
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Similarity transformation
The case with complex eigenvalues
Consider the undamped spring-mass system

d

dt

[
x1

x2

]
=

[
0 1
−1 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
, det(A−λI ) = λ2+1 = 0 ⇒ λ1,2, = ±j .

The eigenvectors are

λ1 = j : (A− jI )t1 = 0 ⇒ t1 =

[
1
j

]

λ2 = −j : (A+ jI )t2 = 0 ⇒ t2 =

[
1
−j

]
(complex conjugate of t1).

Hence

T =

[
1 1
j −j

]
, T−1 =

1
2

[
1 −j
1 j

]
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Similarity transformation
The case with complex eigenvalues

d

dt

[
x1

x2

]
=

[
0 1
−1 0

]

︸ ︷︷ ︸
A

[
x1

x2

]

▶ λ1,2, = ±j

▶ T =

[
1 1
j −j

]
, T−1 = 1

2

[
1 −j
1 j

]

▶ we have

eAt = TeΛtT−1 = T

[
e jt 0
0 e−jt

]
T−1 =

[
cos t sin t
− sin t cos t

]
.
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Similarity transformation
The case with complex eigenvalues

As an exercise, for a general A ∈ R2×2 with complex eigenvalues
σ ± jω, you can show that by using T = [tR , tI ] where tR and tI are
the real and the imaginary parts of t1, an eigenvector associated with
λ1 = σ + jω , x = Tx∗ transforms ẋ = Ax to

ẋ∗(t) =

[
σ ω
−ω σ

]
x∗(t)

and

e


 σ ω
−ω σ


t

=

[
eσt cosωt eσt sinωt
−eσt sinωt eσt cosωt

]
.
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Similarity transformation
The case with repeated eigenvalues via generalized eigenvectors

Consider A =

[
1 2
0 1

]
: two repeated eigenvalues λ (A) = 1, and

(A− λI ) t1 =

[
0 2
0 0

]
t1 = 0 ⇒ t1 =

[
1
0

]
.

▶ No other linearly independent eigenvectors exist. What next?
▶ A is already very similar to the Jordan form. Try instead

A
[
t1 t2

]
=
[
t1 t2

] [ λ 1
0 λ

]
,

which requires At2 = t1 + λt2, i.e.,

(A− λI ) t2 = t1 ⇔
[

0 2
0 0

]
t2 =

[
1
0

]
⇒ t2 =

[
0

0.5

]

t2 is linearly independent from t1 ⇒ t1 and t2 span R2. (t2 is called a
generalized eigenvector.)

UW Linear Systems (X. Chen, ME547) SS Solution 38 / 56



Similarity transformation
The case with repeated eigenvalues via generalized eigenvectors

For general 3 × 3 matrices with det(λI − A) = (λ− λm)
3, i.e.,

λ1 = λ2 = λ3 = λm, we look for T such that

A = TJT−1

where J has three canonical forms:

i),



λm 0 0
0 λm 0
0 0 λm


 , iii),



λm 1 0
0 λm 1
0 0 λm




ii),



λm 1 0
0 λm 0
0 0 λm


 or



λm 0 0
0 λm 1
0 0 λm
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Similarity transformation
The case with repeated eigenvalues via generalized eigenvectors

i), A = TJT−1, J =



λm 0 0
0 λm 0
0 0 λm




this happens
▶ when A has three linearly independent eigenvectors, i.e.,

(A− λmI )t = 0 yields t1, t2, and t3 that span R3.
▶ mathematically: when nullity (A− λmI ) = 3, namely,

rank(A− λmI ) = 3 − nullity (A− λmI ) = 0.
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Similarity transformation
The case with repeated eigenvalues via generalized eigenvectors

ii), A = TJT−1, J =




λm 1 0
0 λm 0
0 0 λm


 or




λm 0 0
0 λm 1
0 0 λm




▶ this happens when (A− λmI )t = 0 yields two linearly
independent solutions, i.e., when nullity (A− λmI ) = 2.

▶ we then have, e.g.,

A[t1, t2, t3] = [t1, t2, t3]



λm 1 0
0 λm 0
0 0 λm




⇔ [λmt1, t1 + λmt2, λmt3] = [At1,At2,At3] (10)

▶ t1 and t3 are the directly computed eigenvectors.
▶ For t2, the second column of (10) gives

(A− λmI ) t2 = t1
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Similarity transformation
The case with repeated eigenvalues via generalized eigenvectors

iii), A = TJT−1, J =



λm 1 0
0 λm 1
0 0 λm




▶ this is for the case when (A− λmI )t = 0 yields only one linearly
independent solution, i.e., when nullity(A− λmI ) = 1.

▶ We then have
A[t1, t2, t3] = [t1, t2, t3]



λm 1 0
0 λm 1
0 0 λm




⇔ [λmt1, t1 + λmt2, t2 + λmt3] = [At1,At2,At3]

yielding (A− λmI ) t1 = 0
(A− λmI ) t2 = t1, (t2 : generalized eigenvector)
(A− λmI ) t3 = t2, (t3 : generalized eigenvector)
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Example

A =

[
−1 1
−1 1

]
, det (A− λI ) = λ2 ⇒ λ1 = λ2 = 0, J =

[
0 1
0 0

]

▶ Two repeated eigenvalues with rank(A− 0I ) = 1 ⇒ only one

linearly independent eigenvector:(A− 0I ) t1 = 0 ⇒ t1 =

[
1
1

]

▶ Generalized eigenvector:(A− 0I ) t2 = t1 ⇒ t2 =

[
0
1

]

▶ Coordinate transform matrix:

T = [t1, t2] =

[
1 0
1 1

]
, T−1 =

[
1 0
−1 1

]

eAt = TeJtT−1 =

[
1 0
1 1

] [
e0t te0t

0 e0t

] [
1 0
−1 1

]
=

[
1 − t t
−t 1 + t

]
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Example

A =

[
−1 1
−1 1

]
, det (A− λI ) = λ2 ⇒ λ1 = λ2 = 0.

Observation

▶ λ1 = 0, t1 =
[

1
1

]
implies that if x1(0) = x2(0) then the

response is characterized by e0t = 1
▶ i.e., x1(t) = x1(0) = x2(0) = x2(t). This makes sense because

ẋ1 = −x1 + x2 from the state equation.
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Example (Multiple eigenvectors)
Obtain the eigenvectors of

A =




−2 2 −3
2 1 −6
−1 −2 0


 (λ1 = 5, λ2 = λ3 = −3) .
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Generalized eigenvectors
Physical interpretation.

When ẋ = Ax , A = TJT−1 with J =



λm 1 0
0 λm 0
0 0 λm


, we have

x(t) = eAtx(0) = T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


T−1x(0)

= T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


����: I
T−1Tx∗(0)

▶ If the initial condition is in the direction of t1, i.e.,
x∗(0) = [x∗1 (0), 0, 0]

T and x∗1 (0) ̸= 0, the above equation yields
x(t) = x∗1 (0)t1e

λmt .
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Generalized eigenvectors
Physical interpretation Cont’d.

When ẋ = Ax , A = TJT−1 with J =



λm 1 0
0 λm 0
0 0 λm


, we have

x(t) = eAtx(0) = T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


T−1x(0)

= T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


����: I
T−1Tx∗(0)

▶ If x(0) starts in the direction of t2, i.e., x∗(0) = [0, x∗2 (0), 0]
T ,

then x(t) = x∗2 (0)(t1te
λmt + t2e

λmt). In this case, the response
does not remain in the direction of t2 but is confined in the
subspace spanned by t1 and t2.
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Example
Obtain eigenvalues of J and eJt by inspection:

J =




−1 0 0 0 0
0 −2 1 0 0
0 −1 −2 0 0
0 0 0 −3 1
0 0 0 0 −3



.
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Explicit computation of Ak

Everything in getting the similarity transform applies to the DT case:

Ak = TΛkT−1 or Ak = TJkT−1.

J Jk[
λ1 0
0 λ2

] [
λk

1 0
0 λk

2

]




λ 1 0
0 λ 1
0 0 λ







λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk







λ 1 0
0 λ 0
0 0 λ3







λk kλk−1 0
0 λk 0
0 0 λk

3




[
σ ω
−ω σ

] rk
[

cos kθ sin kθ
− sin kθ cos kθ

]

r =
√
σ2 + ω2

θ = tan−1 ω
σ
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Example

Write down Jk for J =




−1 0 0
0 −1 1
0 0 −1


 and

J =




−10 1 0 0 0
0 −10 0 0 0
0 0 −2 0 0
0 0 0 −100 1
0 0 0 −1 −100




.
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1. Solution Formula
Continuous-Time Case

The Solution to ẋ = ax + bu
The Solution to nth-order LTI Systems
The State Transition Matrix eAt

Computing eAt when A is diagonal or in Jordan form
Discrete-Time LTI Case

The State Transition Matrix Ak

Computing Ak when A is diagonal or in Jordan form

2. Explicit Computation of the State Transition Matrix eAt

3. Explicit Computation of the State Transition Matrix Ak

4. Transition Matrix via Inverse Transformation
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Transition matrix via inverse transformation
Continuous-time system

state eq. ẋ(t) = Ax(t) + Bu(t), x(0) = x0

solution x(t) = eAtx(0)︸ ︷︷ ︸
free response

+

∫ t

0
eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸
forced response

transition matrix eAt

On the other hand, from Laplace transform:

ẋ(t) = Ax(t) + Bu(t) ⇒ X (s) = (sI − A)−1 x(0)︸ ︷︷ ︸
free response

+(sI − A)−1 BU(s)︸ ︷︷ ︸
forced response

Comparing x(t) and X (s) gives

eAt = L−1 {(sI − A)−1} (11)
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Example

Example

A =

[
σ ω
−ω σ

]

eAt = L−1
[
s − σ −ω
ω s − σ

]−1

= L−1
{

1
(s − σ)2 + ω2

[
s − σ ω
−ω s − σ

]}

= eσt
[

cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

]
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Transition matrix via inverse transformation (DT
case)

Discrete-time system
state eq. x(k + 1) = Ax(k) + Bu(k), x(0) = x0

solution x(k) = Akx(0)︸ ︷︷ ︸
free response

+

(k−1)∑

j=0

A(k−1−j)Bu(j)

︸ ︷︷ ︸
forced response

transition matrix transition matrix Ak

On the other hand, from Z transform:

X (z) = (zI − A)−1 zx(0) + (zI − A)−1 BU(s)

Hence
Ak = Z−1 {(zI − A)−1z

}
(12)
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Example
Example

A =

[
σ ω
−ω σ

]

Ak = Z−1

{
z

[
z − σ −ω
ω z − σ

]−1
}

= Z−1
{

z

(z − σ)2 + ω2

[
z − σ ω
−ω z − σ

]}

= Z−1
{

z

z2 − 2r cos θz + r 2

[
z − r cos θ r sin θ
−r sin θ z − r cos θ

]}

, r =
√
σ2 + ω2, θ = tan−1 ω

σ

= r k
[

cos kθ sin kθ
− sin kθ cos kθ

]
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Example

Consider A =

[
0.7 0.3
0.1 0.5

]
. We have

(zI − A)−1 z

=

[
z(z−0.5)

(z−0.8)(z−0.4)
0.3z

(z−0.8)(z−0.4)
0.1z

(z−0.8)(z−0.4)
z(z−0.7)

(z−0.8)(z−0.4)

]

=

[ 0.75z
z−0.8 +

0.25z
z−0.4

0.75z
z−0.8 − 0.75z

z−0.4
0.25z
z−0.8 − 0.25z

z−0.4
0.25z
z−0.8 +

0.75z
z−0.4

]

⇒ Ak =

[
0.75 (0.8)k + 0.25 (0.4)k 0.75 (0.8)k − 0.75 (0.4)k

0.25 (0.8)k − 0.25 (0.4)k 0.25 (0.8)k + 0.75 (0.4)k

]
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Xu Chen January 25, 2023

1 Solution of Time-Invariant State-Space Equations

1.1 Continuous-Time State-Space Solutions
1.1.1 The Solution to ẋ = ax+ bu

To solve the vector equation ẋ = Ax + Bu, we start with the scalar case when x, a, b, u ∈ R. The solution can be
easily derived using one fundamental property of exponential functions, that

d

dt
eat = aeat,

and
d

dt
e−at = −ae−at.

Consider the ODE
ẋ(t) = ax(t) + bu(t), a ̸= 0.

Since e−at ̸= 0, the above is equivalent to

e−atẋ (t)− e−atax (t) = e−atbu (t) ,

namely,

d

dt

{
e−atx (t)

}
= e−atbu (t) ,

⇔ d
{
e−atx (t)

}
= e−atbu (t) dt.

Integrating both sides from t0 to t1 gives

e−at1x (t1) = e−at0x (t0) +

∫ t1

t0

e−atbu (t) dt.

It does not matter whether we use t or τ in the integration
∫ t1
t0

e−atbu (t) dt. Hence we can change notations and
get

e−atx (t) = e−at0x (t0) +

∫ t

t0

e−aτ bu (τ) dτ,

⇔ x (t) = ea(t−to)x (t0) +

∫ t

t0

ea(t−τ)bu (τ) dτ.

Taking t0 = 0 gives

x (t) = eatx (0)︸ ︷︷ ︸
free response

+

∫ t

0

ea(t−τ)bu (τ) dτ

︸ ︷︷ ︸
forced response

(1)

where the free response is the part of the solution due only to initial conditions when no input is applied, and the
forced response is the part due to the input alone.

Solution Concepts.

Time Constant. When a < 0, eat is a decaying function. For the free response eatx (0), the exponential
function satisfies e−1 ≈ 37%, e−2 ≈ 14%, e−3 ≈ 5%, and e−4 ≈ 2%. The time constant is defined as

T =
1

|a| .

After three time constants, the free response reduces to 5% of its initial value. Roughly, we say the free response
has died down.

Graphically, the exponential function looks like:

1
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Impulse Response
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Unit Step Response. When a < 0 and u(t) = 1(t) (the step function), the solution is

x(t) =
b

|a| (1− eat).

Step Response
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1.1.2 * Fundamental Theorem of Differential Equations

The following theorem addresses the question of whether a dynamical system has a unique solution or not.

Theorem 1. Consider ẋ = f (x, t), x (t0) = x0, with:

• f (x, t) piecewise continuous in t

• f (x, t) Lipschitz continuous in x

then there exists a unique function of time ϕ (·) : R+ → Rn which is continuous almost everywhere and satisfies

• ϕ (t0) = x0

• ϕ̇ (t) = f (ϕ (t) , t), ∀t ∈ R+\D , where D is the set of discontinuity points for f as a function of t.

Remark 1. Piecewise continuous functions are continuous except at finite points of discontinuity.

• example 1: f (t) = |t|
• example 2:

f (x, t) =

{
A1x, t ≤ t1

A2x, t > t1

2
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Lipschitz continuous functions are those that satisfy the cone constraint:

∥f (x, t)− f (y, t) ∥ ≤ k (t) ∥x− y∥

where k (t) is piecewise continuous.

• example: f (x) = Ax+B

• a graphical representation of a Lipschitz function is that it must stay within a cone in the space of (x, f (x))

• a function is Lipschitz continuous if it is continuously differentiable with its derivative bounded everywhere.
This is a sufficient condition. Functions can be Lipschitz continuous but not differentiable: e.g., the saturation
function and f (x) = |x|.

• A continuous function is not necessarily Lipschitz continuous at all: e.g., a function whose derivative at x = 0
is infinity.

1.1.3 The Solution to nth-order LTI System

Consider the general state-space equation

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

x(t0) = x0 ∈ Rn, A ∈ Rn×n

Only the first equation here is a differential equation. Once we solve this equation for x(t), we can find y(t) very
easily using the second equation. Also, f (x, t) = Ax + Bu satisfies the conditions in Fundamental Theorem for
Differential Equations. A unique solution thus exists. The solution of the state-space equations is given in closed
form by

x(t) = eA(t−t0)x0︸ ︷︷ ︸
free response

+

∫ t

t0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸
forced response

(2)

Derivation of the general state-space solution. Since e−At ̸= 0, ẋ(t) = Ax(t) + Bu(t) is equivalent
to

e−Atẋ (t)− e−AtAx (t) = e−AtBu (t)

namely

d

dt

(
e−Atx (t)

)
= e−AtBu (t)

⇔ d
(
e−Atx (t)

)
= e−AtBu (t) dt

Integrating both sides from t0 to t1 gives

e−At1x (t1) = e−At0x (t0) +

∫ t1

t0

e−AtBu (t) dt

Changing notations from t to τ in the integral yields

e−Atx (t) = e−At0x (t0) +

∫ t

t0

e−AτBu (τ) dτ

⇔ x (t) = eA(t−to)x (t0) +

∫ t

t0

eA(t−τ)Bu (τ) dτ

In both the free and the forced responses, computing the matrix eAt is key. eA(t−t0) is called the transition
matrix, and can be computed using a few handy results in linear algebra.

3
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1.1.4 The State Transition Matrix eAt

For the scalar case with a ∈ R, Tylor expansion gives

eat = 1 + at+
1

2
(at)2 + · · ·+ 1

n!
(at)n + . . . (3)

The transition scalar Φ(t, t0) = ea(t−t0) satisfies

Φ(t, t) = 1 (transition to itself)
Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1) (consecutive transition)

Φ(t2, t1) = Φ−1(t1, t2) (reverse transition)

For the matrix case with A ∈ Rn×n

eAt = I +At+
1

2
A2t2 + · · ·+ 1

n!
Antn + . . . (4)

As I and Ai are matrices of dimension n× n, we confirm that eAt ∈ Rn×n.
The state transition matrix Φ(t, t0) = eA(t−t0) satisfies

eA0 = In

eAt1eAt2 = eA(t1+t2)

e−At =
[
eAt
]−1

.

Similar to the scalar case, it can be shown that

Φ(t, t) = I

Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1)

Φ(t2, t1) = Φ−1(t1, t2).

Note, however, that eAteBt = e(A+B)t if and only if AB = BA. (Check by using Tylor expansion.)
When A is a diagonal or Jordan matrix, the Tylor expansion formula readily generates eAt:

Diagonal matrix A =




λ1 0 0
0 λ2 0
0 0 λ3


 . In this case An =




λn
1 0 0
0 λn

2 0
0 0 λn

3


 is also diagonal and hence

eAt = I +At+
1

2
A2t2 + · · ·+ 1

n!
Antn + . . . (5)

=




1 0 0
0 1 0
0 0 1


+




λ1t 0 0
0 λ2t 0
0 0 λ3t


+




1
2λ

2
1t

2 0 0
0 1

2λ
2
2t

2 0
0 0 1

2λ
2
3t

2


+ . . . (6)

=




1 + λ1t+
1
2λ

2
1t

2 + . . . 0 0
0 1 + λ2t+

1
2λ

2
2t

2 + . . . 0
0 0 1 + λ3t+

1
2λ

2
3t

2 + . . .


 (7)

=




eλ1t 0 0
0 eλ2t 0
0 0 eλ3t


. (8)

Jordan canonical form A =




λ 1 0
0 λ 1
0 0 λ


. Decompose

A =




λ 0 0
0 λ 0
0 0 λ




︸ ︷︷ ︸
λI3

+




0 1 0
0 0 1
0 0 0




︸ ︷︷ ︸
N

.

4
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Then
eAt = e(λI3t+Nt).

As (λIt) (Nt) = λNt2 = (Nt) (λIt), we have eAt = eλIteNt = eλteNt. Also, N has the special property of
N3 = N4 = · · · = 0I3, yielding

eNt = I +Nt+
1

2
N2t2 =




1 t t2

2
0 1 t
0 0 1


 .

Thus

eAt =




eλt teλt t2

2 e
λt

0 eλt teλt

0 0 eλt


. (9)

Remark 2 (Nilpotent matrices). The matrix

N =




0 1 0
0 0 1
0 0 0




is a nilpotent matrix that equals to zero when raised to a positive integral power. (“nil” ∼ zero; “potent” ∼ taking
powers.) When taking powers of N , the off-diagonal 1 elements march to the top right corner and finally vanish.

Example. Consider a mass moving on a straight line with zero friction and no external force. Let x1 and x2 be
be the position and the velocity of the mass, respectively. The state-space description of the system is

d

dt

[
x1

x2

]
=

[
0 1
0 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
.

Then x(t) = eAtx(0) and

eAt = I +

[
0 1
0 0

]
t+

1

2!

[
0 1
0 0

] [
0 1
0 0

]

︸ ︷︷ ︸
=


 0 0

0 0




t2 + . . .=

[
1 t
0 1

]
.

Columns of the state-transition matrix. We discuss an intuition of the matrix entries in the eAt matrix.
Consider the system equation

ẋ = Ax =

[
0 1
0 −1

]
x, x(0) = x0,

with the solution

x(t) = eAtx(0) =




| |
a1(t) a2(t)
| |



[

x1(0)
x2(0)

]
= a1(t)x1(0) + a2(t)x2(0), (10)

where a1(t) and a2(t) are columns of eAt. They satisfy

x(0) =

[
1
0

]
⇒ x(t) = a1(t),

x(0) =

[
0
1

]
⇒ x(t) = a2(t).

Hence, we can obtain eAt from the following, without using explicitly the Tylor expansion,

1. write out
ẋ1(t) =x2(t)

ẋ2(t) =− x2(t)
⇒ x1(t) =e0tx1(0) +

∫ t

0

e0(t−τ)x2(τ)dτ = e0tx1(0) +

∫ t

0

e−τx2(0)dτ

x2(t) =e−tx2(0)

5
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2. let x(0) =

[
1
0

]
, then

x1(t) ≡ 1

x2(t) ≡ 0
, namely x(t) =

[
1
0

]

3. let x(0) =

[
0
1

]
, then x2(t) = e−t and x1(t) = 1− e−t, or more compactly, x(t) =

[
1− e−t

e−t

]

4. using the property of (10), write out directly

eAt =

[
1 1− e−t

0 e−t

]

Exercise. Use the above method to compute eAt where

A =




λ 1 0
0 λ 1
0 0 λ


 .

1.2 Discrete-Time LTI State-Space Solutions
For the discrete-time system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

iteration of the state-space equation gives

x (k + 1) = Ax (k) +Bu (k) (11)

⇒x (k) = Ak−k0x (ko) +
[
Ak−k0−1B Ak−k0−2B · · · B

]




u (k0)
u (k0 + 1)

...
u (k − 1)


 (12)

⇔ x (k) = Ak−k0x (ko)︸ ︷︷ ︸
free response

+

k−1∑

j=k0

Ak−1−jBu (j)

︸ ︷︷ ︸
forced response

(13)

where the transition matrix is defined by Φ(k, j) = Ak−j and satisfies

Φ(k, k) = 1

Φ(k3, k2)Φ(k2, k1) = Φ(k3, k1) k3 ≥ k2 ≥ k1

Φ(k2, k1) = Φ−1(t1, t2) if and only if A is nonsingular

1.2.1 The State Transition Matrix Ak

Similar to the continuous-time case, when A is a diagonal or Jordan matrix, the Tylor expansion formula readily
generates Ak. We have

• Diagonal matrix A =




λ1 0 0
0 λ2 0
0 0 λ3


: Ak =




λk
1 0 0
0 λk

2 0
0 0 λk

3




• Jordan canonical form A =




λ 1 0
0 λ 1
0 0 λ


 =




λ 0 0
0 λ 0
0 0 λ




︸ ︷︷ ︸
λI3

+




0 1 0
0 0 1
0 0 0




︸ ︷︷ ︸
N

: With the nilpotent N and the

6
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commutative property (λI3)N = N (λI3), we have

Ak = (λI3 +N)k = (λI3)
k
+ k (λI3)

k−1
N +

(
k
2

)

︸ ︷︷ ︸
2 combination

(λI3)
k−2

N2 +

(
k
3

)
(λI3)

k−3
N3 + . . .

︸ ︷︷ ︸
N3=N4=···=0I3

=




λk 0 0
0 λk 0
0 0 λk


+ kλk−1




0 1 0
0 0 1
0 0 0


+

k(k − 1)

2
λk−2




0 0 1
0 0 0
0 0 0




=




λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk




Exercise. Show that

A =




λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


⇒ Ak =




λk kλk−1 1
2!k (k − 1)λk−2 1

3!k (k − 1) (k − 2)λk−3

0 λk kλk−1 1
2!k (k − 1)λk−2

0 0 λk kλk−1

0 0 0 λk




1.3 Explicit Computation of the State Transition Matrix eAt

General matrices may have structures other than the diagonal and Jordan canonical forms. However, via similar
transformation, we can readily transform a general matrix to a diagonal or Jordan form under a different choice of
state vectors.

Principle Concept.

1. Given
ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 ∈ Rn, A ∈ Rn×n

we will find a nonsingular matrix T ∈ Rn×n such that a coordinate transformation defined by x(t) = Tx∗(t)
yields

d

dt
(Tx∗(t)) = ATx∗(t) +Bu(t)

d

dt
x∗(t) = T−1AT︸ ︷︷ ︸

≜Λ

x∗(t) + T−1B︸ ︷︷ ︸
B∗

u(t), x∗(0) = T−1x0

where Λ is diagonal or in Jordan form.

2. Now x∗(t) can be solved easily, and the free response is x∗(t) = eΛtx∗(0). For example, when Λ =

[
λ1 0
0 λ2

]
,

we would readily obtain x∗(t) =

[
eλ1t 0
0 eλ2t

] [
x∗
1(0)

x∗
2(0)

]
=

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
.

3. As x(t) = Tx∗(t), the above implies
x(t) = TeΛtT−1x0

4. From the original state-space description, x(t) = eAtx0. Hence

eAt = TeΛtT−1

Existence of Solutions. The solution of T comes from the theory of eigenvalues and eigenvectors in linear
algebra.

7
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More generally If two matrices A, B ∈ Cn×n are similar: A = TBT−1, T ∈ Cn×n, then

• their An and Bn are also similar: e.g., AA = TBT−1TBT−1 = TB2T−1

• their exponential matrices are also similar
eAt = TeBtT−1

as

TeBtT−1 = T (I +Bt+
1

2
B2t2 + . . . )T−1 = TIT−1 + TBtT−1 +

1

2
TB2t2T−1 + . . .

= I +At+
1

2
A2t2 + · · · = eAt

Eigenvalues and Eigenvectors. The principle concept of computing eAt in this section relies on the similarity
transform Λ = T−1AT , where Λ is structurally simple: i.e., in diagonal or Jordan form. We already observed

the resulting convenience in computing x∗(t) = eΛtx∗(0)
e.g.
=

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
. Under the coordinate transformation

defined by x(t) = Tx∗(t), we then have

x(t) = TeΛtx∗(0)
e.g.
= [t1, t2]︸ ︷︷ ︸

T

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
= eλ1tx∗

1(0)t1 + eλ2tx∗
2(0)t2

in other words, the state trajectory is conveniently decomposed into two modes along the directions defined by t1
and t2, the column vectors of T .

In practice, Λ and T are obtained using the tools of eigenvalues and eigenvectors.
For A ∈ Rn×n, an eigenvalue λ ∈ C of A is the solution to the characteristic equation

det (A− λI) = 0 (14)

The corresponding eigenvectors are the nonzero solutions to

At = λt ⇔ (A− λI) t = 0 (15)

The case with distinct eigenvalues (diagonalization). When A ∈ Rn×n has n distinct eigenvalues such
that

Ax1 = λ1x1

Ax2 = λ2x2

...
Axn = λnxn

we can write the above as

A [x1, x2, . . . , xn]︸ ︷︷ ︸
≜T

= [λ1x1, λ2x2, . . . , λnxn] = [x1, x2, . . . , xn]




λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn




︸ ︷︷ ︸
Λ

The matrix [x1, x2, . . . , xn] is square. From linear algebra, the eigenvectors are linearly independent and [x1, x2, . . . , xn]
is invertible. Hence

A = TΛT−1, Λ = T−1AT

Example 1. Mechanical system with strong damping
Consider a spring-mass-damper system with m = 1, k = 2, b = 3. Let x1 and x2 be the position and velocity of

the mass, respectively. We have
{
ẋ1 = x2

ẋ2 + 2x1 + 3x2 = 0
=⇒ d

dt

[
x1

x2

]
=

[
0 1
−2 −3

]

︸ ︷︷ ︸
A

[
x1

x2

]

8
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• Find eigenvalues: det(A− λI) = det

[
−λ 1
−2 −λ− 3

]
= (λ+ 2) (λ+ 1) ⇒ λ1 = −2, λ2 = −1

• Find associate eigenvectors:

– λ1 = −2: (A− λ1I) t1 = 0 ⇒ t1 =

[
1
−2

]

– λ1 = −1: (A− λ2I) t2 = 0 ⇒ t2 =

[
1
−1

]

• Define T and Λ: T =
[
t1 t2

]
=

[
1 1
−2 −1

]
, Λ =

[
λ1 0
0 λ2

]
=

[
−2 0
0 −1

]

• Compute T−1 =

[
1 1
−2 −1

]−1

=

[
−1 −1
2 1

]

• Compute eAt = TeΛtT−1 = T

[
e−2t 0
0 e−1t

]
T−1 =

[
−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t

]

Physical interpretations Let us revisit the intuition at the beginning of this subsection:

• x(t) = eλ1tx∗
1(0)t1 + eλ2tx∗

2(0)t2 decomposes the state trajectory into two modes along the direction of the
two eigenvectors t1 and t2.

• The two modes are scaled by x∗
1(0) and x∗

2(0) defined from x(0) = Tx∗(0), or more explicitly, x(0) =
[t1, t2][x

∗
1(0), x

∗
2(0)]

T = x∗
1(0)t1 + x∗

2(0)t2. This is nothing but decomposing x(0) into the sum of two vec-
tors along the directions of the eigenvectors; and x∗

1(0) and x∗
2(0) are the coefficients of the decomposition!

x

x 2

1

x(0)

-tea2 t2

-2tea1 t1

t 1

t 2

• If the initial condition x(0) is aligned with one eigenvector, say, t1, then x∗
2(0) = 0. The decomposition

x(t) = eλ1tx∗
1(0)t1 + eλ2tx∗

2(0)t2 then dictates that x(t) will stay in the direction of t1. In other words, if the
state initiates along the direction of one eigenvector, then the free response will stay in that direction without
“making turns”. If λ1 < 0, then x(t) will move towards the origin of the state space; if λ1 = 0, x(t) will stay
at the initial point; and if positive, x(t) will move away from the origin along t1. Furthermore, the magnitude
of λ1 determines the speed of response.

9
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The case with complex eigenvalues Consider the undamped spring-mass system

d

dt

[
x1

x2

]
=

[
0 1
−1 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
, det(A− λI) = λ2 + 1 = 0 ⇒ λ1,2, = ±j.

The eigenvectors are

λ1 = j : (A− jI)t1 = 0 ⇒ t1 =

[
1
j

]

λ2 = −j : (A+ jI)t2 = 0 ⇒ t2 =

[
1
−j

]
(complex conjugate of t1).

Hence

T =

[
1 1
j −j

]
, T−1 =

1

2

[
1 −j
1 j

]
, eAt = TeΛtT−1 = T

[
ejt 0
0 e−jt

]
T−1 =

[
cos t sin t
− sin t cos t

]
.

As an exercise, for a general A ∈ R2×2 with complex eigenvalues σ± jω, you can show that by using T = [tR, tI ]
where tR and tI are the real and the imaginary parts of t1, an eigenvector associated with λ1 = σ + jω , x = Tx∗

transforms ẋ = Ax to
ẋ∗(t) =

[
σ ω
−ω σ

]
x∗(t)

and

e


 σ ω

−ω σ


t

=

[
eσt cosωt eσt sinωt
−eσt sinωt eσt cosωt

]
.
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<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>⇥

<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

Re(�)

<latexit sha1_base64="M5ShOjjM2ucYhVVi0X4YMoI4e/M=">AAAB+3icbVDJSgNBFOxxjXGL8eilMQjxEmY0oMeAF49RzCKZIfR0XpImPQvdbyRhmF/x4kERr/6IN//GznLQxIKGouoV73X5sRQabfvbWlvf2Nzazu3kd/f2Dw4LR8WmjhLFocEjGam2zzRIEUIDBUpoxwpY4Eto+aObqd96AqVFFD7gJAYvYINQ9AVnaKRuoegijDG9h6zsShPrsfNuoWRX7BnoKnEWpEQWqHcLX24v4kkAIXLJtO44doxeyhQKLiHLu4mGmPERG0DH0JAFoL10dntGz4zSo/1ImRcinam/EykLtJ4EvpkMGA71sjcV//M6CfavvVSEcYIQ8vmifiIpRnRaBO0JBRzlxBDGlTC3Uj5kinE0deVNCc7yl1dJ86LiVCuXd9VS7XFRR46ckFNSJg65IjVyS+qkQTgZk2fySt6szHqx3q2P+eiatcgckz+wPn8AzEmUWg==</latexit>

Im(�)

<latexit sha1_base64="AA5V6o9DqBAFFyBBv/T/o3xoi/M=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAh1UxIt6LLgRncV7EOaUCaTSTt0MgkzN9IS8ituXCji1h9x5984bbPQ1gMDh3Pu4d45fsKZAtv+NtbWNza3tks75d29/YND86jSUXEqCW2TmMey52NFORO0DQw47SWS4sjntOuPb2Z+94lKxWLxANOEehEeChYygkFLA7PiAp1AdhflNZfrWIDPB2bVrttzWKvEKUgVFWgNzC83iEkaUQGEY6X6jp2Al2EJjHCal91U0QSTMR7SvqYCR1R52fz23DrTSmCFsdRPgDVXfycyHCk1jXw9GWEYqWVvJv7n9VMIr72MiSQFKshiUZhyC2JrVoQVMEkJ8KkmmEimb7XICEtMQNdV1iU4y19eJZ2LutOoX943qs3Hoo4SOkGnqIYcdIWa6Ba1UBsRNEHP6BW9GbnxYrwbH4vRNaPIHKM/MD5/AMqylFk=</latexit>

The case with repeated eigenvalues, via generalized eigenvectors. Consider A =

[
1 2
0 1

]
, which has

two repeated eigenvalues λ (A) = 2 and

(A− λI) t1 = 0 ⇒ t1 =

[
1
0

]
.

No other linearly independent eigenvectors exist. How do we go further? As A is already very similar to the Jordan
form, we try instead

A
[
t1 t2

]
=
[
t1 t2

] [ λ 1
0 λ

]
,

which requires At2 = t1 + λt2, i.e.,

(A− λI) t2 = t1 ⇔
[

0 2
0 0

]
t2 =

[
1
0

]

⇒t2 =

[
0
0.5

]

t2 is linearly independent from t1. Together, t1 and t2 span the 2-dimensional vector space. As such, t2 is called a
generalized eigenvector.

For general 3× 3 matrices with det(λI −A) = (λ− λm)3, i.e., λ1 = λ2 = λ3 = λm, we look for T such that

A = TJT−1

11
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where J has three canonical forms:

i),




λm 0 0
0 λm 0
0 0 λm


 , ii),




λm 1 0
0 λm 0
0 0 λm


 or




λm 0 0
0 λm 1
0 0 λm


 , iii),




λm 1 0
0 λm 1
0 0 λm


 .

• Case i): this happens when A has three linearly independent eigenvectors, i.e., (A − λmI)t = 0 yields t1, t2,
and t3 that span the 3-d vector space. This happens when nullity (A− λmI) = 3, namely, rank(A− λmI) =
3− nullity (A− λmI) = 0.

• Case ii): this happens when (A−λmI)t = 0 yields two linearly independent solutions, i.e., when nullity (A− λmI) =
2. We then have, e.g.,

A[t1, t2, t3] = [t1, t2, t3]




λm 1 0
0 λm 0
0 0 λm


⇔ [λmt1, t1 + λmt2, λmt3] = [At1, At2, At3]

t1 and t3 are the directly computed eigenvectors. For the generalized eigenvector t2, the second column of the
equality gives

(A− λmI) t2 = t1

• Case iii): this is for the case when (A − λmI)t = 0 yields only one linearly independent solution, i.e., when
nullity(A− λmI) = 1. We then have,

A[t1, t2, t3] = [t1, t2, t3]




λm 1 0
0 λm 1
0 0 λm


⇔ [λmt1, t1 + λmt2, t2 + λmt3] = [At1, At2, At3]

yielding

(A− λmI) t1 = 0

(A− λmI) t2 = t1

(A− λmI) t3 = t2

where t2 and t3 are the generalized eigenvectors.

Example 2. Consider

A =

[
−1 1
−1 1

]
, det (A− λI) = (λ+ 1) (λ− 1)− 1 = λ2 ⇒ λ1 = λ2 = 0.

Two repeated eigenvalues with rank(A− 0I) = 1 ⇒only one linearly independent eigenvector:

(A− 0I) t1 = 0 ⇒ t1 =

[
1
1

]
.

Generalized eigenvector:

(A− 0I) t2 = t1 ⇒ t2 =

[
0
1

]
.

Coordinate transform matrix:
T = [t1, t2] =

[
1 0
1 1

]
, T−1 =

[
1 0
−1 1

]
,

J = T−1AT =

[
0 1
0 0

]
, eAt = TeJtT−1 =

[
1 0
1 1

] [
1 t
0 1

] [
1 0
−1 1

]
=

[
1− t t
−t 1 + t

]
.

The first eigenvector implies that if x1(0) = x2(0) then the response is characterized by e0t = 1, i.e., x1(t) = x1(0) =
x2(0) = x2(t). This makes sense because ẋ1 = −x1 + x2 from the state equation.

12
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Example 3 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

A =




−2 2 −3
2 1 −6
−1 −2 0


 .

Analogous procedures give that
λ1 = 5, λ2 = λ3 = −3.

So there are repeated eigenvalues. For λ1 = 5, (A− 5I)t1 = 0 gives



−7 2 −3
2 −4 −6
−1 −2 −5


 t1 = 0 ⇒




1 0 1
0 1 2
1 0 1


 t1 = 0 ⇒ t1 =




1
2
−1


 .

For λ2 = λ3 = −3, the characteristic matrix is

A+ 3I =




1 2 −3
2 4 −6
−1 −2 3


 .

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the characteristic
matrix has only rank 1. The characteristic equation

(A− λ2I) t = 0

has two linearly independent solutions 


−2
1
0


 ,




3
0
1


 .

Then

T =




1 −2 3
2 1 0
−1 0 1


 , J =




5 0 0
0 −3 0
0 0 −3


 .

Physical interpretation. When ẋ = Ax, A = TJT−1 with J =




λm 1 0
0 λm 0
0 0 λm


, we have

x(t) = eAtx(0) = T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


T−1x(0) = T




eλmt teλmt 0
0 eλmt 0
0 0 eλmt


����:I
T−1Tx∗(0)

If the initial condition is in the direction of t1, i.e., x∗(0) = [x∗
1(0), 0, 0]

T and x∗
1(0) ̸= 0, the above equation yields

x(t) = x∗
1(0)t1e

λmt. If x(0) starts in the direction of t2, i.e., x∗(0) = [0, x∗
2(0), 0]

T , then x(t) = x∗
2(0)(t1te

λmt +
t2e

λmt). In this case, the response does not remain in the direction of t2 but is confined in the subspace spanned
by t1 and t2.

Exercise 1. Obtain eigenvalues of J and eJt by inspection:

J =




−1 0 0 0 0
0 −2 1 0 0
0 −1 −2 0 0
0 0 0 −3 1
0 0 0 0 −3



.
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1.4 Explicit Computation of the State Transition Matrix Ak

Everything in computing the similarity transform A = TΛT−1 or A = TJT−1 applies to the discrete-time case.
The state transition matrix in this case is

Ak = TΛkT−1 or Ak = TJkT−1.

You should be able to derive these results:

J Jk

[
λ1 0
0 λ2

] [
λk
1 0
0 λk

2

]

[
λ 1
0 λ

] [
λk kλk−1

0 λk

]




λ 1 0
0 λ 1
0 0 λ







λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk







λ 1 0
0 λ 0
0 0 λ3







λk kλk−1 0
0 λk 0
0 0 λk

3




[
σ ω
−ω σ

]
rk
[

cos kθ sin kθ
− sin kθ cos kθ

]
, r =

√
σ2 + ω2, θ = tan−1 ω

σ

Exercise 2. Write down Jk for J =




−1 0 0
0 −1 1
0 0 −1


 and J =




−10 1 0 0 0
0 −10 0 0 0
0 0 −2 0 0
0 0 0 −100 1
0 0 0 −1 −100




.

Exercise 3. Show that

J =




λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


⇒ Jk =




λk kλk−1 1
2!k (k − 1)λk−2 1

3!k (k − 1) (k − 2)λk−3

0 λk kλk−1 1
2!k (k − 1)λk−2

0 0 λk kλk−1

0 0 0 λk


 .

1.5 Transition Matrix via Inverse Transformation
We have now

Continuous-time system Discrete-time system
state equation ẋ(t) = Ax(t) +Bu(t), x(0) = x0 x(k + 1) = Ax(k) +Bu(k), x(0) = x0

solution x(t) = eAtx(0)︸ ︷︷ ︸
free response

+

∫ t

0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸
forced response

x(k) = Akx(0)︸ ︷︷ ︸
free response

+

(k−1)∑

j=0

A(k−1−j)Bu(j)

︸ ︷︷ ︸
forced response

transition matrix eAt Ak

We also know from Laplace transform, that

ẋ(t) = Ax(t) +Bu(t)

X(s) = (sI −A)
−1

x(0)︸ ︷︷ ︸
free response

+(sI −A)
−1

BU(s)︸ ︷︷ ︸
free response

Comparing x(t) and X(s) gives

eAt = L−1
{
(sI −A)−1

}
(16)

14
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Example 4. Consider A =

[
σ ω
−ω σ

]
. We have

eAt = L−1

[
s− σ −ω
ω s− σ

]−1

= L−1

{
1

(s− σ)
2
+ ω2

[
s− σ ω
−ω s− σ

]}

= eσt
[

cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

]

Similarly, for the discrete time case, we have X(z) = (zI −A)
−1

zx(0) + (zI −A)
−1

BU(s) and

Ak = Z−1
{
(zI −A)−1z

}
(17)

Example 5. Consider A =

[
σ ω
−ω σ

]
. We have

Ak = Z−1

{
z

[
z − σ −ω
ω z − σ

]−1
}

= Z−1

{
z

(z − σ)
2
+ ω2

[
z − σ ω
−ω z − σ

]}

= Z−1

{
z

z2 − 2r cos θz + r2

[
z − r cos θ r sin θ
−r sin θ z − r cos θ

]}
, r =

√
σ2 + ω2, θ = tan−1 ω

σ

= rk
[

cos kθ sin kθ
− sin kθ cos kθ

]

Example 6. Consider A =

[
0.7 0.3
0.1 0.5

]
. We have

(zI −A)
−1

z =

[
z(z−0.5)

(z−0.8)(z−0.4)
0.3z

(z−0.8)(z−0.4)
0.1z

(z−0.8)(z−0.4)
z(z−0.7)

(z−0.8)(z−0.4)

]
=

[ 0.75z
z−0.8 + 0.25z

z−0.4
0.75z
z−0.8 − 0.75z

z−0.4
0.25z
z−0.8 − 0.25z

z−0.4
0.25z
z−0.8 + 0.75z

z−0.4

]

⇒ Ak =

[
0.75 (0.8)

k
+ 0.25 (0.4)

k
0.75 (0.8)

k − 0.75 (0.4)
k

0.25 (0.8)
k − 0.25 (0.4)

k
0.25 (0.8)

k
+ 0.75 (0.4)

k

]
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Motivation

I For mechanical systems, physics often give differential-equation
models.

I When implementing controls digitally (e.g., on a
microcontroller), a continuous-time system must be represented
in the discrete-time domain.

I Sampler: converts a time function into a discrete sequence, e.g.,

T y(k)y(t)
• • • • • • • •

. . .

t k

y(t) y(k)

| | |
0 T 2T 3T . . . 0 1 2 3

| | |

where y(k) , y(tk) = y(Tk)

UW Linear Systems (X. Chen, ME547) SS discretization 2 / 8



Signal holding

I Zero-order Hold (ZOH): converts a sequence into a “stair-case”
time function, e.g.,

u(t)u(k)

ZOH

•

•

•

•

. . .

tk

u(t)u(k)

| | |
0 T 2T 3T . . .0 1 2 3

| | |

•

•

•

• . . .

where u(t) = u(k) for k ∈ [kT , (k + 1)T ).

UW Linear Systems (X. Chen, ME547) SS discretization 3 / 8

Problem definition

Consider a continuous time system preceded by a ZOH:

dx
dt = Ax+BuZero Order Hold

u(tk) x(t)

x(tk)

u(t)

I Goal: to obtain the model between u(tk) and x(tk).

UW Linear Systems (X. Chen, ME547) SS discretization 4 / 8



Solution
dx
dt = Ax+BuZero Order Hold

u(tk) x(t)

x(tk)

u(t)

1. Starting from tk , the solution of ẋ = Ax + Bu at time tk+1 is

x(tk+1) = eA(tk+1−tk )x(tk) +

∫ tk+1

tk

eA(tk+1−τo)Bu(τo)dτo

= eA(

T︷ ︸︸ ︷
tk+1 − tk )x(tk) + u(tk)

∫ tk+1

tk

eA(

η︷ ︸︸ ︷
tk+1 − τo )Bdτo

︸ ︷︷ ︸
=
∫ 0
T eAηBd(−η)=−

∫ 0
T eAηBdη

2. Noting −
∫ 0
T
eAηBdη =

∫ T

0 eAτBdτ and denoting tk as k yield

x(k + 1) = Adx(k) + Bdu(k), Ad = eAT , Bd =

∫ T

0
eAτBdτ
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Analysis
Mapping of eigenvalues

I eAt has the same eigenvalues as eΛt : Λ is in diagonal or Jordan
form with diagonal elements formed by eigenvalues of A

I ⇒ eigenvalues of Ad = eAT are eλiT ’s where λi is an eigenvalue
of A

I same conclusion can be drawn from the spectral mapping
theorem
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Theorem (Spectral Mapping Theorem)
Take any A ∈ Cn×n and a polynomial function f (·) (more generally,
analytic functions). Then

eig (f (A)) = f (eig (A))

Example (Compute the eigenvalues)

A =

[
99.8 2000
−2000 99.8

]

Solution:

A = 99.8I + 2000
[

0 1
−1 0

]
⇒ λ(A) = 99.8 + 2000λ

{[
0 1
−1 0

]}

= 99.8± 2000i
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*Analysis
Explicit form of Bd when A is nonsingular

x(k + 1) = Adx(k) + Bdu(k), Ad = eAT , Bd =

∫ T

0
eAτBdτ

I Using eAτ = I + Aτ + 1
2!
A2τ 2 + . . . gives

Bd =

∫ T

0

(
I + Aτ +

1
2!
A2τ 2 + . . .

)
dτB

=

(
IT +

1
2
AT 2 +

1
3!
A2T 3 + . . .

)
B

= A−1 (eAT − I
)
B = A−1 (Ad − I )B
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Essentials of Control Systems

Discretization of Continuous-time
Transfer-function Systems

Xu Chen

University of Washington
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Overview

I Consider the discrete-time controller implementation scheme

u[k] // ZOH
u(t) // G (s)

y(t) ◦
∆T

y [k]//

where u[k] and y [k] have the same sampling time.
I for this note, we use [k] to distinguish DT signals from their CT

counter parts
I Goal: to derive the transfer function from u[k] to y [k].
I Solution concept: let u[k] be a discrete-time impulse (whose Z

transform is 1) and obtain the Z transform of y [k].
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Solution

u[k] // ZOH
u(t) // G (s)

y(t) ◦
∆T

y [k]//

I u[k] is a DT impulse ⇒ after ZOH

u(t) =

{
1, 0 ≤ t < ∆T

0, otherwise
= 1(t)−1(t−∆T ) =⇒ U(s) =

1− e−s∆T

s

I Hence

y(t) = L−1
[
G (s)

1− e−s∆T

s

]
= L−1

[
G (s)

1
s

]
− L−1

[
G (s)

e−s∆T

s

]
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Solution

u[k] // ZOH
u(t) // G (s)

y(t) ◦
∆T

y [k]//

y(t) = L−1
[
G (s)

1− e−s∆T

s

]
= L−1

[
G (s)

1
s

]
− L−1

[
G (s)

e−s∆T

s

]

I Sampling y(t) at ∆T and performing Z transform give:

G (z) = Z





ỹ(t)︷ ︸︸ ︷
L−1

[
G (s)

1
s

]
∣∣∣∣∣∣∣∣∣
t=k∆T︸ ︷︷ ︸

,ỹ [k]

−

ỹ(t−∆T )︷ ︸︸ ︷
L−1

[
G (s)

e−s∆T

s

]
∣∣∣∣∣∣∣∣∣
t=k∆T︸ ︷︷ ︸

=ỹ [k−1]!!!





= Z
{
L−1

[
G (s)

1
s

]∣∣∣∣
t=k∆T

}
− z−1Z

{
L−1

[
G (s)

1
s

]∣∣∣∣
t=k∆T

}
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Solution

u[k] // ZOH
u(t) // G (s)

y(t) ◦
∆T

y [k]//

Fact
The zero order hold equivalent of G (s) is

G (z) = (1− z−1)Z
{
L−1

[
G (s)

1
s

]∣∣∣∣
t=k∆T

}

where ∆T is the sampling time.

UW Linear Systems (X. Chen, ME547) TF discretization 5 / 8

Example
Obtain the ZOH equivalent of

G (s) =
a

s + a

Following the discretization procedures we have G(s)
s = a

s(s+a) = 1
s − 1

s+a

and hence

L−1
{
G (s)

s

}
= 1(t)− e−at1(t)

Sampling at ∆T gives 1[k]− e−ak∆T1[k], whose Z transform is

z

z − 1
− z

z − e−a∆T
=

z(1− e−a∆T )

(z − 1)(z − e−a∆T )

Hence the ZOH equivalent is

(1− z−1)
z(1− e−a∆T )

(z − 1)(z − e−a∆T )
=

1− e−a∆T

z − e−a∆T
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Matlab command

In MATLAB, the function c2d.m computes the ZOH equivalent of a
continuous-time transfer function, as well as other discrete equivalents. For

G (s) =
1
s2

and ∆T = 1, the following script
T=1;
numG=1; denG=[1 0 0];
G = tf(numG,denG);
Gd = c2d(G,T);
produces the correct ZOH equivalent.
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Exercise

Exercise
Find the zero order hold equivalent of G (s) = e−Ls , 2∆T < L < 3∆T ,
where ∆T is the sampling time.
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ME 547: Linear Systems

Stability

Xu Chen

University of Washington
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Outline

1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

3. Lyapunov’s approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case

4. Recap
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Lyapunov stability theorems
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4. Recap
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Finite dimensional vector norms

Let v ∈ Rn. A norm is:
▶ a metric in vector space: a function that assigns a real-valued

length to each vector in a vector space, e.g.,
▶ 2 (Euclidean) norm: ∥v∥2 =

√
vTv =

√
v 2
1 + v 2

2 + · · ·+ v 2
n

default in this set of notes: ∥ · ∥ = ∥ · ∥2
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Equilibrium state

For n-th order unforced system

ẋ = f (x , t) , x(t0) = x0

an equilibrium state/point xe is one such that

f (xe , t) = 0, ∀t

▶ the condition must be satisfied by all t ≥ 0.
▶ if a system starts at equilibrium state, it stays there
▶ e.g., (inverted) pendulum resting at the verticle direction
▶ without loss of generality, we assume the origin is an equilibrium

point
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Equilibrium state of a linear system

For a linear system

ẋ(t) = A(t)x(t), x(t0) = x0

▶ origin xe = 0 is always an equilibrium state
▶ when A(t) is singular, multiple equilibrium states exist
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Continuous function
The function f : R → R is continuous at x0 if ∀ϵ > 0, there exists a
δ (x0, ϵ) > 0 such that

|x − x0| < δ =⇒ |f (x)− f (x0)| < ϵ

Graphically, continuous functions is a single unbroken curve:

Figure: Continuous functions

e.g., sin x , x2, sign(x − 1.5)
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Lyapunov’s definition of stability
▶ Lyapunov invented his stability theory in 1892 in Russia.

Unfortunately, the elegant theory remained unknown to the West
until approximately 1960.

▶ The equilibrium state 0 of ẋ = f (x , t) is stable in the sense of
Lyapunov (s.i.L) if for all ϵ > 0, and t0, there exists δ (ϵ, t0) > 0
such that ∥x (t0) ∥2 < δ gives ∥x (t) ∥2 < ϵ for all t ≥ t0

Figure: Stable s.i.L: ∥x (t0) ∥ < δ ⇒ ∥x (t) ∥ < ϵ ∀t ≥ t0.
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Asymptotic stability

The equilibrium state 0 of ẋ = f (x , t) is asymptotically stable if
▶ it is stable in the sense of Lyapunov, and
▶ for all ϵ > 0 and t0, there exists δ (ϵ, t0) > 0 such that

∥x (t0) ∥2 < δ gives x (t) → 0

Figure: Asymptotically stable i.s.L: ∥x (t0) ∥ < δ ⇒ ∥x (t) ∥ → 0.
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1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

3. Lyapunov’s approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case

4. Recap
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Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for ẋ = Ax or
x(k + 1) = Ax(k) can be concluded immediately based on the
eigenvalues, λ’s, of A:
▶ the response eAtx(t0) involves modes such as eλt , teλt ,

eσt cosωt, eσt sinωt
▶ the response Akx(k0) involves modes such as λk , kλk−1,

r k cos kθ, r k sin kθ
▶ eσt → 0 if σ < 0; eλt → 0 if λ < 0
▶ λk → 0 if |λ| < 1; r k → 0 if |r | =

∣∣√σ2 + ω2
∣∣ = |λ| < 1
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Stability of the origin for ẋ = Ax

stability
at 0

λi(A)

unstable Re {λi} > 0 for some λi or Re {λi} ≤ 0 for all λi ’s but
for a repeated λm on the imaginary axis with

multiplicity m, nullity (A− λmI ) < m (Jordan form)
stable
i.s.L

Re {λi} ≤ 0 for all λi ’s and ∀ repeated λm on the
imaginary axis with multiplicity m,

nullity (A− λmI ) = m (diagonal form)
asymptotically

stable
Re {λi} < 0 for all λi (A is then called Hurwitz)
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Example (Unstable moving mass)

ẋ = Ax , A =

[
0 1
0 0

]

▶ λ1 = λ2 = 0, m = 2,

nullity (A− λi I ) = nullity
[

0 1
0 0

]
= 1 < m

▶ i.e., two repeated eigenvalues but needs a generalized
eigenvector ⇒ Jordan form after similarity transform

▶ verify by checking eAt =

[
1 t
0 1

]
: t grows unbounded
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Example (Stable in the sense of Lyapunov)

ẋ = Ax , A =

[
0 0
0 0

]

▶ λ1 = λ2 = 0, m = 2,

nullity (A− λi I ) = nullity
[

0 0
0 0

]
= 2 = m

▶ verify by checking eAt =

[
1 0
0 1

]
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Routh-Hurwitz criterion

▶ the Routh Test (by E.J. Routh, in 1877): a simple algebraic
procedure to determine how many roots a given polynomial

A(s) = ans
n + an−1s

n−1 + · · ·+ a1s + a0

has in the closed right-half complex plane, without the need to
explicitly solve for the roots

▶ German mathematician Adolf Hurwitz independently proposed in
1895 to approach the problem from a matrix perspective

▶ popular if stability is the only concern and no details on
eigenvalues (e.g., speed of response) are needed
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Routh-Hurwitz criterion

▶ the asymptotic stability of the equilibrium point 0 for ẋ = Ax
can also be concluded based on the Routh-Hurwitz criterion

▶ simply apply the Routh Test to A(s) = det (sI − A)

▶ recap: the poles of transfer function G (s) = C (sI − A)−1 B +D
come from det (sI − A) in computing the inverse (sI − A)−1
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The Routh Array
for A(s) = ans

n + an−1s
n−1 + · · ·+ a1s + a0, construct

sn an an−2 an−4 an−6 · · ·
sn−1 an−1 an−3 an−5 an−7 · · ·
sn−2 qn−2 qn−4 qn−6 · · ·
sn−3 qn−3 qn−5 qn−7 · · ·

...
...

...
...

s1 x2 x0

s0 x0

▶ first two rows contain the coefficients of A(s)
▶ third row constructed from the previous two rows via

· a b x ·
· c d y ·
· bc − ad

c

xc − ay

c
·

· · · · ·
UW Linear Systems (X. Chen, ME547) Stability 17 / 73

The Routh Array

for A(s) = ans
n + an−1s

n−1 + · · ·+ a1s + a0, construct

sn an an−2 an−4 an−6 · · ·
sn−1 an−1 an−3 an−5 an−7 · · ·
sn−2 qn−2 qn−4 qn−6 · · ·
sn−3 qn−3 qn−5 qn−7 · · ·

...
...

...
...

s1 x2 x0

s0 x0

▶ All roots of A(s) are on the left half s-plane if and only if
all elements of the first column of the Routh array are
positive.
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The Routh Array

Example (A(s) = 2s4 + s3 + 3s2 + 5s + 10)
s4 2 3 10
s3 1 5 0
s2 3 − 2×5

1 = −7 10 0
s1 5 − 1×10

−7 0 0
s0 10 0 0

▶ two sign changes in the first column
▶ unstable and two roots in the right half side of s-plane
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The Routh Array

special cases:
▶ If the 1st element in any one row of Routh’s array is zero, one

can replace the zero with a small number ϵ and proceed further.
▶ If the elements in one row of Routh’s array are all zero, then the

equation has at least one pair of real roots with equal magnitude
but opposite signs, and/or the equation has one or more pairs of
imaginary roots, and/or the equation has pairs of
complex-conjugate roots forming symmetry about the origin of
the s-plane.

▶ There are other possible complications, which we will not pursue
further. See, e.g. "Automatic Control Systems", by Kuo, 7th
ed., pp. 339-340.
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Stability of the origin for x(k + 1) = f (x(k), k)

▶ stability analysis follows analogously for nonlinear time-varying
discrete-time systems of the form

x (k + 1) = f (x(k), k) , x (k0) = x0

▶ equilibrium point xe :

f (xe , k) = xe , ∀k

▶ without loss of generality, 0 is assumed an equilibrium point
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Stability of the origin for x(k + 1) = Ax(k)

stability
at 0

λi(A)

unstable |λi | > 1 for some λi or |λi | ≤ 1 for all λi ’s but for a
repeated λm on the unit circle with multiplicity m,

nullity (A− λmI ) < m (Jordan form)
stable
i.s.L

|λi | ≤ 1 for all λi ’s but for any repeated λm on the unit
circle with multiplicity m, nullity (A− λmI ) = m

(diagonal form)
asymptotically

stable
|λi | < 1 for all λi (such a matrix is called a Schur

matrix)
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Routh-Hurwitz criterion for DT LTI systems
▶ the stability domain |λi | < 1 is a unit disk
▶ Routh array validates stability in the left-half plane
▶ bilinear transformation maps the closed left half s-plane to the

closed unit disk in z-plane

Real

Imaginary
s-plane

Real

Imaginary
z-plane

−1 1

Bilinear transform

z = 1+s
1−s or s = z−1

z+1
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Routh-Hurwitz criterion for DT LTI systems

▶ Given A(z) = zn + a1z
n−1 + · · ·+ an, procedures of

Routh-Hurwitz test:
▶ apply bilinear transform

A(z)|z= 1+s
1−s

=
(

1+s
1−s

)n
+ a1

(
1+s
1−s

)n−1
+ · · ·+ an =: A∗(s)

(1−s)n
▶ apply Routh test to

A∗(s) = a∗ns
n + a∗n−1s

n−1 + · · ·+ a∗0 = A(z)|z= 1+s
1−s

(1 − s)n
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Routh-Hurwitz criterion for DT LTI systems

Example (A(z) = z3 + 0.8z2 + 0.6z + 0.5)

▶ A∗(s) = A(z)|z= 1+s
1−s

(1 − s)3 = (1 + s)3 + 0.8 (1 + s)2 (1 − s) +

0.6 (1 + s) (1 − s)2 + 0.5 (1 − s)3 = 0.3s3 + 3.1s2 + 1.7s + 2.9
▶ Routh array

s3 0.3 1.7
s2 3.1 2.9
s 1.7 − 0.3×2.9

3.1 = 1.42 0
s0 2.9 0

▶ all elements in first column are positive ⇒ roots of A(z) are all
in the unit circle
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1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

3. Lyapunov’s approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case

4. Recap
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Lyapunov’s approach to stability

The direct method of Lyapunov to stability problems:
▶ no need for explicit solutions to system responses
▶ an “energy” perspective
▶ fit for general dynamic systems (linear/nonlinear,

time-invariant/time-varying)
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Stability from an energy viewpoint: Example
Consider spring-mass-damper systems:

ẋ1 = x2 (x1: position; x2 : velocity)

ẋ2 = − k

m
x1 −

b

m
x2, b > 0 (Newton’s law)

▶ λ (A)’s are in the left-half s-plane⇒ asymptotically stable
▶ total energy

E (t) = potential energy + kinetic energy =
1
2
kx2

1 +
1
2
mx2

2

▶ energy dissipates / is dissipative:

Ė(t) = kx1ẋ1 +mx2ẋ2 = −bx2
2 ≤ 0

▶ Ė = 0 only when x2 = 0. Since [x1, x2]
T = 0 is the only

equilibrium state, the motion will not stop at x2 = 0, x1 ̸= 0.
Thus the energy will keep decreasing toward 0 which is achieved
at the origin.
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Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

ẋ(t) = f (x(t), t) , x (t0) = x0

x (k + 1) = f (x(k), k) , x (k0) = x0

▶ assume the origin is an equilibrium state
▶ energy function ⇒ Lyapunov function: a scalar function of x

and t (or x and k in discrete-time case)
▶ goal is to relate properties of the state through the Lyapunov

function
▶ main tool: matrix formulation, linear algebra, positive definite

functions
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Relevant tools
Quadratic functions
▶ intrinsic in energy-like analysis, e.g.

1
2
kx2

1 +
1
2
mx2

2 =
1
2

[
x1

x2

]T [
k 0
0 m

] [
x1

x2

]

▶ convenience of matrix formulation:

1
2
kx2

1 +
1
2
mx2

2 + x1x2 =

[
x1

x2

]T [ k
2

1
2

1
2

m
2

] [
x1

x2

]

1
2
kx2

1 +
1
2
mx2

2 + x1x2 + c =




x1

x2

1



T 


k
2

1
2 0

1
2

m
2 0

0 0 c






x1

x2

1




▶ general quadratic functions in matrix form

Q (x) = xTPx , PT = P
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Relevant tools
Symmetric matrices
▶ recall: a real square matrix A is

▶ symmetric if A = AT

▶ skew-symmetric if A = −AT

▶ examples: [
1 2
2 1

]
,

[
1 2
−2 1

]
,

[
0 2
−2 0

]

Fact
Any real square matrices can be decomposed as the sum of a
symmetric matrix and a skew symmetric matrix:

e.g.
[

1 2
3 4

]
=

[
1 2.5

2.5 4

]
+

[
0 −0.5

0.5 0

]

formula: P =
P + PT

2
+

P − PT

2
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Relevant tools
Symmetric matrices
▶ A real square matrix A ∈ Rn×n is orthogonal if ATA = AAT = I
▶ meaning that the columns of A form a orthonormal basis of Rn

▶ to see this, writing A in the column-vector notation

A =




| | | |
a1 a2 . . . an
| | | |




we get

ATA =




aT1 a1 aT1 a2 . . . aT1 an
aT2 a1 aT2 a2 . . . aT2 an

...
...

...
...

aTn a1 aTn a2 . . . aTn an


 =




1 0 . . . 0

0 1 . . . ...
... . . . . . . 0
0 . . . 0 1




namely, aTj aj = 1aTj am = 0 ∀j ̸= m.
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Theorem
The eigenvalues of symmetric matrices are all real.

Proof: ∀ : A ∈ Rn×n with AT = A.
Eigenvalue-eigenvector pair: Au = λu ⇒ uTAu = λuTu, where u is
the complex conjugate of u. uTAu is a real number, as

uTAu = uTAu

= uTAu ∵ A ∈ Rn×n

= uTATu ∵ A = AT

= λuTu ∵ (Au)T = (λu)T

= λuTu ∵ uTu ∈ R
= uTAu ∵ Au = λu

Also, uTu ∈ R. Thus λ = uTAu
uTu

must also be a real number.
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Important properties of symmetric matrices

Theorem
The eigenvalues of symmetric matrices are all real.

Theorem
The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure analogy in complex plane
symmetric real line

skew-symmetric imaginary line
orthogonal unit circle
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Example

▶
[

0 2
2 0

]
: eigenvalues (= ±2) are all real

▶
[

1 2
2 1

]
=

[
1 0
0 1

]
+

[
0 2
2 0

]
⇒ eigenvalues (= 1 ± 2 by

spectral mapping theorem) are all real

▶
[

0 2
−2 0

]
: eigenvalues (= ±2j) are all imaginary

▶
[

1 2
−2 1

]
=

[
1 0
0 1

]
+

[
0 2
−2 0

]
⇒ eigenvalues are 1 ± 2j
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The spectral theorem for symmetric matrices
When A ∈ Rn×n has n distinct eigenvalues, we can do diagonalization
A = UΛU−1. The following spectral theorem significantly simplifies
the result when A is symmetric.

Theorem (Symmetric eigenvalue decomposition (SED))

∀ : A ∈ Rn×n, AT = A, there always exist λi ∈ R and ui ∈ Rn, s.t.

A =
n∑

i=1

λiuiu
T
i = UΛUT (1)

▶ λi ’s: eigenvalues of A
▶ ui : eigenvector associated to λi , normalized to have unity norms
▶ U = [u1, u2, · · · , un]T is orthogonal: UTU = UUT = I

▶ Λ = diagonal(λ1, λ2, . . . , λn)
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Elements of proof for SED
Theorem
∀ : A ∈ Rn×n with AT = A, then eigenvectors of A, associated with
different eigenvalues, are orthogonal.

Proof.
Let Aui = λiui and Auj = λjuj . Then uT

i Auj = uT
i λjuj = λju

T
i uj . In

the meantime, uT
i Auj = uT

i A
Tuj = (Aui)

T uj = λiu
T
i uj . So

λiu
T
i uj = λju

T
i uj . But λi ̸= λj . It must be that uT

i uj = 0.

SED now follows:
▶ If A has distinct eigenvalues, then U = [u1, u2, · · · , un]T is

orthogonal if we normalize all the eigenvectors to unity norm.
▶ If A has r(< n) distinct eigenvalues, it turns out can choose

multiple orthogonal eigenvectors for the eigenvalues with
none-unity multiplicities. See proof in supplementary notes.
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Rethinking symmetric matrices

With the spectral theorem, next time we see a symmetric matrix A,
we immediately know that
▶ λi is real for all i
▶ associated with λi , we can always find a real eigenvector
▶ ∃ an orthonormal basis {ui}ni=1, which consists of the

eigenvectors
▶ if A ∈ R2×2, then if you compute first λ1, λ2 and u1, you won’t

need to go through the regular math to get u2, but can simply
solve for a u2 that is orthogonal to u1 with ∥u2∥ = 1.
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Rethinking symmetric matrices
Example

SED of A =

[
5

√
3√

3 7

]
. Computing the eigenvalues gives

det

[
5 − λ

√
3√

3 7 − λ

]
= 35 − 12λ+ λ2 − 3 = (λ− 4) (λ− 8) = 0

⇒λ1 = 4, λ2 = 8

▶ First normalized eigenvector:

(A− λ1I ) t1 = 0 ⇒
[

1
√

3√
3 3

]
t1 = 0 ⇒ t1 =

[
−
√

3
2

1
2

]

▶ A is symmetric ⇒ eigenvectors are orthogonal to each other:

choose t2 =

[ 1
2√
3

2

]
. No need to solve (A− λ2I ) t2 = 0!
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Theorem (Eigenvalues of symmetric matrices)

If A = AT ∈ Rn×n, then the eigenvalues of A satisfy

λmax = max
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(2)

λmin = min
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(3)

Proof.
Perform SED to get A =

∑n
i=1 λiu

T
i ui where {ui}ni=1 spans Rn. Then

any vector x ∈ Rn can be decomposed as x =
∑n

i=1 αiui . Thus

max
x ̸=0

xTAx

∥x∥2
2
= max

αi

(
∑

i αiui)
T ∑

i λiαiui∑
i α

2
i

= max
αi

∑
i λiα

2
i∑

i α
2
i

= λmax
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Positive definite matrices

▶ eigenvalues of symmetric matrices are real ⇒ we can order the
eigenvalues.

Definition
A symmetric matrix P is called positive-definite if all its eigenvalues
are positive.

Equivalently,

Definition (Positive Definite Matrices)
A symmetric matrix P ∈ Rn×n is called positive-definite, written
P ≻ 0, if xTPx > 0 for all x ( ̸= 0) ∈ Rn.
P is called positive-semidefinite, written P ⪰ 0, if xTPx ≥ 0 for
all x ∈ Rn
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Negative definite matrices

Definition
A symmetric matrix Q ∈ Rn×n is called negative-definite, written
Q ≺ 0, if −Q ≻ 0, i.e., xTQx < 0 for all x (̸= 0) ∈ Rn.
Q is called negative-semidefinite, written Q ⪯ 0, if xTQx ≤ 0 for
all x ∈ Rn

▶ When A and B have compatible dimensions, A ≻ B means
A− B ≻ 0.
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Positive definite matrices

▶ Positive-definite matrices can have negative entries:

Example

P =

[
2 −1
−1 2

]
is positive-definite, as P = PT and take any

v = [x , y ]T , we have

vTPv =

[
x
y

]T [ 2 −1
−1 2

] [
x
y

]
= 2x2 + 2y 2 − 2xy

= x2 + y 2 + (x − y)2 ≥ 0

and the equality sign holds only when x = y = 0.
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Positive definite matrices

▶ Conversely, matrices whose entries are all positive are not
necessarily positive-definite.

Example

A =

[
1 2
2 1

]
is not positive-definite:

[
1
−1

]T [ 1 2
2 1

] [
1
−1

]
= −2 < 0
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Positive definite matrices

Theorem
For a symmetric matrix P , P ≻ 0 if and only if all the eigenvalues of
P are positive.

Proof.
Since P is symmetric, we have

λmax (P) = max
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(4)

λmin (P) = min
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(5)

which gives xTAx ∈ [λmin∥x∥2
2, λmax∥x∥2

2]. Thus
xTAx > 0, x ̸= 0 ⇔ λmin > 0.
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Relevant tools
Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to
check if a symmetric matrix P is positive (semi-)definite or not:
▶ P ≻ 0 (P ⪰ 0) ⇔ the leading principle minors defined below are

positive (nonnegative)
▶ P ≻ 0 (P ⪰ 0) ⇔ P can be decomposed as P = NTN where N

is nonsingular (singular)

Definition

The leading principle minors of P =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 are defined as

p11, det
[
p11 p12

p21 p22

]
, detP .

UW Linear Systems (X. Chen, ME547) Stability 46 / 73



Relevant tools
Checking positive definiteness of a matrix.

Example
None of the following matrices are positive definite:

[
−1 0
0 1

]
,

[
−1 1
1 2

]
,

[
2 1
1 −1

]
,

[
1 2
2 1

]
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Relevant tools
Definition (Positive Definite Functions)
A continuous time function W : Rn → R+, called to be PD,
satisfying
▶ W (x) > 0 for all x ̸= 0
▶ W (0) = 0
▶ W (x) → ∞ as |x | → ∞ uniformly in x

In the three dimensional space, positive definite functions are
“bowl-shaped”, e.g., W (x1, x2) = x2

1 + x2
2 .
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Relevant tools
Definition (Locally Positive Definite Functions)
A continuous time function W : Rn → R+, called to be LPD,
satisfying
▶ W (x) > 0 for all x ̸= 0 and |x | < r

▶ W (0) = 0

In the three dimensional space, locally positive definite functions are
“bowl-shaped” locally, e.g., W (x1, x2) = x2

1 + sin2 x2 for x1 ∈ R and
|x2| < π

-5 0 5 -4-2024
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6

8

10

12
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Relevant tools

Exercise
Let x = [x1, x2, x3]

T . Check the positive definiteness of the following
functions

1. V (x) = x4
1 + x2

2 + x4
3 (PD)

2. V (x) = x2
1 + x2

2 + 3x2
3 − x4

3 (LPD for |x3| <
√

3)
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1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

3. Lyapunov’s approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case

4. Recap
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Lyapunov stability theorems
▶ recall the spring mass damper example in matrix form

d

dt

[
x1

x2

]
= A

[
x1

x2

]
=

[
0 1

− k
m

− b
m

] [
x1

x2

]

▶ energy function is PD:
E (t) = potential energy + kinetic energy = 1

2kx
2
1 + 1

2mx2
2

and its derivative is NSD:

Ė(t) =
[
∂E
∂x1

,
∂E
∂x2

]
[ẋ1, ẋ2]

T = k1x1ẋ1 +mx2ẋ2 (6)

= k1x1x2 +mx2

(
− k

m
x1 −

b

m
x2

)
=

[
∂E
∂x1

,
∂E
∂x2

]
Ax (7)

= −bx2
2

▶ Remark: Ė(t) is a derivative along the state trajectory: (6) takes
the derivative of E w.r.t. x = [x1, x2]

T ; (7) is the time derivative
along the trajectory of the state.
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The notion of derivative along state trajectories

▶ Generalizing the concept to system ẋ = f (x): let V (x) be a
general energy function, the energy dissipation w.r.t. time is

dV (x)

dt
=

[
∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn

]



f1 (x)
...

fn (x)




also denoted as LfV (x), the Lie derivative of V (x) w.r.t. f (x).
▶ We concluded stability of the system by analyzing how energy

will dissipate to zero along the trajectory of the state.
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Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is stable in
the sense of Lyapunov if there exists a locally positive definite
function V (x , t) such that V̇ (x , t) ≤ 0 for all t ≥ t0 and all x in a
local region x : |x | < r for some r > 0.

▶ such a V (x , t) is called a Lyapunov function
▶ i.e., V (x) is PD and V̇ (x) is negative semidefinite in a local

region |x | < r

Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is locally
asymptotically stable if there exists a Lyapunov function V (x) such
that V̇ (x) is locally negative definite.
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Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is globally
asymptotically stable if there exists a Lyapunov function V (x) such
that V (x) is positive definite and V̇ (x) is negative definite.
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Lyapunov stability concept for linear systems

▶ for linear system ẋ = Ax , a good Lyapunov candidate is the
quadratic function V (x) = xTPx where P = PT and P ≻ 0

▶ the derivative along the state trajectory is then

V̇ (x) = ẋTPx + xTPẋ

= (Ax)T Px + xTPAx

= xT
(
ATP + PA

)
x

▶ such a V (x) = xTPx is a Lyapunov function for ẋ = Ax when
ATP + PA ⪯ 0

▶ and the origin is stable in the sense of Lyapunov
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Theorem (Lyapunov stability theorem for linear systems)
For ẋ = Ax with A ∈ Rn×n, the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q ≻ 0, the
Lyapunov equation

ATP + PA = −Q

has a unique positive definite solution P ≻ 0, PT = P .

Proof.

“⇒”: V̇
V
= − xTQx

xTPx
≤ − (λQ)min

(λP)max︸ ︷︷ ︸
≜α

=⇒ V (t) ≤ e−αtV (0). Since

Q ≻ 0 and P ≻ 0, (λQ)min > 0 and (λP)max > 0. Thus α > 0; V (t)
decays exponentially to zero. V (x) ≻ 0 ⇒V (x) = 0 only at x = 0.
Therefore, x → 0 as t → ∞, regardless of the initial condition.
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Proof.
“⇐”: if 0 of ẋ = Ax is asymptotically stable, then all eigenvalues of
A have negative real parts. For any Q, the Lyapunov equation has a
unique solution P . Note x (t) = eAtx0 → 0 as t → ∞. We have

�������: 0
xT (∞)Px (∞)− xT (0)Px (0) =

∫ ∞

0

d

dt
xT (t)Px (t) dt =

∫ ∞

0
xT (t)

(
ATP + PA

)
x (t) dt

⇒ x (0)T Px (0) =
∫ ∞

0
xT (t)Qx (t) dt =

∫ ∞

0
x (0) eA

T tQeAtx (0) dt

If Q ≻ 0, there exists a nonsingular N matrix: Q = NTN . Thus

x (0)T Px (0) =
∫ ∞

0
∥NeAtx (0) ∥2dt ≥ 0

x (0)T Px (0) = 0 only if x0 = 0

Thus P ≻ 0. Furthermore

P =

∫ ∞

0
eA

T tQeAtdt
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Lyapunov stability theorems
Example

Let ẋ = Ax , A =

[
−1 1
−1 0

]
. The Lyapunov equation is

[
−1 1
−1 0

]T [
p11 p12
p12 p22

]

︸ ︷︷ ︸
P

+

[
p11 p12
p12 p22

] [
−1 1
−1 0

]
= −

[
1 0
0 1

]

︸ ︷︷ ︸
Q

We need 



−2p11 − 2p12 = −1
−p12 − p22 + p11 = 0 ⇒
2p12 = −1





p11 = 1
p22 = 3/2
p12 = −1/2

leading principle minors: p11 > 0, p11p22 − p2
12 > 0

⇒ P ≻ 0 ⇒asymptotically stable
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Essense of the Lyapunov Eq.
Observations:
▶ ATP + PA is a linear operation on P : e.g.,

A =

[
a11 a12

a21 a22

]
, Q =




| |
q1 q2

| |


 , P =




| |
p1 p2

| |




AT




| |
p1 p2

| |


+




| |
p1 p2

| |



[
a11 a12

a21 a22

]
= −




| |
q1 q2

| |




ATp1 + a11p1 + a21p2 = −q1

ATp2 + a12p1 + a22p2 = −q2
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Essense of the Lyapunov Eq.

Observations: with now

ATP + PA = Q ⇔
{
ATp1 + a11p1 + a21p2 = −q1

ATp2 + a12p1 + a22p2 = −q2

▶ can stack the columns of ATP + PA and Q to yield, e.g.
[
AT 0
0 AT

] [
p1

p2

]
+

[
a11I a21I
a12I a22I

] [
p1

p2

]
= −

[
q1

q2

]

{[
AT 0
0 AT

]
+

[
a11I a21I
a12I a22I

]}

︸ ︷︷ ︸
LA

[
p1

p2

]
= −

[
q1

q2

]
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The Lyapunov Eq.: Existence of solution

LA =

[
AT 0
0 AT

]
+

[
a11I a21I
a12I a22I

]

▶ can simply write LA = I ⊗ AT + AT ⊗ I︸ ︷︷ ︸
mirror symmetric

using the Kronecker

product notation B ⊗ C =




b11C b11C . . . b11C
b21C b22C . . . b2nC

...
... . . .

...
bm1C bm2C . . . bmnC




▶ can show that LA is invertible if and only if λi + λj ̸= 0
for all eigenvalues of A.

▶ To check, let ATui = λiui and ATuj = λjuj . Note that
uiu

T
j A+ ATuiu

T
j = ui (λjuj)

T + λiuiu
T
j = (λi + λj) uiu

T
j . So

λi + λj is an eigenvalue of the operator LA (P). If λi + λj ̸= 0,
the operator is invertible.
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The Lyapunov Eq.: eigenvalues

Example

A =

[
−1 1
−1 0

]
, λ1,2 = −0.5 ± i

√
3/2

LA = I ⊗ AT + AT ⊗ I =

[
AT + a11I a21I

a12I AT + a22I

]

=




−1 − 1 −1 −1 0
1 0 − 1 0 −1
1 0 −1 −1
0 1 1 0


 =




−2 −1 −1 0
1 −1 0 −1
1 0 −1 −1
0 1 1 0




The eigenvalues of LA are, e.g., by Matlab, −1, −1, −1 −
√

3,
−1 +

√
3, which are precisely λ1 + λ1, λ1 + λ2, λ2 + λ1, λ2 + λ2.

UW Linear Systems (X. Chen, ME547) Stability 63 / 73

Procedures of Lyapunov’s direct method

1. Given A, select an arbitrary positive-definite symmetric matrix Q
(e.g., I ).

2. Find the solution matrix P to the continuous- or discrete-time
Lyapunov equation.

3. If a solution P cannot be found, the origin is not asymptotically
stable.

4. If a solution is found:
▶ if P is positive-definite, then A is Hurwitz and the origin is

asymptotically stable;
▶ if P is not positive-definite, then A has at least one eigenvalue

with a positive real part and the origin is an unstable equilibrium.
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It suffices to select Q = I
For linear systems we can let Q = I and check whether the resulting
P is positive definite. If it is, then we can assert the asymptotic
stability:
▶ take any Q ≻ 0. there exists Q = NTN , where N is invertible,

yielding

ATP + PA = −I

⇕
NTATN−T︸ ︷︷ ︸

ÃT

NTPN︸ ︷︷ ︸
P̃

+NTPN︸ ︷︷ ︸
P̃

N−1AN︸ ︷︷ ︸
Ã

= −NTN

▶ Ã = N−1AN and A are similar matrices and have the same
eigenvalues

▶ P̃ = NTPN and P have the same definiteness. If we can find a
positive definite solution P then the P̃ will also be positive
definite. Vise versa.
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Instability theorem

▶ failure to find a Lyapunov function does not imply instability
▶ (for nonlinear systems, Lyapunov function can be nontrivial to

find)

Theorem
The equilibrium state 0 of ẋ = f (x) is unstable if there exists a
function W (x) such that
▶ Ẇ (x) is PD locally: Ẇ (x) > 0 ∀ |x | < r for some r and

Ẇ (0) = 0
▶ W (0) = 0
▶ there exist states x arbitrarily close to the origin such that

W (x) > 0

UW Linear Systems (X. Chen, ME547) Stability 66 / 73



Discrete-time case: key concept of Lyapunov

For the discrete-time system

x (k + 1) = Ax (k)

we consider a quadratic Lyapunov function candidate

V (x) = xTPx , P = PT ≻ 0

and compute ∆V (x) along the trajectory of the state

V (x (k + 1))− V (x (k)) = xT (k)
[
ATPA− P

]
︸ ︷︷ ︸

≜−Q

x (k)

The above gives the DT Lyapunov stability theorem for LTI systems.
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DT Lyapunov stability theorem for linear systems

Theorem
For system x (k + 1) = Ax (k) with A ∈ Rn×n, the origin is
asymptotically stable if and only if ∃ Q ≻ 0, such that the
discrete-time Lyapunov equation

ATPA− P = −Q

has a unique positive definite solution P ≻ 0, PT = P .
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The DT Lyapunov Eq.

ATPA− P = −Q

▶ Solution to the DT Lyapunov equation, when asymptotic
stability holds (A is Schur), comes from the following:

������:0
V (x (∞))− V (x (0)) =

∞∑

k=0

xT (k)
[
ATPA− P

]
x (k)

= −
∞∑

k=0

xT (0)
(
AT
)k

QAkx (0)

⇒ P =
∞∑

k=0

(
AT
)k

QAk

▶ Can show that the discrete-time Lyapunov operator
LA = ATPA− P is invertible if and only if for all i , j
(λA)i (λA)j ̸= 1
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DT Lyapunov stability: MATLAB command

Example

x(k + 1) = Ax(k), A =




0 1 0
0 0 1

0.275 −0.225 −0.1




Matlab Commands:
A=[ 0 1 0; 0 0 1; 0.275 -0.225 -0.1]
Q = eye(3)
P = dlyap(A’,Q) % check function definition in Matlab help
eig(P)
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Recap

▶ Internal stability
▶ Stability in the sense of Lyapunov: ε, δ conditions
▶ Asymptotic stability

▶ Stability analysis of linear time invariant systems (ẋ = Ax or
x(k + 1) = Ax(k))
▶ Based on the eigenvalues of A

▶ Time response modes
▶ Repeated eigenvalues on the imaginary axis

▶ Routh’s criterion
▶ No need to solve the characteristic equation
▶ Discrete time case: bilinear transform (z = 1+s

1−s )
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Recap
▶ Lyapunov equations

Theorem: All the eigenvalues of A have negative real parts if
and only if for any given Q ≻ 0, the Lyapunov equation

ATP + PA = −Q

has a unique solution P and P ≻ 0.
Note: Given Q, the Lyapunov equation ATP + PA = −Q has a
unique solution, when λA,i + λA,j ̸= 0 for all i and j .
Theorem: All the eigenvalues of A are inside the unit circle if
and only if for any given Q ≻ 0, the Lyapunov equation

ATPA− P = −Q

has a unique solution P and P ≻ 0.
Note: Given Q, the Lyapunov equation ATPA− P = −Q has a
unique solution, when λA,iλA,j ̸= 1 for all i and j .
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Recap

▶ P is positive definite if and only if any one of the following
conditions holds:

1. All the eigenvalues of P are positive.
2. All the leading principle minors of P are positive.
3. There exists a nonsingular matrix N such that P = NTN.
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Outline

1. Concepts

2. DT controllability
Controllability and controllable canonical form
Controllability and Lyapunov Eq.

3. DT observability
Observability and observable canonical form

4. CT cases

5. The degrees of controllability and observability

6. Transforming controllable systems into controllable canonical forms

7. Transforming observable systems into observable canonical forms
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Recap

General LTI state-space models:

ẋ (t) = Ax (t) + Bu (t) or x (k + 1) = Ax (k) + Bu (k)

y = Cx + Du

continuous time discrete time
Lyapunov Eq. ATP + PA = −Q ATPA− P = −Q
unique sol. λi(A) + λj(A) ̸= 0 |λi(A)| |λj(A)| < 1

cond. ∀ i , j ∀ i , j

solution P =
∫∞

0 eA
T tQeAtdt P =

∑∞
k=0

(
AT
)k

QAk

(if A is Hurwitz) (if A is Schur)

UW Linear Systems (X. Chen, ME547) Controllability and Observability 3 / 48

The concept of controllability and observability
Controllability:
▶ inputs do not act directly on the states but via state dynamics:

ẋ (t) = Ax (t) + Bu (t) or x (k + 1) = Ax (k) + Bu (k) (1)

▶ can the inputs drive the system to any value in the state space
in a finite time?

Observability:
▶ states are not all measured directly but instead impact the

output via the output equation:

y = Cx + Du

▶ can we infer fully the initial state from the outputs and the
inputs? (can then reveal the full state trajectory through (1))
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In-class demo
Controllability and inverted pendulum on a cart
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The concept of controllability and observability

▶ assume x (0) = 0
▶ because of symmetry, we always have

x1 (t) = x3 (t) , x2 (t) = x4 (t) , ∀t ≥ 0

▶ state cannot be arbitrarily steered ⇒ uncontrollable
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Controllability definition in discrete time

Definition
A discrete-time linear system x (k + 1) = A(k)x (k) + B(k)u (k) is
called controllable at k = 0 if there exists a finite time k1 such that
for any initial state x (0) and target state x1, there exists a control
sequence {u (k) ; k = 0, 1, . . . , k1} that will transfer the system from
x (0) at k = 0 to x1 at k = k1.

UW Linear Systems (X. Chen, ME547) Controllability and Observability 7 / 48

Controllability of LTI systems

x (k + 1) = Ax (k) + Bu (k) ⇒ x (n) = Anx (0) +
∑n−1

k=0 A
n−1−kBu (k)

⇒ x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]
︸ ︷︷ ︸

Pd




u (n − 1)
u (n − 2)

...
u (0)




▶ given any x (n) and x (0) in Rn,
[u (n − 1) , u (n − 2) , . . . , u (0)]T can be solved if the columns
of Pd span Rn

▶ equivalently, system is controllable if Pd has rank n (full row
rank)
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Controllability of LTI systems Cont’d
x (k + 1) = Ax (k) + Bu (k) ⇒

x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]
︸ ︷︷ ︸

Pd




u (n − 1)
u (n − 2)

...
u (0)




▶ also, no need to go beyond n: adding AnB , An+1B , . . . does not
increase the rank of Pd (Cayley Halmilton Theorem):

x(k1)−Ak1x (0) =
[
B AB . . . An−1B . . . Ak1−1B

]
︸ ︷︷ ︸

rank=rank(Pd )




u (k1 − 1)
u (k1 − 2)

...
u (0)
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Theorem (Cayley Halmilton Theorem)
Let A ∈ Rn×n. An is linearly dependent with {I , A, A2, · · ·An−1}

Proof.
Consider characteristic polynomial

p (λ) = λn + cn−1λ
n−1 + · · ·+ c1λ+ c0 = det (λI − A)

= (λ− λ1)
m1 . . . (λ− λp)

mp

⇒ p (A) = An + cn−1A
n−1 + · · ·+ c1A+ c0I

= (A− λ1I )
m1 . . . (A− λpI )

mp , m1 +m2 + · · ·+mp = n

Take any eigenvector or generalized eigenvector ti , say, associated to λi :
p (A) ti = (A− λ1I )

m1 . . . (A− λpI )
mp ti =

(A− λ1I )
m1 . . . (A− λpI )

mp−1 (λi ti − λpti ) = (λi − λ1)
m1 . . . (λi − λp)

mp ti = 0

▶ Therefore p (A) [t1, t2, . . . , tn] = 0.

▶ But T = [t1, t2, . . . , tn] is invertible. Hence
p (A) = 0 ⇒ An = −c0I − c1A− · · · − cn−1A

n−1.

UW Linear Systems (X. Chen, ME547) Controllability and Observability 10 / 48



Arthur Cayley: 1821-1895, British mathematician
▶ algebraic theory of curves and surfaces, group theory, linear

algebra, graph theory, invariant theory, ...
▶ extraordinarily prolific career: ~1,000 math papers

William Hamilton: 1805-1865, Irish mathematician
▶ optics and classical mechanics in physics, dynamics, algebra,

quaternions, ...
▶ quaternions: extending complex numbers to higher spatial

dimensions: 4D case

i2 = j2 = k2 = ijk = −1

now used in computer graphics, control theory, orbital
mechanics, e.g., spacecraft attitude-control systems
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Theorem (Controllability Theorem)
The n-dimensional r -input LTI system with
x (k + 1) = Ax (k) + Bu (k), A ∈ Rn×n, B ∈ Rn×r is controllable if
and only if either one of the following is satisfied

1. The n × nr controllability matrix

Pd =
[
B ,AB ,A2B , . . . ,An−1B

]

has rank n. (proved in previous three slides)
2. The controllability gramian

Wcd =
k1∑

k=0

AkBBT
(
AT
)k

is nonsingular for some finite k1.
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Proof: from controllability matrix to gramian

Recall

x (n)− Anx (0) =
[
B,AB,A2B, . . . ,An−1B

]
︸ ︷︷ ︸

Pd

[u (n − 1) , u (n − 2) , . . . , u (0)]T

(2)

▶ Pd is full row rank⇒PdP
T
d =

n∑

k=0

AkBBT
(
AT
)k

︸ ︷︷ ︸
Wcd at k1=n

is nonsingular

▶ a solution to (2) is

[u (n − 1) , u (n − 2) , . . . , u (0)]T = PT
d

(
PdP

T
d

)−1
[x (n)− Anx (0)]
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Example

A =



λ1 0 0
0 λ2 1
0 0 λ2


 , B =




0
0
1




Pd =




0 0 0
0 1 λ2 + λ2

1 λ2 λ2
2


⇒ rank(Pd) = 2 < 3 ⇒uncontrollable

Intuition: ẋ1 = λ1x1 is not impacted by the control input at all.
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Example

Matlab commands:
P=ctrb(A,B); rank(P)




x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)


 =




0.4 0.4 0 0
−0.9 −0.07 0 0

0 0 0.4 0.4
0 0 −0.9 −0.07







x1(k)
x2(k)
x3(k)
x4(k)


+




0.3
0.4
0.3
0.4


 u (k)

rank (Pd) = rank




B︷ ︸︸ ︷
0.3
0.4
0.3
0.4

AB︷ ︸︸ ︷
0.28

−0.298
0.28

−0.298

A2B︷ ︸︸ ︷
−0.0072
−0.2311
−0.0072
−0.2311

A3B︷ ︸︸ ︷
−0.0953
0.0227
−0.0953
0.0227



= 2 ⇒ uncontrollable
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Example

d

dt




vm
Fk1

Fk2


 =




−b/m −1/m −1/m
k1 0 0
k2 0 0






vm
Fk1

Fk2


+




1/m
0
0


F

P =




1/m −b/m2 b2/m3 − k1/m
2 − k2/m

2

0 k1/m −bk1/m
2

0 k2/m −bk2/m
2


⇒ rank(P) = 2

⇒uncontrollable
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Analysis: controllability and controllable canonical
form

A =




0 1 0
0 0 1

−a0 −a1 −a2


 , B =




0
0
1




▶ controllability matrix

Pd =




0 0 1
0 1 −a2

1 −a2 −a1 + a2
2




has full row rank
▶ system in controllable canonical form is controllable
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Analysis: controllability gramian and Lyapunov Eq.

Wcd =
k1∑

k=0

AkBBT
(
AT
)k

▶ If A is Schur, k1 can be set to ∞

Wcd =
∞∑

k=0

Ak BBT
︸︷︷︸

Q

(
AT
)k

which can be solved via the Lyapunov Eq.

AWcdA
T −Wcd = −BBT
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Analysis: controllability and similarity
transformation

{
x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)

x=Tx∗
=⇒




x∗ (k + 1) =

Ã︷ ︸︸ ︷
T−1AT x∗ (k) +

B̃︷ ︸︸ ︷
T−1B u (k)

y (k) = CTx∗ (k) + Du (k)

▶ controllability matrix

P∗d =
[
B̃ , ÃB̃ , . . . , Ãn−1B̃

]

=
[
T−1B ,T−1AB , . . . ,T−1An−1B

]
= T−1Pd

hence (A,B) controllable ⇔ (T−1AT ,T−1B) controllable
▶ The controllability property is invariant under any

coordinate transformation.
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* Popov-Belevitch-Hautus (PBH) controllability
test
▶ the full rank condition of the controllability matrix

Pd =
[
B ,AB ,A2B , . . . ,An−1B

]

is equivalent to: the matrix [A− λI , B] having full row rank at
every eigenvalue, λ, of A

▶ to see this: if [A− λI , B] is not full row rank then there exists
nonzero vector (a left eigenvector) such that

vT [A− λI B] = 0

⇔ vTA = λvT

vTB = 0

i.e., the input vector B is orthogonal to a left eigenvector of A.
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Example

A =



λ1 0 0
0 λ2 1
0 0 λ2


 , B =




0
0
1




[
A− λ1I , B

]
=


0 0 0 0
0 λ2 − λ1 1 0
0 0 λ2 − λ1 1


 does not have full row rank ⇒uncontrollable

Intuition: ẋ1 = λ1x1 is not impacted by the control input at all.
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Observability of LTI systems

Definition
A discrete-time linear system

x (k + 1) = A (k) x (k) + B (k) u (k)

y (k) = C (k) x (k) + D (k) u (k)

is called observable at k = 0 if there exists a finite time k1 such that
for any initial state x (0), the knowledge of the input
{u (k) ; k = 0, 1, . . . , k1} and {y (k) ; k = 0, 1, . . . , k1} suffice to
determine the state x (0). Otherwise, the system is said to be
unobservable at time k = 0.
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Observability of LTI systems
let us start with the unforced system

x (k + 1) = Ax (k) , A ∈ Rn

y (k) = Cx (k) , y ∈ Rm

x (k) = Akx (0) and y (k) = Cx (k) give



y (0)
y (1)

...
y (n − 1)




︸ ︷︷ ︸
Y

=




C
CA
...

CAn−1




︸ ︷︷ ︸
Qd :nm×n

x (0)

▶ if the linear matrix equation has a nonzero solution x (0), the
system is observable.
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Observability of LTI systems
generalizing to
x (k + 1) = Ax (k) + Bu (k) , y (k) = Cx (k) + Du (k):

x (k) = Akx (0) +
k−1∑

j=0

Ak−1−jBu (j)

y (k) = CAkx (0)︸ ︷︷ ︸
yfree(k)

+C
k−1∑

j=0

Ak−1−jBu (j) + Du (k)

︸ ︷︷ ︸
yforced(k)




y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)




︸ ︷︷ ︸
Y : available from measurements and inputs

=




C
CA
...

CAn−1




︸ ︷︷ ︸
Qd :nm×n

x (0)
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Observability of LTI systems



y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)




︸ ︷︷ ︸
Y

=




C
CA
...

CAn−1




︸ ︷︷ ︸
Qd

x (0)

▶ x (0) can be solved if Qd has rank n (full column rank):
▶ pick n linearly independent rows from Qd to form Qdn , yielding

Qdnx (0) = Yn

▶ Qd is full column rank⇒Qdn is full column
rank⇒ x (0) = Q−1

dn
Yn

▶ one way to write the solution is

x (0) =
(
QT

d Qd

)−1
QT

d Y
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Observability of LTI systems Cont’d




y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)




︸ ︷︷ ︸
Y

=




C
CA
...

CAn−1




︸ ︷︷ ︸
Qd

x (0)

▶ also, no need to go beyond n in Qd : adding CAn, CAn+1, . . .
does not increase the column rank of Qd (Cayley Halmilton
Theorem)
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Theorem (Observability Theorem)
System x (k + 1) = Ax (k) + Bu (k) , y (k) = Cx (k) + Du (k),
A ∈ Rn×n, C ∈ Rm×n is observable if and only if either one of the
following is satisfied

1. The observability matrix Qd =




C
CA
...

CAn−1




(mn)×n

has full column rank

2. The observability gramian

Wod =

k1∑

k=0

(
AT
)k

CTCAk is nonsingular for some finite k1

3. * PBF test: The matrix
[
A− λI

C

]
has full column rank at

every eigenvalue, λ, of A.
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Proof: from observability matrix to gramian

Qd =




C
CA
...

CAn−1


 Wod =

k1∑

k=0

(
AT
)k

CTCAk

▶ Qd is full column rank⇒QT
d Qd =

n∑

k=0

(
AT
)k

CTCAk

︸ ︷︷ ︸
Wod at k1=n

is

nonsingular
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Observability check
▶ Analogous to the case in controllability, the observability

property is invariant under any coordinate transformation:

(A,C ) is observable ⇐⇒ (T−1AT ,CT ) is observable

▶ If A is Schur, k1 can be set to ∞ in the observability gramian

Wod =
∞∑

k=0

(
AT
)k

CTCAk

and we can compute by solving the Lyapunov equation

ATWodA−Wod = −CTC

The solution is nonsingular if and only if the system is
observable. In fact, Wod ⪰ 0 by definition ⇒ “nonsingular” can
be replaced with “positive definite”.
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Observability and observable canonical form

A =




−a2 1 0
−a1 0 1
−a0 0 0


 , C =

[
1 0 0

]

▶ observability matrix

Qd =




C
CA
CA2


 =




1 0 0
−a2 1 0

a2
2 − a1 −a2 1




has full column rank
▶ system in observable canonical form is observable
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* PBH test for observability
The matrix

[
A− λI

C

]
has full column rank at every eigenvalue, λ, of A.

▶ if not full rank then there exists a nonzero eigenvector v :

Av = λv

Cv = 0
⇒ CAv = λCv = 0

...

CAn−1v = 0

⇒




C
CA
...

CAn−1


 v = 0 ⇒ unobservable

▶ the reverse direction is analogous
▶ interpretation: some non-zero initial condition x0 = v will

generate zero output, which is not distinguishable from the
origin.
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Theorem (Controllability of continuous-time systems)
The n-dimensional r -input LTI system with ẋ = Ax + Bu, A ∈ Rn×n,
B ∈ Rn×r is controllable if and only if either one of the following is
satisfied

1. The n × nr controllability matrix

P =
[
B ,AB ,A2B , . . . ,An−1B

]

has rank n.
2. The controllability gramian

Wcc =

∫ t

0
eAτBBTeA

T τdτ

is nonsingular for any t > 0.
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Theorem (Observability of continuous-time systems)
System ẋ = Ax + Bu, y = Cx + Du, A ∈ Rn×n, C ∈ Rm×n is
observable if and only if either one of the following is satisfied

1. The (mn)× n observability matrix

Q =




C
CA
...

CAn−1


 has rank n (full column rank)

2. The observability gramian

Woc =

∫ t

0
eA

T τCTCeAτdτ is nonsingular for any t > 0

▶ reading: Linear System Theory and Design by Chen, Chap 6.
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Summary: computing the gramians

Controllability Gramian Observability Gramian

continuous time
∫ t
0 eAτBBT

(
eAτ
)T

dτ
∫ t
0

(
eAτ
)T

CTCeAτdτ

Lyapunov eq.
AWc +WcA

T = −BBT ATWo +WoA = −CTCif t → ∞
& A is Hurwitz
discrete time

∑k1
k=0 A

kBBT
(
AT
)k ∑k1

k=0(A
T )kCTCAk

Lyapunov eq.
AWcdA

T −Wcd = −BBT ATWodA−Wod = −CTCif k1 → ∞
& A is Schur

▶ duality: (A,B) is controllable if and only if
(
A,C

)
=
(
AT ,BT

)

is observable
▶ prove by comparing the gramians
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Exercise

A =




−2 0 0
1 0 2
0 0 0


 , B =




1
0
1




C =
[

1 0 1
]

▶ exercise: show that the system is not observable.

▶ in fact, by similarity transform x =




1 0 0
0 0 1
0 1 0


 x , we get

Ā =




−2 0 0
0 0 0
1 2 0


 , B̄ =




1
1
0




C̄ =
[

1 1 0
]

where the third state is not observable.
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The degree of controllability
consider two systems

S1 :x (k + 1) =

[
0 1
0 0

]
x (k) +

[
0
1

]
u (k)

S2 :x (k + 1) =

[
0 0.01
0 1

]
x (k) +

[
0
1

]
u (k)

▶ both systems are controllable:

Pd1 =

[
0 1
1 0

]
, Pd2 =

[
0 0.01
1 1

]

▶ however, Pd2 is nearly singular, hinting that S2 is not “easy” to
control

▶ e.g., to move from x(0) = [0, 0]T to x(1) = [1, 1]T in two steps,
we need

S1 : {u (0) , u (0)} = {1, 1} S2 : {u (0) , u (0)} = {100,−99}
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The degree of observability
consider two systems

S1 :x (k + 1) =
[

0 1
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

S2 :x (k + 1) =
[

1 0.01
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

▶ both systems are observable:

Qd1 =

[
1 0
0 1

]
, Qd2 =

[
1 0
1 0.01

]

▶ however, Qd2 is nearly singular, hinting that S2 is not “easy” to
observe

▶ e.g., to infer x(0) = [2, 1]T , the two measurements y(0) = 2 and
y(1) = CAx (0) = 2.001 are nearly identical in S2!
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Transforming single-input controllable system into
ccf

Let x = Mx̃ , where M =




| | | |
m1 m2 . . . mn

| | | |


, then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AMx̃ +M−1B︸ ︷︷ ︸
B̃

u

If system is controllable, we show how to transform the state
equation into the controllable canonical form.
▶ goal 1: B̃ be in controllable canonical form⇔

M−1B =




0
...
0
1


⇒ B = [m1,m2, . . . ,mn]




0
...
0
1


 = mn
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Transforming SI controllable system into ccf
Let x = Mx̃ , where M = [m1,m2, . . . ,mn], then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AM︸ ︷︷ ︸
Ã

x̃ +M−1Bu

▶ goal 2: Ã be in controllable canonical form⇔

A [m1,m2, . . . ,mn] =

[m1,m2, . . . ,mn]




0 1 0 . . . 0
... 0 . . . 0

...
... . . . . . . 1 0
0 . . . 0 0 1

−a0 −a1 . . . . . . −an−1
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Transforming SI controllable system into ccf
Let x = Mx̃ , where M = [m1,m2, . . . ,mn], then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AMx̃ +M−1Bu

▶ solving goals 1 and 2 yields

mn = B

mn−1 = Amn + an−1mn

mn−2 = Amn−1 + an−2mn

mi−1 = Ami + ai−1mn, i = n, . . . , 2
...

▶ when implementing, obtain a0, a1, . . . , an−1 first by calculating
det (sI − A) = sn + an−1s

n−1 + · · ·+ a1s + a0
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Transforming single-output (SO) observable system
into ocf
Let x = R−1x̃ , where R =

[
rT1 , r

T
2 , . . . , r

T
n

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1
︸ ︷︷ ︸

Ã

x̃ + RBu

y = Cx = CR−1
︸ ︷︷ ︸

C̃

x̃

If system is observable, we show how to transform the state equation
into the observable canonical form.
▶ goal 1: C̃ be in observable canonical form⇔

CR−1 =




1
0
...
0




T

⇒ C = r1
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Transforming SO observable system into ocf
Let x = R−1x̃ , where R =

[
rT1 , r

T
2 , . . . , r

T
n

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1
︸ ︷︷ ︸

Ã

x̃ + RBu

y = Cx = CR−1
︸ ︷︷ ︸

C̃

x̃

▶ goal 2: Ã be in observable canonical form⇔




r1
r2
...
rn


A =




−an−1 1 0 . . . 0
... 0 . . . . . . ...

0 . . . . . . 0

−a1
... . . . . . . 1

−a0 0 . . . 0 0







r1
r2
...
rn
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Transforming SO observable system into ocf
Let x = R−1x̃ , where R =

[
rT1 , r

T
2 , . . . , r

T
n

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1
︸ ︷︷ ︸

Ã

x̃ + RBu

y = Cx = CR−1
︸ ︷︷ ︸

C̃

x̃

▶ solving goals 1 and 2 yields

r1 = C

r2 = r1A+ an−1r1

r3 = r2A+ an−2r1

ri+1 = riA+ an−i r1, i = 1, . . . , n − 1
...

▶ when implementing, obtain a0, a1, . . . , an−1 first by calculating
det (sI − A)
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Transforming SO observable system into ocf
Example

x (k + 1) =
[

1 0.01
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

det (A− λI )=λ2 − λ⇒ a1 = −1, a0 = 0

r1 = C = [1, 0]
r2 = r1C + a1r1 = [1, 0]A+ (−1) [1, 0]

R =

[
1 0
0 0.01

]
,R−1 =

[
1 0
0 100

]

C̃ = CR−1 = [1, 0] ⇐= ocf!

Ã = RAR−1 =

[
1 1
0 0

]
⇐= ocf!
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Controllable subspace: Introduction

Example

Ā =

[
1 0
0 0

]
, B̄ =

[
1
0

]
⇔
{
x1(k + 1) = x1(k) + u(k)

x2(k + 1) = 0

Ā =

[
1 1
0 1

]
, B̄ =

[
1
0

]
⇔
{
x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = x2(k)

I there exists controllable and uncontrollable states: x1

controllable and x2 uncontrollable
I how to compute the dimensions of the two for general systems?
I how to separate them?
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Controllable subspace: Assumptions

Consider an uncontrollable LTI system

x (k + 1) = Ax (k) + Bu (k) , A ∈ Rn×n

y (k) = Cx (k) + Du (k)

Let the controllability matrix

P =
[
B ,AB ,A2B , . . . ,An−1B

]

have rank n1 < n.
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Controllable subspace

I The controllable subspace χC is the set of all vectors x ∈ Rn

that can be reached from the origin.
I From

x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]
︸ ︷︷ ︸

P




u (n − 1)
u (n − 2)

...
u (0)




χC is the range space of P : χC = R (P)
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Observable subspace: Introduction

Example

Ā =

[
1 0
1 1

]
, B̄ =

[
1
0

]
, ⇔





x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x1(k) + x2(k)

y(k) = x1(k)

C̄ =
[
1 0

]

I exists observable and unobservable states: x1 observable and x2

unobservable
I how to separate the two?
I how to separate controllable but observable states, controllable

but unobservable states, etc?
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Observable subspace: Assumptions

Consider an unobservable LTI system

x (k + 1) = Ax (k) + Bu (k) , A ∈ Rn×n

y (k) = Cx (k) + Du (k)

Let the observability matrix

Q =




C
CA
...

CAn−1




have rank n2 < n.
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Unobservable subspace

I The unobservable subspace χuo is the set of all nonzero initial
conditions x (0) ∈ Rn that produce a zero free response.

I From 


y (0)
y (1)
...

y (n − 1)




︸ ︷︷ ︸
Y

=




C
CA
...

CAn−1




︸ ︷︷ ︸
Q

x (0)

χuo is the null space of Q: χuo = N (Q)
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1. Controllable subspace

2. Observable subspace
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Separating the uncontrollable subspace
I recall 1: similarity transform x = Mx∗ preserves controllability

{
x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)
⇒

{
x∗ (k + 1) = M−1AMx∗ (k) + M−1Bu (k)

y (k) = CMx∗ (k) + Du (k)

I recall 2: the uncontrollable system structure at introduction

Ā =

[
1 1
0 1

]
, B̄ =

[
1
0

]
⇔
{
x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = x2(k)

I decoupled structure for generalized systems
[

x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

x̄uc impacted by neither u nor x̄c .
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Theorem (Kalman canonical form (controllability))
Let x ∈ Rn, x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
uncontrollable with rank of the controllability matrix,
rank (P) = n1 < n. Let M =

[
Mc Muc

]
, where

Mc = [m1, . . . ,mn1] consists of n1 linearly independent columns of P ,
and Muc = [mn1+1, . . . ,mn] are added columns to complete the basis
and yield a nonsingular M . Then x = Mx̄ transforms the system
equation to

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

Furthermore, (Āc , B̄c) is controllable, and

C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

intuition: the “B” matrix after transformation
I columns of B ∈ column space of P , which is equivalent to
R (Mc)

I columns of Muc and Mc are linearly independent ⇒ columns of
B /∈ R (Muc)

I thus

B =
[
Mc Muc

]



denote as B̄c︷︸︸︷∗
0


⇒ M−1B =

[
B̄c

0

]
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

intuition: the “A” matrix after transformation
I range space of Mc is “A-invariant”:

columns of AMc ∈
{
AB ,A2B , . . . ,AnB

}
∈ R (Mc)

where columns of AnB ∈ R (P) = R (Mc) (∵ Cayley Halmilton
Thm)

I i.e., AMc = McĀc for some Āc⇒

A [Mc ,Muc ] = [Mc ,Muc ]




Āc

,Ā12︷︸︸︷∗

0
,Āuc︷︸︸︷∗




︸ ︷︷ ︸
Ā

⇒ M−1AM =

[
Āc Ā12
0 Āuc

]
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

(Āc , B̄c) is controllable

I controllability matrix after similarity transform

P̄ =

[
B̄c Āc B̄c . . . Ān1−1

c B̄c . . . Ān−1
c B̄c

0 0 . . . 0 . . . 0

]

=

[
P̄c Ān1

c B̄c . . . Ān−1
c B̄c

0 0 . . . 0

]

I similarity transform does not change
controllability⇒ rank(P̄) = rank(P) = n1

I thus rank(P̄c) = n1 ⇒(Āc , B̄c) is controllable
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D

we can check that
[
C̄c C̄uc

] [ zI − Āc −Ā12
0 zI − Āuc

]−1 [
B̄c

0

]
+ D

=
[
C̄c C̄uc

]
[ (

zI − Āc

)−1 ∗
0

(
zI − Āuc

)−1

] [
B̄c

0

]
+ D

=C̄c

(
zI − Āc

)−1
B̄c + D
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Matlab commands

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

x = Mx̄ where M =
[
Mc Muc

]

I Mc = [m1, . . . ,mn1] consists of all the linearly independent
columns of P : Mc = orth(P)

I Muc = [mn1+1, . . . ,mn] are added columns to complete the basis
and yield a nonsingular M
I from linear algebra: the orthogonal complement of the range

space of P is the null space of PT :

Rn = R (P)⊕N
(
PT
)

I hence Muc = null(P’) (the transpose is important here)
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The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))
Let a n-dimensional state-space system ẋ = Ax + Bu, y = Cx + Du
be uncontrollable with the rank of the controllability matrix
rank (P) = n1 < n. Let M =

[
Mc Muc

]
where

Mc = [m1, . . . ,mn1] consists of n1 linearly independent columns of P ,
Muc = [mn1+1, . . . ,mn] are added columns to complete the basis for
Rn and yield a nonsingular M . Then the similarity transformation
x = Mx̄ transforms the system equation to

d

dt

[
x̄c
x̄uc

]
=

[
Āc Ā12

0 Āuc

] [
x̄c
x̄uc

]
+

[
B̄c

0

]
u

y =
[
C̄c C̄uc

] [ x̄c
x̄uc

]
+ Du
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Example

d

dt




vm
Fk1

Fk2


 =



−b/m −1/m −1/m
k1 0 0
k2 0 0






vm
Fk1

Fk2


+




1/m
0
0


F

Let m = 1, b = 1

P =




1 −1 1− k1 − k2
0 k1 −k1
0 k2 −k2


 , M =




1 −1 0
0 k1 0
0 k2 1


 , M−1 =




1 1/k1 0
0 1/k1 0
0 −k2/k1 1




Ā = M−1AM =




0 − (k1 + k2) 1
1 −1 0
0 0 0


 , B̄ = M−1B =




1
0
0




UW Linear Systems (X. Chen, ME547) Kalman decomposition 19 / 31

Stabilizability

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

The system is stabilizable if
I all its unstable modes, if any, are controllable
I i.e., the uncontrollable modes are stable (Āuc is Schur, namely,

all eigenvalues are in the unit circle)
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Separating the unobservable subspace
I recall 1: similarity transform x = O−1x∗ preserves observability

{
x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)
⇒

{
x∗ (k + 1) = OAO−1x∗ (k) + OBu (k)

y (k) = CO−1x∗ (k) + Du (k)

I an unobservable system structure

Ā =

[
1 0
1 1

]
, B̄ =

[
1
0

]
, ⇔





x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x1(k) + x2(k)

y(k) = x1(k)

C̄ =
[

1 0
]

I decoupled structure for generalized systems
[

x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

the “observed” x̄o doesn’t reflect x̄uc (x̄o(k + 1) = Āo x̄o (k) + B̄ou (k))
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Theorem (Kalman canonical form (observability))
Let x ∈ Rn, x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
unobservable with rank of the observability matrix,

rank (Q) = n2 < n. Let O =

[
Oo

Ouo

]
where Oo consists of n2

linearly independent rows of Q, and Ouo =
[
oT
n1+1, . . . , o

T
n

]T are
added rows to complete the basis and yield a nonsingular O. Then
x̄ = Ox transforms the system equation to

[
x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

Furthermore, (Āo , Ōo) is observable, and

C (zI − A)−1B + D = C̄o(zI − Āo)−1B̄o + D
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Theorem (Kalman canonical form)
Case for observability

[
x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

v.s. case for controllability
[

x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

Intuition: duality between controllability and observability

(A,B) unconrollable⇔
(
AT ,BT

)
unobservable
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Detectability

[
x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

The system is detectable if
I all its unstable modes, if any, are observable
I i.e., the unobservable modes are stable (Āuo is Schur)
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Continuout-time version

Theorem (Kalman canonical form (observability))
Let a n-dimensional state-space system ẋ = Ax + Bu, y = Cx + Du
be unobservable with the rank of the observability matrix
rank (Q) = n2 < n. Then there exists similarity transform x̄ = Ox
that transforms the system equation to

d

dt

[
x̄o
x̄uo

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o
x̄uo

]
+

[
B̄o

B̄uo

]
u

y =
[
C̄o 0

] [ x̄o
x̄uo

]
+ Du

Furthermore, (Āo , C̄o) is observable, and
C (sI − A)−1B + D = C̄o(sI − Āo)−1B̄o + D.
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Transfer-function perspective

uncontrollable system: C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D

unobservable system: C (zI − A)−1B + D = C̄o(zI − Āo)−1B̄o + D

where A ∈ Rn×n, Āc ∈ Rn1×n1 , Āo ∈ Rn2×n2

I Order reduction exists

G (z) = C (zI − A)−1B + D =
B(z)

A(z)
, A(z) = det (zI − A) order : n

G (z) = C̄c(zI−Āc)−1B̄c+D =
B̄c(z)

Āc(z)
, Āc(z) = det

(
zI − Āc

)
order : n1

I ⇒A(z) and B(z) are not co-prime | pole-zero
cancellation exists

I same applies to unobservable systems
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Example
Consider

d

dt

[
x1

x2

]
=

[
0 1
−2 −3

] [
x1

x2

]
+

[
0
1

]
u

y =
[
c1 1

] [ x1

x2

]

I The transfer function is

G (s) =
s + c1

s2 + 3s + 2
=

s + c1

(s + 1) (s + 2)

I System is in controllable canonical form and is controllable.
I observability matrix

Q =

[
c1 1
−2 c1 − 3

]
, detQ = (c1 − 1) (c1 − 2)

⇒unobservable if c1 = 1 or 2
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Kalman decomposition

an extended example:

A =




A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44


 , B =




B1

B2

0
0




C =
[
C1 0 C3 0

]

I Aij , Ci and Bi are nonzero
I The A11 mode is controllable and observable. The A22 mode is

controllable but not observable. The A33 mode is not
controllable but observable. The A44 mode is not controllable
and not observable.
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State Feedback Control

Xu Chen

University of Washington
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Motivation

I At the center of designing control systems is the idea of
feedback.

I In such transfer-function approaches as lead-lag and root locus
methods, the primal goal is to achieve a proper map of
closed-loop poles with output feedback.

Key questions:
I How much freedom do we have for state-space systems?
I Are there fundamental system properties that yield higher

achievable performance?
I How to implement the design algorithms?
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1. Goal and realization of state feedback

2. Closed-loop eigenvalue placement by state feedback
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Goal

Consider an n-dimensional state-space system

Σ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

x(t0) = x0

where x ∈ Rn, u ∈ Rr , and y ∈ Rm.
I Denominators of the transfer function

G (s) = C (sI − A)−1 B + D come from the characteristic
polynomial det (sI − A) that arises when computing the inverse
(sI − A)−1.

I We shall investigate the use of feedback to alter the qualitative
behavior of the system by changing the eigenvalues of the
closed-loop “A” matrix.
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Realization

v
+//◦ u // ẋ = Ax + Bu, y = Cx + Du // y−OO

K
xoo

Consider the state-feedback law

u = −Kx + v (1)

I v : new input which we will deal with later
I K ∈ Rm×n: n-number of states, m-number of inputs
I closed-loop system:

Σcl :

{
ẋ(t) = (A− BK ) x(t) + Bv(t)
y(t) = Cx(t) + Du(t)

x(t0) = x0 (2)

I key closed-loop property: eigenvalues of A− BK .
I How freely can we place the eigenvalues of Acl = A− BK?
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1. Goal and realization of state feedback

2. Closed-loop eigenvalue placement by state feedback
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Eigenvalue placement by state feedback
Fact
If Σ = (A,B ,C ,D) is in controllable canonical form, we can
completely change all the eigenvalues of A− BK by choice of
state-feedback gain matrix K .

I Problem setup: single-input single-output system in c.c.f.

H(s) =
βn−1sn−1 + · · ·+ β1s + β0

sn + αn−1sn−1 + · · ·+ α1s + α0
+ d , Σ =

[
A B
C D

]

A =




0 1 0 . . . 0

0 0 1 0
...

... . . .
. . .

. . . 0
0 . . . . . . 0 1
−α0 . . . . . . −αn−2 −αn−1



, B =




0
...
...
0
1




C =
[
β0 β1 . . . . . . βn−1

]
, D = d

det (sI − A) = sn + αn−1s
n−1 + · · ·+ α1s + α0 (3)
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Eigenvalue placement by state feedback: c.c.f.
I Goal: achieve desired closed-loop eigenvalue locations

p1, · · · , pn, i.e.
det (sI − (A− BK )) = (s − p1)(s − p2) · · · (s − pn) (4)

= sn + γn−1s
n−1 + · · ·+ γ1s + γ0 (5)

I Let K = [k0, k1, . . . , kn−1]. The structured A and B give

BK =




0
0
...
0
1




[k0, k1, . . . , kn−1] =




0 0 0 . . . 0

0 0 0 0
...

... . . .
. . .

. . . 0
0 . . . . . . 0 0
k0 . . . . . . kn−2 kn−1




A− BK =




0 1 0 . . . 0

0 0 1 0
...

... . . .
. . .

. . . 0
0 . . . . . . 0 1

−α0 − k0 . . . . . . −αn−2 − kn−2 −αn−1 − kn−1
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Eigenvalue placement by state feedback: c.c.f.
I A and A− BK have the same structure
I the only difference is the last row:
matrix last row
A

[
−α0 . . . . . . −αn−2 −αn−1

]

A− BK
[
−α0 − k0 . . . . . . −αn−2 − kn−2 −αn−1 − kn−1

]

I recall (3): det (sI − A) = sn + αn−1s
n−1 + · · ·+ α1s + α0.

I thus

det (sI − (A− BK )) = sn + (αn−1 + kn−1)︸ ︷︷ ︸
target: γn−1

sn−1 + · · ·+ (α0 + k0)︸ ︷︷ ︸
target: γ0

I hence

k0 = γ0 − α0

...
kn−1 = γn−1 − αn−1
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Eigenvalue placement by state feedback: c.c.f.

Eigenvalue-placement Algorithm
1 determine desired eigenvalue locations p1, · · · , pn
2 calculate desired closed-loop characteristic polynomial

(s − p1)(s − p2) · · · (s − pn) = sn + γn−1s
n−1 + · · ·+ γ1s + γ0

3 calculate open-loop characteristic polynomial
det(sI − A) = sn + αn−1s

n−1 + · · ·+ α1s + α0

4 define the matrices:
K = [γ0 − α0, . . . , γn−1 − αn−1]

Powerful result: if the system is in controllable canonical form, we
can arbitrarily place the closed-loop eigenvalues by state feedback!
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General eigenvalue placement by state feedback

I What if the given state-space realization Σ = (A,B ,C ,D) is not
in the required form?

I We can then transform it to c.c.f. via a similarity transformation
(See lecture on controllability and observability).

I Powerful fact: if system Σ = (A,B ,C ,D) is controllable, then
we can arbitrarily place the closed-loop eigenvalues via state
feedback.
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Stabilization
I if a single-input system is uncontrollable, arbitrary closed-loop

eigenvalue plaement is not available
I Kalman decomposition gives

d

dt

[
x̄c
x̄uc

]
=




controllable part︷︸︸︷
Āc Ā12

0 Āuc︸︷︷︸
uncontrollable part



[

x̄c
x̄uc

]
+

[
B̄c

0

]
u

applying controll law

u = −
[
K̄c , K̄uc

] [ x̄c
x̄uc

]
+ v

gives

d

dt

[
x̄c
x̄uc

]
=

[
Āc − B̄cK̄c Ā12 − B̄cK̄uc

0 Āuc

] [
x̄c
x̄uc

]
+

[
B̄c

0

]
v
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Stabilization cont’d
I closed-loop dynamics

d

dt

[
x̄c
x̄uc

]
=

[
Āc − B̄cK̄c Ā12 − B̄cK̄uc

0 Āuc

]

︸ ︷︷ ︸
Ācl

[
x̄c
x̄uc

]
+

[
B̄c

0

]
v

I closed-loop eigenvalues come from

det
(
Ācl − λI

)
= det

eigenvalues can be arbitrarily placed︷ ︸︸ ︷((
Āc − B̄c K̄c

)
− λI

)
︸ ︷︷ ︸

from the controllable subsystem

· det
(
Āuc − λI

)
︸ ︷︷ ︸

uncontrollable eigenvalues

I ⇒: single-input systems are stabilizable if and only if the
uncontrollable portion of the system does not have any unstable
eigenvalue.
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Discrete-time case

I the eigenvalue assignment of discrete-time systems is analogous:

I system dynamics:

x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k)

I controller: u (k) = −Kx (k) + v (k)
I closed-loop dynamics:

x (k + 1) = Ax (k)−BKx (k)+Bv (k) = (A− BK ) x (k)+Bv (k)

I arbitrary closed-loop eigenvalue assignment if system is
controllable
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The case with output feedback

I if the full state is not measurable, state feedback control is not
feasible

I consider output feedback




ẋ = Ax + Bu

y = Cx

u = −Fy + v

⇒ ẋ = Ax − BFy + Bv = (A− BFC ) x + Bv

I A− BFC not as structured as A− BK (exercise: write out the
case for SISO systems)

I arbitrary closed-loop eigenvalue assignment not feasible
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The case with output feedback

Example
Controllable mass-spring-damper system

d

dt

[
x1

x2

]
=

[
0 1
− k

m
− b

m

] [
x1

x2

]
+

[
0
1
m

]
u

u∗, u
m=

[
0 1
− k

m
− b

m

] [
x1

x2

]
+

[
0
1

]
u∗

I arbitrary closed-loop eigenvalue assignment if u∗ = −k1x1− k2x2,
namely U∗(s) = −k1X1(s)− k2X2(s) = − (k1 + k2s)X1(s) ⇒ a
proportional plus derivative (PD) control law

I if with only proportional control, u∗ = −k1x1, arbitrary
closed-loop eigenvalue assignment is not possible
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Introduction

▶ full state feedback is usually not available

▶ the state estimation problem
▶ deterministic case: observer design
▶ stochastic case: the most frequent option is Kalman filter
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Outline

1. Concepts

2. Continuous-time Luenberger observer

3. Discrete-time observers
DT full state observer
DT full state observer with predictor

4. Observer state feedback
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Open-loop observer

d

dt
x(t) = Ax(t) + Bu(t), x(k + 1) = Ax(k) + Bu(k)

▶ conceptually simplest scheme to estimate x :

d

dt
x̂(t) = Ax̂(t) + Bu(t), x̂(k + 1) = Ax̂(k) + Bu(k)

with a best guess of initial estimate x̂(0) e.g .
= 0.

▶ error dynamics: e = x − x̂ :

ė(t) = Ae(t), e(k + 1) = Ae(k), e(0) = x0 − x̂(0)

▶ sensitive to input disturbances
▶ if A is not Hurwitz/Schur, the error diverges

▶ open-loop observers look simple but do not work in practice
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Luenberger (closed-loop) observer concept

▶ given system dynamics

ẋ = Ax + Bu, x(0) = x0, A ∈ Rn×n,B ∈ Rn×r

y = Cx , y ∈ Rm×n

▶ in contrast to open-loop observers, the Luenberger observer adds
correction based on output differences

u plant

copy of plant

x̂

+

y

−
ŷ

observer
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Luenberger (closed-loop) observer algorithm

plant:

ẋ = Ax + Bu, x(0) = x0

y = Cx

observer concept
u plant

copy of plant

x̂

+

y

−
ŷ

observer

▶ observer realization:

˙̂x = Ax̂ + Bu + L (y − ŷ) = Ax̂ + Bu + L (y − Cx̂) , x̂(0) = 0
= (A− LC ) x̂ + Ly + Bu
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Luenberger (closed-loop) observer error dynamics
▶ system dynamics

ẋ = Ax + Bu, x(0) = x0, A ∈ Rn×n,B ∈ Rn×r

y = Cx , y ∈ Rm×n

▶ Luenberger observer with correction:

˙̂x = Ax̂ + Bu + L (y − ŷ) = Ax̂ + Bu + L (y − Cx̂) , x̂(0) = 0
= (A− LC ) x̂ + Ly + Bu

▶ error dynamics: e = x − x̂ :

ė = Ae − LCe = (A− LC )e, e(0) = x(0)

▶ if all eigenvalues of A− LC are on the left half plane, then the
error dynamics can be made asymptotically stable
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Luenberger (closed-loop) observer
Theorem
If (A,C ) is an observable pair, then all the eigenvalues of A− LC can
be arbitrarily assigned, provided that they are symmetric with respct
to the real axis of the complex plane.

▶ we show the SISO case when A and C are in observable
canonical form (if not, a similarity transform can help out):

A =




−αn−1 1 0 . . .
... 0 . . . . . .

−α1
... . . . 1

−α0 0 . . . 0


 , B =




βn−1
...
β1

β0




C =
[

1 0 . . . . . . 0
]
, D = d

det (sI − A) = sn + αn−1s
n−1 + · · ·+ α1s + α0
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Observer eigenvalue placement: o.c.f.

▶ Luenberger observer with correction:

˙̂x = Ax̂ + Bu + L (y − ŷ) = Ax̂ + Bu + L (y − Cx̂) , x̂(0) = 0
= (A− LC ) x̂ + Ly + Bu

▶ Goal: place eigenvalues of the observer at locations p̄1, · · · , p̄n:

det (sI − (A− LC )) = (s − p1)(s − p2) · · · (s − pn)

= sn + γn−1s
n−1 + · · ·+ γ1s + γ0
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Observer eigenvalue placement: o.c.f.
▶ Goal: place eigenvalues of the observer at locations p̄1, · · · , p̄n:

det (sI − (A− LC )) = (s − p1)(s − p2) · · · (s − pn)

= sn + γn−1s
n−1 + · · ·+ γ1s + γ0

Let L = [l0, l1, . . . , ln−1]
T . The unique structures of A and C give

LC =




l0
...

ln−2
ln−1



[

1 0 . . . 0
]
=




l0 0 . . . 0
... 0

. . .
...

ln−2
. . .

. . . 0
ln−1 0 . . . 0




A− LC =




−αn−1 − l0 1 0 . . . 0

−αn−2 − l1 0
. . .

. . .
...

... 0
. . .

. . . 0

−α1 − ln−2
...

. . . 0 1
−α0 − ln−1 0 . . . 0 0
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Observer eigenvalue placement: o.c.f.
▶ A and A− LC have the same structure:

A =




−αn−1 1 0 . . .
... 0

. . . . . .

−α1
...

. . . 1
−α0 0 . . . 0



, A− LC =




−αn−1 − l0 1 0 . . .
... 0

. . . . . .

−α1 − ln−2
...

. . . 1
−α0 − ln−1 0 . . . 0




▶ Recall: det (sI − A) = sn + αn−1s
n−1 + · · ·+ α1s + α0.

▶ Thus

det (sI − (A− LC )) = sn + (αn−1 + l0)︸ ︷︷ ︸
target: γn−1

sn−1 + · · ·+ (α0 + ln−1)︸ ︷︷ ︸
target: γ0

▶ Hence
l0 = γn−1 − αn−1

...
ln−1 = γ0 − α0
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General observer eigenvalue placement
▶ What if (A,B ,C ,D) is not in the observable canonical form?
▶ We can transform it to o.c.f. via a similarity transform:

{
ẋ = Ax + Bu

y = Cx

x=R−1xob=⇒





ẋob = RAR−1
︸ ︷︷ ︸

Ao

xob + RB︸︷︷︸
Bo

u

y = Coxob = CR−1xob

▶ use previous formulas to design L̃ in:

˙̂xob =
(
Ao − L̃Co

)
x̂ob + L̃y + Bou (analysis form)

correspondingly in the original state space (via x̂ob = Rx̂):

R ˙̂x =
(
RAR−1 − L̃CR−1

)
Rx̂ + L̃y + RBu

⇒ ˙̂x = (A−
L︷ ︸︸ ︷

R−1L̃ C )x̂ + Ly + Bu (implementation form)

▶ Powerful fact: if system Σ = (A,B ,C ,D) is observable, then
we can arbitrarily place the observer eigenvalues.
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Luenberger observer summary

▶ observer dynamics: ˙̂x = Ax̂ + Bu + L (y − Cx̂) , x̂(0) = 0
▶ block diagram

B
∫

C

∫
C

A

A

+

+

+

+

+

−

ẋ x

˙̂x x̂

yu
B

L

+
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Luenberger observer summary
▶ system dynamics

ẋ = Ax + Bu, x(0) = x0, A ∈ Rn×n,B ∈ Rn×r

y = Cx , y ∈ Rm×1

▶ observer dynamics

˙̂x = Ax̂ + Bu + L (y − Cx̂) , x̂(0) = 0
= (A− LC ) x̂ + LCx + Bu

▶ augmented system
[
ẋ
˙̂x

]
=

[
A 0
LC A− LC

] [
x
x̂

]
+

[
B
B

]
u
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Luenberger observer summary
▶ augmented system

[
ẋ
˙̂x

]
=

[
A 0
LC A− LC

] [
x
x̂

]
+

[
B
B

]
u

y = Cx

▶ to see the distribution of eigenvalues, note the error dynamics
ė = (A− LC )e ⇒

[
ẋ
ė

]
=

[
A 0
0 A− LC

] [
x
e

]
+

[
B
0

]
u

⇒eigenvalues are separated into: λ (A) and observer eigenvalues

▶ underlying similarity transform:
[
x
e

]
=

[
In 0
In −In

] [
x
x̂

]
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Discrete-time observers: Introduction

▶ full state feedback is usually not available
▶ often observers are implemented in the discrete-time domain

▶ the discrete-time observer design
▶ basic form: analogous to the continuous-time Luenberger

observer
▶ predict and correct form:

▶ direct DT design
▶ leverages discrete-time signal properties

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 16 / 25



Discrete-time full state observer
▶ standard discrete-time observer:

x (k + 1) = Ax (k) + Bu (k)

x̂ (k + 1) = Ax̂ (k) + Bu (k) + L (y (k)− Cx̂ (k))

y (k) = Cx (k)

▶ error dynamics:e (k) = x (k)− x̂ (k),
e (k + 1) = Ae (k)− LCe (k)

▶ overall dynamics
[
x (k + 1)
e (k + 1)

]
=

[
A 0
0 A− LC

] [
x (k)
e (k)

]
+

[
B
0

]
u (k)

y (k + 1) = [C , 0]
[
x (k + 1)
e (k + 1)

]

▶ Powerful fact: the error dynamics can be arbitrarily assigned if
the system is observable.
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DT full state observer with predictor
▶ motivation: x̂ (k + 1) = Ax̂ (k) + Bu (k) + L (y (k)− Cx̂ (k))

doesn’t use most recent measurement y(k + 1) = Cx (k + 1)
▶ discrete-time observer with predictor:

predictor: x̂ (k + 1|k) = Ax̂ (k |k) + Bu (k)

corrector: x̂ (k + 1|k + 1) = x̂ (k + 1|k) + L (y (k + 1)− Cx̂ (k + 1|k))
▶ x̂(k |k): estimate of x(k) based on measurements up to time k
▶ x̂(k |k − 1): estimate based on measurements up to time k − 1
▶ e(k) ≜ x (k)− x̂ (k |k): estimation error

▶ error dynamics

x̂(k + 1|k + 1) = (I − LC ) x̂ (k + 1|k) + Ly (k + 1)
= (I − LC )Ax̂ (k|k) + (I − LC )Bu (k) + Ly (k + 1)

⇒ e (k + 1) = x(k + 1)− Ly(k + 1)− (I − LC )Ax̂(k |k)− (I − LC )Bu(k)

= (A− LCA) e (k)
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DT full state observer with predictor

e (k + 1) =


A− L CA︸︷︷︸

C̃


 e (k) , e(0) = (I − LC ) x0

▶ the error dynamics can be arbitrarily assigned if the pair(
A, C̃

)
= (A, CA) is observable

▶ observability matrix

Q̃d =




C̃

C̃A
...

C̃An−1


 =

Qd︷ ︸︸ ︷


C
CA
...

CAn−1


A

▶ if A is invertible, then Q̃d has the same rank as Qd

▶
(
A, C̃

)
is observable if (A, C ) is observable and A is

nonsingular (guaranteed if discretized from a CT system)
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Example



x1 (k + 1)
x2 (k + 1)
x3 (k + 1)


 =




−a2 1 0
−a1 0 1
−a0 0 0






x1 (k)
x2 (k)
x3 (k)


+




b2

b1

b0


 u (k),

y (k) = x1(k). Place all eigenvalues of an observer with predictor
at the origin.

A− LCA =




−a2 1 0
−a1 0 1
−a0 0 0


−




l1
l2
l3


 [ −a2 1 0

]

=




(l1 − 1) a2 1 − l1 0
l2a2 − a1 −l2 1
l3a2 − a0 −l3 0




det (A− LCA− λI ) = ((l1 − 1) a2 − λ) (l2 + λ)λ+
(1 − l1) (l3aa − a0) + l3 ((l1 − 1) a2 − λ) + λ (1 − l1) (l2a2 − a1)
roots must be all 0 ⇒l1 = 1, l2 = l3 = 0.
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1. Concepts

2. Continuous-time Luenberger observer

3. Discrete-time observers
DT full state observer
DT full state observer with predictor

4. Observer state feedback
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Observer state feedback

given system dynamics:

ẋ = Ax + Bu

y = Cx

▶ state feedback control: arbitrary eigenvalue assignment if system
controllable

▶ observer design: arbitrary observer eigenvalue assignment for
state estimation if system observerable

▶ when full states are not available, what’s the performance if we
combine both?

u = −Kx̂ + v
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Closed-loop dynamics
▶ full closed-loop system

ẋ = Ax + Bu

y = Cx

˙̂x = Ax̂ + Bu + L (y − Cx̂)

u = −Kx̂ + v

⇒ d

dt

[
x
x̂

]
=

[
A −BK
LC A− LC − BK

] [
x
x̂

]
+

[
B
B

]
v

▶ using again similarity transform
[
x
e

]
=

[
In 0
In −In

] [
x
x̂

]
gives

d

dt

[
x
e

]
=

[
A− BK BK

0 A− LC

] [
x
e

]
+

[
B
0

]
v
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Block diagram

▶ ˙̂x = Ax̂ + Bu + L (y − Cx̂), u = −Kx̂ + v

B
∫

C

∫
C

A

A

+

+

+

+

+

−

ẋ x

˙̂x x̂

yu
B

L

K

−
+v
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The separation theorem

▶ closed-loop dynamics

d

dt

[
x
e

]
=

[
A− BK BK

0 A− LC

] [
x
e

]
+

[
B
0

]
v

▶ powerful result: separation theorem: closed-loop
eigenvalues consist of
▶ eigenvalues of A− BK from the state feedback control design
▶ eigenvalues of A− LC from the observer design

▶ can design K and L separately based on discussed tools

▶ if system is controllable and observable, we can arbitrarily assign
the closed-loop eigenvalues

UW Linear Systems (X. Chen, ME547) Observers and Observer State FB 25 / 25



ME 547: Linear Systems

Linear Quadratic Optimal Control

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) LQ 1 / 32

Motivation

state feedback control:
▶ allows to arbitrarily assign the closed-loop eigenvalues for a

controllable system
▶ the eigenvalue assignment has been manual thus far
▶ performance is implicit: we assign eigenvalues to induce proper

error convergence
linear quadratic (LQ) optimal regulation control, aka, LQ regulator
(or LQR):
▶ no need to specify closed-loop poles
▶ performance is explicit: a performance index is defined ahead of

time
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1. Problem formulation

2. Solution to the finite-horizon LQ problem

3. From finite-horizon LQ to stationary LQ
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Goal
Consider an n-dimensional state-space system

ẋ(t) = Ax (t) + Bu (t) , x (t0) = x0

y (t) = Cx (t)
(1)

where x ∈ Rn, u ∈ Rr , and y ∈ Rm.
LQ optimal control aims at minimizing the performance index

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ S ⪰ 0,Q ⪰ 0,R ≻ 0: for a nonnegative cost and well-posed
problem

▶ 1
2x

T (tf )Sx(tf ) penalizes the deviation of x from the origin at tf
▶ xT (t)Qx(t) t ∈ (t0, tf ) penalizes the transient
▶ often, Q = CTC ⇒ xT (t)Qx(t) = y (t)T y (t)

▶ uT (t)Ru(t) penalizes large control efforts
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Observations

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ when the control horizon is made to be infinitely long, i.e.,
tf → ∞, the problem reduces to the infinite-horizon LQ problem

J =
1
2

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

▶ often, we have t0 = 0 and

J =
1
2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt
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1. Problem formulation

2. Solution to the finite-horizon LQ problem

3. From finite-horizon LQ to stationary LQ
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Solution to the finite-horizon LQ
Consider the performance index

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

with ẋ = Ax + Bu, x (t0) = x0, S ⪰ 0, R ≻ 0, and Q = CTC .
▶ do a Lyapunov-like construction: V (t) ≜ 1

2x
T (t)P (t) x (t)

▶ then
d

dt
V (t) =

1
2
ẋT (t)P (t) x (t) +

1
2
xT (t) Ṗ (t) x (t) +

1
2
xT (t)P (t) ẋ (t)

=
1
2
(Ax + Bu)T Px +

1
2
xT

dP

dt
x +

1
2
xTP (Ax + Bu)

=
1
2

{
xT (t)

(
ATP +

dP

dt
+ PA

)
x (t) + uTBTPx + xTPBu

}
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Solution to the finite-horizon LQ
with d

dt
V (t) from the last slide, we have

V (tf )− V (t0) =

∫ tf

t0

V̇ dt

=
1
2

∫ tf

t0

(
xT
(
ATP + PA+

dP

dt

)
x + uTBTPx + xTPBu

)
dt

▶ adding

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

yields

J + V (tf )− V (t0) =
1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0


xT

(
ATP + PA+ Q +

dP

dt

)
x + uTBTPx + xTPBu︸ ︷︷ ︸

products of x and u

+ uTRu︸ ︷︷ ︸
quadratic


 dt
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Solution to the finite-horizon LQ
▶ “complete the squares” in uTBTPx + xTPBu︸ ︷︷ ︸

products of x and u

+ uTRu︸ ︷︷ ︸
quadratic

(scalar

case):

uTBTPx + xTPBu + uTRu
scalar case

= Ru2 + 2xPBu

=Ru2 + 2
(
xPBR−1/2

)
R1/2u︸ ︷︷ ︸√

Ru2

+
(
R−1/2BPx

)2
−
(
R−1/2BPx

)2

=
(
R1/2u + R−1/2BPx

)2
−
(
R−1/2BPx

)2

▶ extending the concept to the general vector case:

uTBTPx+xTPBu+uTRu = ∥R 1
2 u + R

−1
2 BTPx∥2

2︸ ︷︷ ︸
recall ∥−→a ∥22=−→a T−→a

−xTPBR−1BTPx

UW Linear Systems (X. Chen, ME547) LQ 9 / 32

Solution to the finite-horizon LQ

J + V (tf )− V (t0) =
1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0


xT

(
ATP + PA+ Q +

dP

dt

)
x + uTBTPx + xTPBu + uTRu︸ ︷︷ ︸

∥R 1
2 u+R

−1
2 BTPx∥2

2−xTPBR−1BTPx


 dt

⇓“completing the squares”

J +
1
2
xT (tf )P (tf ) x(tf )−

1
2
xT (t0)P (t0) x(t0) =

1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

(
xT
(
dP

dt
+ ATP + PA+ Q − PBR−1BTP

)
x + ∥R 1

2 u + R
−1
2 BTPx∥2

2

)
dt
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Solution to the finite-horizon LQ
J + V (tf )− V (t0) =

1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

(
xT
(
ATP + PA+ Q +

dP

dt

)
x + uTBTPx + xTPBu + uTRu

)
dt

⇓“completing the squares”

J +
1
2
xT (tf )P (tf ) x(tf )−

1
2
xT (t0)P (t0) x(t0) =

1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

(
xT
(
dP

dt
+ ATP + PA+ Q − PBR−1BTP

)
x + ∥R 1

2 u + R
−1
2 BTPx∥2

2

)
dt

▶ the best that the control can do in minimizing the cost is to have

u(t) = −K (t) x (t) = −R−1BTP(t)x(t)

−dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S

to yield the optimal cost J0 = 1
2x

T
0 P(t0)x0
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Observation 1

u(t) = −K (t) x (t) = −R−1BTP(t)x(t) optimal control law

−dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S the Riccati differential equation

▶ the control u(t) = −R−1BTP (t) x(t) is a state feedback law
(the power of state feedback!)

▶ the state feedback law is time-varying because of P (t)

▶ the closed-loop dynamics becomes

ẋ (t) = Ax (t) + Bu (t) =
(
A− BR−1BTP (t)

)
︸ ︷︷ ︸

time-varying closed-loop dynamics

x (t)
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Observation 2

u(t) = −K (t) x (t) = −R−1BTP(t)x(t) optimal state feedback control

−dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S the Riccati differential equation

▶ boundary condition of the Riccati equation is given at the final
time tf ⇒ the equation must be integrated backward in time

▶ backward integration of

−dP

dt
= ATP + PA+ Q − PBR−1BTP , P (tf ) = S

is equivalent to the forward integration of
dP∗

dt
= ATP∗ + P∗A+ Q − P∗BR−1BTP∗, P∗ (0) = S (2)

by letting P (t) = P∗ (tf − t)
▶ Eq. (2) can be solved by numerical integration, e.g., ODE45 in

Matlab
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Observation 3

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

J0 =
1
2
xT0 P(t0)x0

▶ the minimum value J0 is a function of the initial state x (t0)

▶ J (and hence J0) is nonnegative ⇒ P (t0) is at least positive
semidefinite

▶ t0 can be taken anywhere in (0, tf ) ⇒ P (t) is at least positive
semidefinite for any t
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Example: LQR of a pure inertia system
Consider

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, J =

1
2
xT (tf ) Sx (tf ) +

1
2

∫ tf

0

(
xTQx + Ru2

)
dt

where S =

[
1 0
0 1

]
, Q =

[
1 0
0 0

]
, R > 0

▶ we let P (t) = P∗ (tf − t) and solve

dP∗

dt
= ATP∗ + P∗A+ Q − P∗BR−1BTP∗, P∗ (0) =

[
1 0
0 1

]

⇔ dP∗

dt
=

[
0 0
1 0

]
P∗ + P∗

[
0 1
0 0

]
+

[
1 0
0 0

]
− P∗

[
0
1

]
1
R

[
0 1

]
P∗

▶ letting

P∗ =

[
p∗11 p∗12
p∗12 p∗22

]
⇒





d
dt
p∗11 = 1 − 1

R
(p∗12)

2

d
dt
p∗12 = p∗11 − 1

R
p∗12p

∗
22

d
dt
p∗22 = 2p∗12 − 1

R
(p∗22)

2
⇒

p∗11 (0) = 1
p∗12 (0) = 0
p∗22 (0) = 1
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Example: LQR of a pure inertia system: analysis

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

0.0

0.2

0.4

0.6

0.8

1.0

P *  with R = 0.0001
p *

11

p *
12

p *
22

Figure: LQ example: P∗ (0) =
[
1 0
0 1

]
, P (t) = P∗ (tf − t)

▶ if the final time tf is large, P∗ (t) forward converges to a
stationary value

▶ i.e., P (t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis

0 2 4 6 8 10 12 14
time/s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
P *  with R = 1

p *
11

p *
12

p *
22

0 5 10 15 20 25 30 35 40
time/s

0

10

20

30

40

P *  with R = 100

p *
11

p *
12

p *
22

Figure: LQ example with different penalties on control. P∗ (0) =
[
1 0
0 1

]

▶ a larger R results in a longer transient

▶ i.e., a larger penalty on the control input yields a longer time to
settle
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Example: LQR of a pure inertia system: analysis

0 5 10 15 20 25 30 35 40
time/s

0

10

20

30

40

P *  with R = 100

p *
11

p *
12

p *
22

(a) P∗ (0) =
[
1 0
0 1

]
0 5 10 15 20 25 30 35 40

time/s

0

10

20

30

40

50

60

P *  with R = 100 and a different initial value
p *

11

p *
12

p *
22

(b) P∗ (0) =
[
20 0
0 2

]

Figure: LQ with different boundary values in Riccati difference Eq.

▶ for the same R , the initial value P (tf ) = S becomes irrelevant
as tf → ∞
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1. Problem formulation

2. Solution to the finite-horizon LQ problem

3. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ

0 5 10 15 20 25 30 35 40
time/s

0

10

20

30

40

P *  with R = 100

p *
11

p *
12

p *
22

0 5 10 15 20 25 30 35 40
time/s

0

10

20

30

40

50

60

P *  with R = 100 and a different initial value
p *

11

p *
12

p *
22

▶ in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time

▶ when tf → ∞, LQ becomes the stationary LQ problem, under
two additional conditions that we now discuss in details:
▶ (A,B) is controllable/stabilizable
▶ (A,C ) is observable/detectable
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Need for controllability/stabilizability

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

−dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S the Riccati differential equation

J0 =
1
2
xT0 P(t0)x0

if (A,B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
▶ for uncontrollable or unstabilizable systems, there can be

unstable uncontrollable modes that cause J to be unbounded

▶ then if J0 = 1
2x

T
0 P (0) x0 is unbounded, we will have

||P (0) || = ∞
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Need for controllability/stabilizability

if (A,B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
▶ e.g.: ẋ = x + 0 · u, x (0) = 1, Q = 1 and R be any positive

value
▶ system is uncontrollable and the uncontrollable mode is unstable
▶ x (t) will keep increasing to infinity
▶ ⇒J = 1

2

∫∞
0

(
xTQx + uTRu

)
dt unbounded regardless of u (t)

▶ in this case, the Riccati equation is

−dP

dt
= P + P + 1 = 2P + 1 ⇔ dP∗

dt
= 2P∗ + 1

forward integration of P∗ (backward integration of P), will drive
P∗ (∞) and P (0) to infinity
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Need for observability/detectability

J =
1
2

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

with ẋ = Ax + Bu, x (t0) = x0, R ≻ 0, and Q = CTC .
if (A,C ) is observable or detectable, the optimal state
feedback control system will be asymptotically stable
▶ intuition: if the system is observable, y = Cx will relate to all

states ⇒ regulating xTQx = xTCTCx will regulate all states

▶ formally: if (A,C ) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P+ (proof in course notes)
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From LQ to stationary LQ

LQ stationary LQ

Cost J = 1
2 x

T (tf )Sx(tf )+ ⇒ J = 1
2

∫∞
t0

(
xTQx + uTRu

)
dt1

2

∫ tf
t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

Syst.
ẋ = Ax + Bu

ẋ = Ax + Bu ⇒ (A,B) controllable/stabilizable
(A,C) observable/detectable

Key Eq. Riccati Eq. (RE) Algebraic RE (ARE)
− dP

dt
= ATP + PA− PBR−1BTP ⇒ ATP + PA− PBR−1BTP + Q = 0

+Q, P(tf ) = S
Opt.

control u(t) = −R−1BTP(t)x(t) ⇒ u(t) = −R−1BTP+x(t)
& cost J0 = 1

2 x
T
0 P(t0)x0 ⇒ J0 = 1

2 x
T
0 P+x0
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More formally: Solution of the infinite-horizon LQ
For

J =
1
2

∫ ∞

t0

(
x (t)T Qx (t) + u (t)T Ru (t)

)
dt, Q = CTC

with ẋ(t) = Ax (t) + Bu (t) , x (t0) = x0 and R ≻ 0:
▶ if (A,B) is controllable (stabilizable) and (A,C ) is observable

(detectable)
▶ then the optimal control input is given by

u(t) = −R−1BTP+x(t)

▶ where P+

(
= PT

+

)
is the positive (semi)definite solution of the

algebraic Riccati equation (ARE)

ATP + PA− PBR−1BTP + Q = 0

▶ and the closed-loop system is asymptotically stable, with

Jmin = J0 =
1
2
x (t0)

T P+x (t0)
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Observations
▶ the control u(t) = −R−1BTPx(t) is a constant state feedback

law
▶ under the optimal control, the closed loop is given by

ẋ = Ax − BR−1BTPx =
(
A− BR−1BTP

)
︸ ︷︷ ︸

Ac

x and J =

1
2

∫∞
t0

(
xTQx + uTRu

)
dt = 1

2

∫∞
t0

xT
(
Q + PBR−1BTP

)
︸ ︷︷ ︸

Qc

xdt

▶ for the above closed-loop system, the Lyapunov Eq. is

AT
c P + PAc = −Qc

⇔
(
A− BR−1BTP

)T
P + P

(
A− BR−1BTP

)
= −Q − PBR−1BTP

⇔ ATP + PA− PBR−1BTP = −Q (the ARE!)

▶ when the ARE solution P+ is positive definite, 1
2x

TP+x is a
Lyapunov function for the closed-loop system
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Observations

▶ Lyapunov Eq. and the ARE:

Cost J = 1
2

∫∞
0 xTQcxdt J = 1

2

∫∞
t0

(
xTQx + uTRu

)
dt

Syst. dynamics ẋ = Acx
ẋ = Ax + Bu

(A,B) controllable/stabilizable
(A,C ) observable/detectable

Key Eq. AT
c P + PAc + Qc = 0 ATP + PA− PBR−1BTP + Q = 0

Optimal control N/A u(t) = −R−1BTP+x(t)

Opt. cost J
0
= 1

2x
T (0)P+x (0) J0 = 1

2x (t0)
T P+x (t0)

▶ the guaranteed closed-loop stability is an attractive feature
▶ more nice properties will show up later
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Example: Stationary LQR of a pure inertia system
▶ Consider

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u, J =

1
2

∫ ∞

0

(
xT
[
1 0
0 0

]
x + Ru2

)
dt, R > 0

▶ the ARE is

0 =

[
0 0
1 0

]
P+P

[
0 1
0 0

]
+

[
1 0
0 0

]
−P

[
0
1

]
1
R

[
0 1

]
P ⇒ P+ =

[√
2R1/4 R1/2

R1/2
√

2R3/4

]

▶ the closed-loop A matrix can be computed to be

Ac = A− BR−1BTP+ =

[
0 1

−R−1/2 −
√

2R−1/4

]

▶ ⇒ closed-loop eigenvalues:

λ1,2 = − 1√
2R1/4

± 1√
2R1/4

j
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ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, J =

1
2

∫ ∞

0

(
xT

[
1 0
0 0

]
x + Ru2

)
dt

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real axis

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

 a
xi

s

R

R 0 Root locus 

Figure: Eigenvalue λ1,2 = − 1√
2R1/4 ± 1√

2R1/4 j evolution (root locus)

▶ R ↑ (more penalty on the control input) ⇒ λ1,2 move closer to
the origin ⇒ slower state convergence to zero

▶ R ↓ (allow for large control efforts) ⇒ λ1,2 move further to the
left of the complex plane ⇒ faster speed of closed-loop dynamics
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MATLAB commands
▶ care: solves the ARE for a continuous-time system:

[P ,Λ,K ] = care
(
A,B ,CTC ,R

)

where K = R−1BTP and Λ is a diagonal matrix with the
closed-loop eigenvalues, i.e., the eigenvalues of A− BK , in the
diagonal entries.

▶ lqr and lqry: provide the LQ regulator with

[K ,P ,Λ] = lqr
(
A,B ,CTC ,R

)

[K ,P ,Λ] = lqry (sys,Qy ,R)

where sys is defined by ẋ = Ax + Bu, y = Cx + Du, and

J =
1
2

∫ ∞

0

(
yTQyy + uTRu

)
dt
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Additional excellent properties of stationary LQ

▶ we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:
▶ at least a 60 degree phase margin
▶ infinite gain margin
▶ stability is guaranteed up to a 50% reduction in the gain
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Applications and practice

choosing R and Q:
▶ if there is not a good idea for the structure for Q and R , start

with diagonal matrices;

▶ gain an idea of the magnitude of each state variable and input
variable

▶ call them xi ,max (i = 1, . . . , n) and ui ,max (i = 1, . . . , r)
▶ make the diagonal elements of Q and R inversely proportional to

||xi ,max||2 and ||ui ,max||2, respectively.
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1 Basic concepts of matrices and vectors

A linear equation set

3x1 + 4x2 + 10x3 = 6

x1 + 4x2 − 10x3 = 5 (1)
4x2 + 10x3 = −1,

can be simply written as 


3 4 10
1 4 −10
0 4 10





x1
x2
x3


 =




6
5
−1


 . (2)

Equation (2) wrote x1, x2, and x3 just once rather than two or three times in (1). There are only three
unknowns in the above linear equation set. The notational simplicity and many algebraic convenience
that will arise, however, are significant when we have thousands of unknowns...

Formally, we write an m× n matrix A as

A = [ajk] =




a11 a12 . . . a1n
a21 . . . . . . a2n
... . . . . . .

...
am1 am2 . . . amn


 .

Here,

• m × n (reads m by n) is the dimension/size of the matrix. It means that A has m rows and n
columns.

• Each element ajk is an entry of the matrix. For two matrices A and B to be equal, it must be
that ajk = bjk for any j and k.

• If m = n, A belongs to the class of square matrices. The entries a11, a22, . . . , ann are then called
the diagonal entries of A.

– Upper triangular matrices : square matrices with nonzero entries only on and above the
main diagonal.

– Lower triangular matrices : nonzero entries only on and below the main diagonal.

– Diagonal matrices : nonzero entries only on the main diagonal.

– Identity matrice : diagonal and all diagonal entries are 1.

• Vectors: special matrices whose row or column number is one.

– A row vector: a = [a1, a2, . . . , an]; its dimension is 1× n.

1
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– A m× 1 column vector:

b =




b1
b2
...
bm


 .

Example (Matrix and quadratic forms). We can use matrices to express general quadratic functions
of vectors. For instance

f (x) = xTAx+ 2bx+ c

is equivalent to

f(x) =

[
x
1

]T [
A b
bT c

] [
x
1

]
.

1.1 Matrix addition and multiplication

The sum of two matrices A and B (of the same size) is

A+B = [ajk + bjk] .

The product between a m× n matrix A and a scalar c is

cA = [cajk] ,

i.e. each entry of A is multiplied by c to generate the corresponding entry of cA.
The matrix product C = AB is meaningful only if the column number of A equals the row number

of B. The computation is done as shown in the following example:



a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43







b11 b12

b21 b22

b31 b32


 =




c11 c12
c21 c22
c31 c32
c41 c42


 ,

where

c21 = a21b11 + a22b21 + a23b31

= [a21, a22, a23]



b11
b21
b31




= "second row of A" × "first column of B".

More generally:

cjk = aj1b1k + aj2b2k + · · ·+ ajnbnk

= [aj1, aj2, . . . , ajn]




b1k
b2k
...
bnk


 , (3)

2
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namely, the jk entry of C is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. This is called a multiplication of rows
into columns.

Matrix multiplication is not commutative: It is a good habit to always check the matrix
dimensions when doing matrix products:

A B = C
[m× n] [n× p] [m× p]

.

This way it is clear that AB in general does not equal to BA, e.g.,

ABC = (AB)C = A (BC) ̸= BCA.

Matrices as combination of vectors: The matrix-vector product

Ax =




a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43






x1
x2
x3


 =




a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3
a41x1 + a42x2 + a43x3




is nothing but the weighted sum of the columns of A:

Ax =




a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43






x1
x2
x3


 = x1




a11
a21
a31
a41


+ x2




a12
a22
a32
a42


+ x3




a13
a23
a33
a43


 .

1.2 Matrix transposition

Definition 1 (Transpose). The transpose of an m× n matrix

A = [ajk] =




a11 a12 . . . a1n
a21 . . . . . . a2n
... . . . . . .

...
am1 am2 . . . amn




is the n×m matrix AT (reads “A transpose”) defined as

AT = [akj] =




a11 a21 . . . am1

a12 . . . . . . am2
... . . . . . .

...
a1n a2n . . . amn


 .

Transposition has the following rules:

3
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•
(
AT
)T

= A

• (A+B)T = AT +BT

• (cA)T = cAT

• (AB)T = BTAT

If A = AT , then A is called symmetric. If A = −AT then A is called skew-symmetric.

4
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2 Linear systems of equations

A linear system of m equations in n unknowns x1, . . . , xn is a set of equations of the form

a11x1 + a12x2 + . . . a1nxn = b1

a21x1 + a22x2 + . . . a2nxn = b2 (4)
. . .

am1x1 + am2x2 + . . . amnxn = bm

Here,

• The equation set is linear: each variable xj appears in the first power only.

• If all the bj are zero, then the linear equation is called a homogeneous system. Otherwise, it is a
nonhomogeneous system.

• Homogeneous systems always have at least the trivial solution x1 = x2 = · · · = xn = 0.

The m equations (4) can be written as a single vector equation

Ax = b,

where

A =




a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

... . . . . . .
...

am1 am2 . . . . . . amn


 , x =




x1
x2
...
...
xn



, b =




b1
b2
...
bm


 .

Gauss1 elimination is a systematic method to solve linear equations. Consider



1 −1 1
−1 1 −1
0 10 25
20 10 0




︸ ︷︷ ︸
A



x1
x2
x3


 =




0
0
90
80




︸ ︷︷ ︸
b

.

The Gauss elimination process is as follows:
1Johann Carl Friedrich Gauss, 1777-1855, German mathematician: contributed significantly to many fields, including

number theory, algebra, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy, Matrix
theory, and optics.

Gauss was an ardent perfectionist. He was never a prolific writer, refusing to publish work which he did not consider
complete and above criticism. Mathematical historian Eric Temple Bell estimated that, had Gauss published all of his
discoveries in a timely manner, he would have advanced mathematics by fifty years.

5
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1. Obtain the augmented matrix of the system

[
A b

]
=




1 −1 1 0
−1 1 −1 0
0 10 25 90
20 10 0 80


 .

2. Perform elementary row operation on the augmented matrix, to obtain the Row Echelon Form.
Adding the first row to the second row gives

pivot role :



1 −1 1 0

−1 1 −1 0
0 10 25 90
20 10 0 80




row 2−→
add pivot role




1 −1 1 0

0 0 0 0
0 10 25 90
20 10 0 80




row 4−→
add -20×pivot role




1 −1 1 0
0 0 0 0
0 10 25 90
0 30 −20 80


 .

What we have done is using the pivot row to eliminate x1 in the other equations. At this stage,
the linear equations look like

x1 − x2 + x3 = 0 (5)
0 = 0 (6)

10x2 + 25x3 = 90 (7)
30x2 − 20x3 = 80. (8)

Re-arranging yields

x1 − x2 + x3 = 0 (9)
10x2 + 25x3 = 90 (10)
30x2 − 20x3 = 80 (11)

0 = 0. (12)

Moving on, we can get ride of x2 in the third equation, by adding to it -3 times the second
equation. Correspondingly in the augmented matrix, we have




1 −1 1 0
0 10 25 90
0 30 −20 80
0 0 0 0


→




1 −1 1 0
0 10 25 90
0 0 −95 −190
0 0 0 0


 −→

normalizing




1 −1 1 0
0 1 5/2 9
0 0 1 38/19
0 0 0 0




︸ ︷︷ ︸
the row echelon form

,

6
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namely

x3 = 38/19

x2 + x3 = 9

x1 − x2 + x3 = 0.

The unknowns can now be readily obtained by back substitution: x3 = 38/19, x2 = 9 − x3 ,
x1 = x2 − x3.

Elementary Row Operations for Matrices What we have done can be summarized by the following
elementary matrix row operations:

• Interchange of two rows

• Addition of a constant multiple of one row to another row

• Multiplication of a row by a nonzero constant c

Let the final row echelon form be denoted by
[
R f

]
.

We have:

1. The two systems Ax = b and Rx = f are equivalent.

2. At the end of the Gauss elimination (before the back substitution), the row echelon form of the
augmented matrix will be




r11 r12 . . . . . . . . . r1n f1
r22 . . . . . . . . . r2n f2

. . . . . . . . .
...

...
rrr . . . rrn fr

fr+1
...
fm




,

where all unfilled entries are zero.

3. The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the rank of R
and also the rank of A.

4. Solution concepts:

(a) No solution / system is inconsistent: r is less than m and fr+1, fr+2, . . . , fm are not all
zero.

7
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(b) Unique solution: if the system is consistent and r = n, there is exactly one solution, which
can be found by back substitution.

(c) Infinitely many solutions: if fr+1 = fr+2 = . . . = fm = 0. To obtain any of these solutions,
choose values of xr+1, . . . , xn arbitrarily. Then solve the r-th equation for xr (in terms of
those arbitrary values), then the (r − 1)-st equation for xr−1, and so on up the line.

8
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3 Vector space, linear independence, basis, and span

Given a set of m vectors a1, a2, ..., am with the same size,

k1a1 + k2a2 + · · ·+ kmam

is called a linear combination of the vectors. If

a1 = k2a2 + k3a3 + · · ·+ kmam,

then a1 is said to be linearly dependent on a2, a3, ..., am. The set

{a1, a2, . . . , am} (13)

is then a linearly dependent set. The same idea holds if a2 or any vector in the set (13) is linearly
dependent on others.

Generalizing, if
k1a1 + k2a2 + · · ·+ kmam = 0

holds if and only if
k1 = k2 = · · · = km = 0,

then the vectors in (13) are linearly dependent. This is saying that at least one of the vectors can be
expressed as a linear combination of the other vectors.

Why is linear independence important? If a set of vectors is linearly dependent, then we
can get rid of one or perhaps more of the vectors until we get a linearly independent set. This set is
then the smallest “truly essential” set with which we can work.

Consider a set of n linearly independent vectors, a1, a2, ..., an, each with n components. All the
possible linear combinations of a1, a2, ..., an form the vector space Rn. This is the span of the n
vectors.

Definition 2 (Basis). A basis of V is a set B of vectors in V, such that any v ∈ V can be uniquely
expressed as a finite linear combination of vectors in B.

Example 3. In R2

v1 =

[
1
1

]
, v2 =

[
1
0

]

is a linearly independent set and forms a basis.

v1 =

[
1
1

]
, v2 =

[
1
0

]
, v3 =

[
3
4

]

is not a linearly independent set.

9
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4 Matrix properties

4.1 Rank

Definition 4 (Rank). The rank of a matrix A is the maximum number of linearly independent row or
column vectors.

Theorem. Row or column operations do not change the rank of a matrix.

With the concept of linear dependence, many matrix-matrix operations can be understood from the
view point of vector manipulations.

Example (Dyad). A = uvT is called a dyad, where u and v are vectors of proper dimensions. It is a
rank 1 matrix, as can be seen that A = uvT is formed by linear combinations of the vector u, where
the weights of the combinations are coefficients of v.

Fact. For A,B ∈ Rn×n, if rank (A) = n then AB = 0 implies B = 0. If AB = 0 but A ̸= 0 and
B ̸= 0, then rank (A) < n and rank (B) < n.

4.2 Range and null spaces

Definition 5 (Range space). The range space of a matrix A, denoted as R (A), is the span of all the
column vectors of A.

Definition 6 (Null space). The null space of a matrix A ∈ Rn×n, denoted as N (A), is the vector
space

{x ∈ Rn : Ax = 0} .
The dimension of the null space is called nullity of the matrix.

Fact 7. The following is true:

N
(
AAT

)
= N

(
AT
)
; R

(
AAT

)
= R (A) .

4.3 Determinants

Determinants were originally introduced for solving linear equations in the form of Ax = y, with a
square A. They are cumbersome to compute for high-order matrices, but their definitions and concepts
are partially very important.

We review only the computations of second- and third-order matrices:

• 2× 2 matrices:

det

[
a b
c d

]
= ad− bc.

10



Xu Chen Review of Linear Algebra for Controls February 17, 2023

• 3× 3 matrices:

det



a b c
d e f
g h k


 = a det

[
e f
h k

]
− b det

[
d f
g k

]
+ c det

[
d e
g h

]

= aek + bfg + cdh− gec− bdk − ahf,

where det

[
e f
h k

]
, det

[
d f
g k

]
, and det

[
d e
g h

]
are called the minors of det



a b c
d e f
g h k


.

Caution: det (cA) = cn det (A) (not c det (A)!)

Theorem 8. The determinant of A is nonzero if and only if A is full rank.

You should be able to verify the theorem for 2 × 2 matrices. The proof will be immediate after
introducing the concept of eigenvalues.

Definition 9. A linear transformation is called singular if the determinant of the corresponding trans-
formation matrix is zero.

Fact 10. Determinant facts:

• If A and B are square matrices, then

det (AB) = det (BA) = detA detB

det
(
AT
)
= det (A)

det (A∗) = det (A) .

• If X and Z are square, Y with compatible dimensions, then

det

([
X Y
0 Z

])
= detX detZ.

5 Matrix and linear equations

Consider again, using now concepts in range and null spaces of matrices, the linear equations

Ax = y. (14)

• Existence of solutions requires that y ∈ R (A).

• The linear equation is called overdetermined if it has more equations than unknowns (i.e. A
is a tall skinny matrix), determined if A is square, undetermined if it has fewer equations than
unknowns (A is a wide matrix).

11
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• Solutions of the above equation, provided that they exist, is constructed from

x = xo + z : Az = 0, (15)

where x0 is any (fixed) solution of (14) and z runs through all the homogeneous solutions of
Az = 0, namely, z runs through all vectors in the null space of A.

• Uniqueness of a solution: if the null space of A is zero, the solution is unique.

You should be familiar with solving 2nd or 3rd-order linear equations by hand.

12
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6 Eigenvector and eigenvalue

6.1 Matrix, mappings, and eigenvectors

Think of Ax this way: A defines a linear operator; Ax is a vector produced by feeding the vector x to
this linear operator. In the two-dimensional case, we can look at Fig. 1. Certainly, Ax does not (at all)
need to be in the same direction as x. An example is

A0 =

[
1 0
0 0

]
,

which gives that

A0

[
x1
x2

]
=

[
x1
0

]
,

namely, Ax is x projected on the first axis in the two-dimensional vector space, which will not be in the
same direction as x as long as x2 ̸= 0.

x

Ax

A0x

Figure 1: Example relationship between x and Ax.

From here comes the concept of eigenvectors and eigenvalues. It says that there are certain “special
directions/vectors” (denoted as v1 and v2 in our two-dimensional example) for A such that Avi = λivi.
Thus Avi is on the same line as the original vector vi, just scaled by the eigenvalue λi. It can be shown
that if λ1 ̸= λ2, then v1 and v2 are linearly independent (your homework). This is saying that any
vector in R2 can be decomposed as

x = a1v1 + a2v2.

Therefore
Ax = a1Av1 + a2Av2 = a1λ1v1 + a2λ2v2.

Knowing λi and vi thus can directly tell us how Ax looks like. More important, we have decomposed
Ax into small modules that are from time to time more handy for analyzing the system properties.
Figs. 2 and 3 demonstrate the above idea graphically.

Remark 11. The above geometric interpretations are for matrices with distinct real eigenvalues.

13
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v1

v2

x

a1v1

a2v2

Figure 2: Decomposition of x.

x

a1v1

a2v2

a1¸1v1

a2¸2v2

Ax

Figure 3: Construction of Ax.

The geometric interpretation above makes eigenvalue a very important concept. Eigenvalues are
also called characteristic values of a matrix. The set of all the eigenvalues of A is called the spectrum
of A. The largest of the absolute values of the eigenvalues of A is called the spectral radius of A.

6.2 Computation of eigenvalue and eigenvectors

Formally, eigenvalue and eigenvector are defined as follows. For A ∈ Rn×n, an eigenvalue λ of A is one
for which

Ax = λx (16)

has a nonzero solution x ̸= 0. The corresponding solutions are called eigenvectors of A.
Equation (16) is equivalent to

(A− λI)x = 0. (17)

As x ̸= 0, the matrix A− λI must be singular, so

det (A− λI) = 0. (18)

det (A− λI) is a polynomial of λ, called the characteristic polynomial. Correspondingly, (18) is
called the characteristic equation. So eigenvalues are roots of the characteristic equation. If an n× n
matrix A has n eigenvalues λ1, . . . , λn, it must be that

det (A− λI) = (λ1 − λ) · · · (λn − λ) .

14
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After obtaining an eigenvalue λ, we can find the associated eigenvector by solving (17). This is
nothing but solving a homogeneous system.

Example 12. Consider

A =

[
−5 2
2 −2

]
.

Then

det (A− λI) = 0 ⇒ det

([
−5− λ 2

2 −2− λ

])
= 0

⇒ (5 + λ) (2 + λ)− 4 = 0

⇒ λ = −1 or − 6.

So A has two eigenvalues: −1 and −6. The characteristic polynomial of A is λ2 + 7λ+ 6.
To obtain the eigenvector associated to λ = −1, we solve

(A− λI)x = 0 ⇔
([

−5 2
2 −2

]
+ 1

[
1 0
0 1

])
x =

[
−4 2
2 −1

]
x = 0.

One solution is

x =

[
1
2

]
.

As an exercise, show that an eigenvector associated to λ = −6 is
[
2 −1

]T .

Example 13 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

A =




−2 2 −3
2 1 −6
−1 −2 0


 .

Analogous procedures give that
λ1 = 5, λ2 = λ3 = −3.

So there are repeated eigenvalues. For λ2 = λ3 = −3, the characteristic matrix is

A+ 3I =




1 2 −3
2 4 −6
−1 −2 3


 .

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the
characteristic matrix has only rank 1. The characteristic equation

(A− λ2I)x = 0

has two linearly independent solutions



−2
1
0


 ,




3
0
1


 .

15
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Theorem 14 (Eigenvalue and determinant). Let A ∈ Rn×n. Then

detA =
n∏

i=1

λi.

Proof. Letting λ = 0 in the characteristic polynomial

p (λ) = det (A− λI) = (λ1 − λ) (λ2 − λ) . . .

gives

det (A) = p (0) =
n∏

i=1

λi.

Example 15. For the two-dimensional case

A =

[
a11 a12
a21 a22

]
⇒ p (λ) = det (A− λI) = (a11 − λ) (a22 − λ)− a12a21.

On the other hand
p (λ) = (λ1 − λ) (λ2 − λ) .

Matching the coefficients we get

λ1 + λ2 = a11 + a22

λ1λ2 = a11a22 − a12a21.

16
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6.3 Eigenbases and diagonalization

Eigenvectors of an n × n matrix A may (or may not!) form a basis for Rn. If we are interested in a
transformation y = Ax, such an “eigenbasis” (basis of eigenvectors), if exists, is of great advantage
because then we can represent any x in Rn uniquely as a linear combination of the eigenvectors x1, . . .
, xn, say, x = c1x1 + c2x2 + . . . + cnxn. And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by λ1, . . . , λn, we have Axj = λjxj, so that we simply obtain

y = Ax = A (c1x1 + c2x2 + . . . + cnxn)

= c1Ax1 + c2Ax2 + · · ·+ cnAxn

= c1λ1x1 + · · ·+ cnλnxn.

This shows that we have decomposed the complicated action of A on an arbitrary vector x into a sum
of simple actions (multiplication by scalars) on the eigenvectors of A.

Theorem 16 (Basis of Eigenvectors). If an n× n matrix A has n distinct eigenvalues, then A has a
basis of eigenvectors x1, . . . , xn for Rn.

Proof. We just need to prove that the n eigenvectors are linearly independent. If not, reorder the
eigenvectors and suppose r of them, {x1, x2, . . . , xr}, are linearly independent and xr+1, . . . , xn are
linearly dependent on {x1, x2, . . . , xr}. Consider xr+1. There must exist c1, . . . cn+1, not all zero, such
that

c1x1 + . . . cr+1xr+1 = 0. (19)

Multiplying A on both sides yields

c1Ax1 + . . . cr+1Axr+1 = 0.

Using Axi = λixi, we have
c1λ1x1 + · · ·+ cr+1λr+1xr+1 = 0.

But from (19), we know that
c1λr+1x1 + . . . cr+1λr+1xr+1 = 0.

Subtracting the last two equations gives

c1 (λ1 − λr+1)x1 + · · ·+ cr (λr − λr+1)xr = 0.

None of λ1 − λr+1, . . . , λr − λr+1 are zero, as the eigenvalues are distinct. Hence not all coefficients
c1 (λ1 − λr+1) , . . . , cr (λr − λr+1) are zero. Thus {x1, x2, . . . , xr} is not linearly independent–a con-
tradiction with the assumption at the beginning of the proof.

Theorem 16 provides an important decomposition–called diagonalization–of matrices. To show that,
we briefly review the concept of matrix inverses first.

Definition 17 (Matrix Inverse). The inverse A−1 of a square matrix A satisfies

AA−1 = A−1A = I.
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If A−1 exists, A is called nonsingular; otherwise, A is singular.

Theorem 18 (Diagonalization of a Matrix). Let an n × n matrix A have a basis of eigenvectors
{x1, x2, . . . , xn}, associated to its n distinct eigenvectors {λ1, λ2, . . . , λn}, respectively. Then

A = XDX−1 = [x1, x2, . . . , xn]




λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λn


 [x1, x2, . . . , xn]

−1 . (20)

Also,
Am = XDmX−1, (m = 2, 3, . . . ). (21)

Remark 19. From (21), you can find some intuition about the benefit of (20): Am can be tedious to
compute while Dm is very simple!

Proof. From Theorem 16, the n linearly independent eigenvectors of A form a basis. Write

Ax1 = λ1x1

Ax2 = λ2x2
...

Axn = λnxn

as

A [x1, x2, . . . , xn] = [x1, x2, . . . , xn]




λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λn


 .

The matrix [x1, x2, . . . , xn] is square. Linear independence of the eigenvectors implies that [x1, x2, . . . , xn]
is invertible. Multiplying [x1, x2, . . . , xn]

−1 on both sides gives (20).
(21) then immediately follows, as

Am =
(
XDX−1

)m
= XDX−1XDX . . .XDX−1 = XDmX−1.

Example 20. Let

A =

[
2 −3
1 −2

]
.

The matrix has eigenvalues at 1 and -1, with associated eigenvectors
[
3
1

]
,

[
1
1

]
.
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Then

X =

[
3 1
1 1

]
, A = X

[
1 0
0 −1

]
X−1.

Now if we are to compute A3000. We just need to do

A3000 = X

[
1 0
0 −1

]3000
X−1 = I.

7 Similarity transformation

Definition 21 (Similar Matrices. Similarity Transformation). An n × n matrix Â is called similar to
an n× n matrix A if

Â = T−1AT

for some nonsingular n×n matrix T . This transformation, which gives Â from A, is called a similarity
transformation.

Let S1 and S2 be two vector spaces of the same dimension. Take the same point P . Let u be its
coordinate in S1 and û be its coordinate in S2. These coordinates in the two vector spaces are related
by some linear transformation T :

u = T û, û = T−1u

Consider Fig. 4. Let the point P go through a linear transformation A in the vector space S1

to generate an output point Po. Po is physically the same point in both S1 and S2. However, the
coordinates of Po are different: if we see it from “standing inside” S1, then

y = Au

If we see it in S2, then the coordinate is some other value ŷ.

P

Po

S1

P

Po

S2

Figure 4: Same points in different vector spaces

How does the linear transformation A mathematically “look like” in S2?
Result:

ŷ = T−1y = T−1Au =
(
T−1AT

)
û
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namely, the linear transformation, viewed from S2, is

Â = T−1AT

It is central to recognize that the physical operation is the same: P goes to another point Po.
Different is our perspective of viewing this transformation. Â and A are in this sense called similar.

Purpose of doing similarity transformation: Â can be simpler! Consider, for instance, the following
example

S1

PPo PPo

S2

In S1, the transformation changes both coordinates of P while in S2, only the first coordinate of P
is changed.

Theorem 22 (Eigenvalues and Eigenvectors of Similar Matrices). If Â is similar to A, then Â has the
same eigenvalues as A. Furthermore, if x is an eigenvector of A, then y = T−1x is an eigenvector of
Â corresponding to the same eigenvalue.

8 Matrix inversion

This section provides a more detailed description of matrix inversion. Recall that the inverse A−1 of a
square nonsingular matrix A satisfies

AA−1 = A−1A = I.

Theorem 23 (Inverse is unique). If A has an inverse, the inverse is unique.

Concepts only. If both B and C are inverses of A, then BA = AB = I and CA = AC = I so that

B = IB = (CA)B = CAB = C (AB) = CI = C.

Connection with previous topics: The set of all n × n matrices is not a field. Multiplicative inverse is
unique.
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Definition 24 (Existence of a matrix inverse). The inverse A−1 of an n × n matrix A exists if and
only if the rank of A is n. Hence A is nonsingular if rank(A) = n, and singular if rank(A) < n.

Proof. Let A ∈ Rn×n and consider the linear equation

Ax = b.

If A−1 exists, then
A−1Ax = x = A−1b.

Hence A−1b is a solution to the linear equation. It is also unique. If not, then take another solution u;
we should have Au = b and u = A−1b. Since A−1 is unique, it must be that u = x.

Conversely, if A has rank n. Then we can solve Ax = b uniquely by Gauss elimination, to get

x = Bb,

where B is the backward substitution linear transformation in Gauss elimination. Hence

Ax = A (Bb) = (AB) b = Ib

for any b. Hence
AB = I.

Similarly, substituting Ax = b into x = Bb gives

x = B (Ax) = (BA)x = Ix,

and hence
BA = I.

Together B = A−1 exists.

There are several ways to compute the inverse of a matrix. One approach for low-order matrices is
the method of using adjugate matrix (sometimes also called adjoint matrix):

A−1 =
1

det (A)
adj (A)T .

We explain the computation by two examples. You can find additional details in your undergraduate
linear algebra course.

• 2× 2 example: [
a b
c d

]−1
=

1

ad− bc

[
(−1)1+1 d (−1)1+2 b

(−1)2+1 c (−1)2+2 a

]
,

where b in (−1)1+2 b is obtained by:

– noticing b is at row 1 column 2 of A;

– looking at the element at row 2 column 1 of A (notice the transpose in adj (A)T );
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– constructing a submatrix of A by removing row 2 and column 1 from it, i.e., [b] in this 2×2
example;

– computing the determinant of this submatrix.

– adding (−1)1+2 as a scalar

• 3× 3 example:

A−1 =



a b c
d e f
g h k



−1

=
1

detA




∣∣∣∣
e f
h k

∣∣∣∣ −
∣∣∣∣
b c
h k

∣∣∣∣
∣∣∣∣
b c
e f

∣∣∣∣

−
∣∣∣∣
d f
g k

∣∣∣∣
∣∣∣∣
a c
g k

∣∣∣∣ −
∣∣∣∣
a c
d f

∣∣∣∣∣∣∣∣
d e
g h

∣∣∣∣ −
∣∣∣∣
a b
g h

∣∣∣∣
∣∣∣∣
a b
d e

∣∣∣∣



,

where |·| denotes the determinant of a matrix. Similar as before, the row 1 column 2 element

−
∣∣∣∣
b c
h k

∣∣∣∣ is obtained via

(−1)2+1 det


A with [d, e, f ] ,



a
d
g


 removed


 .

Example 25. Find the inverse matrices of

A =

[
3 1
2 4

]
, B =




−1 1 2
3 −1 1
−1 3 4


 , C =




−0.5 0 0
0 4 0
0 0 1


 .

The answers are:

A−1 =

[
0.4 −0.1
−0.2 0.3

]
, B−1 =




−0.7 0.2 0.3
−1.3 −0.2 0.7
−1 3 4


 , C−1 =




−2 0 0
0 0.25 0
0 0 1


 .

The related MATLAB command for matrix inversion is inv().

Theorem 26. Inverse of products of matrices can be obtained from inverses of each factor:

(AB)−1 = B−1A−1,

and more generally
(AB . . . Y Z)−1 = Z−1Y −1 . . . B−1A−1. (22)
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Proof. By definition (AB) (AB)−1 = I. Multiplying A−1 on both sides from the left gives

B (AB)−1 = A−1.

Now multiplying the result by B−1 on both sides from the left, we get

(AB)−1 = B−1A−1.

The general case (22) follows by induction.

Fact 27. *Inverse of upper (lower) triangular matrices are upper (lower) triangular

Proof. (main idea) We can either use the adjoint matrix method or use the following decomposition of
upper(lower) triangular matrices

A = D (I +N) ,

where D is diagonal and N is strictly upper (lower) triangular with zeros diagonal elements. Then using
matrix Taylor expansion we have

A−1 = (I +N)−1D−1

=
(
I −N +N2 −N3 +N4 − . . .

)
D−1.

N is nilpotent: Nk are upper (lower) triangular and Nn = 0 for n larger than the row dimension of A.
D−1 is diagonal. Hence A−1 is upper (lower) triangular.

8.1 Block matrix decomposition and inversion

Consider

A =

[
3 4
1 2

]
.

Recall the key step in performing row operations on matrices in Gauss elimination:
[
3 4
1 2

]
→
[
3 4
0 2/3

]
,

where we had substracted one third of the first row in the second row. In matrix representations, the
above looks like [

1 0
−1/3 1

] [
3 4
1 2

]
=

[
3 4
0 2/3

]
.

For more general two by two matrices, we have
[

1 0
−ca−1 1

] [
a b
c d

]
=

[
a b
0 d− ca−1b

]
.

If we want to keep the second row unchanged and simplify the first row, we can do
[
1 −bd−1
0 1

] [
a b
c d

]
=

[
a− bd−1c 0

c d

]
.

23



Xu Chen Review of Linear Algebra for Controls February 17, 2023

Generalizing the concept to blok matrices (with compatible dimensions), we have
[

I 0
−BTA−1 I

] [
A B
BT C

]
=

[
A B
0 C −BTAB

]
,

and [
A B
0 C −BTAB

] [
I −A−1B
0 I

]
=

[
A 0
0 C −BTAB

]
.

Thus
[

I 0
−BTA−1 I

] [
A B
BT C

] [
I −A−1B
0 I

]
=

[
A 0
0 C −BTAB

]
.

Inversion is now very easy:
{[

I 0
−BTA−1 I

] [
A B
BT C

] [
I −A−1B
0 I

]}−1
=

[
A 0
0 C −BTAB

]−1

=⇒
[
I −A−1B
0 I

]−1 [
A B
BT C

]−1 [
I 0

−BTA−1 I

]−1
=

[
A 0
0 C −BTAB

]−1
,

and hence
[
A B
BT C

]−1
=

[
I −A−1B
0 I

] [
A 0
0 C −BTAB

]−1 [
I 0

−BTA−1 I

]

=

[
I −A−1B
0 I

] [
A−1 0

0
(
C −BTAB

)−1
] [

I 0
−BTA−1 I

]
.

The above steps work for general partitioned 2 by 2 matrices as well. The result is as follows
[

I 0
−CA−1 I

] [
A B
C D

] [
I −BA−1
0 I

]
=

[
A 0
0 D − CA−1B

]

[
A B
C D

]−1
=

[
I −BA−1
0 I

] [
A 0
0 D − CA−1B

]−1 [
I 0

−CA−1 I

]
,

or[
I −BD−1
0 I

] [
A B
C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C 0

0 D

]

[
A B
C D

]−1
=

[
I −BD−1
0 I

] [
A−BD−1C 0

0 D

]−1 [
I 0

−D−1C I

]
.

8.2 *LU and Cholesky decomposition

Fact 28. The following is true for upper and lower triangular matrices:
[
I 0
M I

]−1
=

[
I 0

−M I

]

[
I M
0 I

]−1
=

[
I −M
0 I

]
.
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From the last section
[

I 0
−CA−1 I

] [
A B
C D

] [
I −BA−1
0 I

]
=

[
A 0
0 D − CA−1B

]
.

Applying Fact 28 to the last equation gives the block LU decomposition:
[
A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]

=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]
,

which shows any square matrix can be decomposed into the product of a lower triangular matrix and
an upper triangular matrix.

There is also block Cholesky decomposition
[
A B
C D

]
=

[
I

CA−1

]
A
[
I A−1B

]
+

[
0 0
0 D − CA−1B

]
,

or using half matrices
[
A B
C D

]
=

[
A

1
2

CA−
∗
2

] [
A

∗
2 A−

1
2B

]
+

[
0 0

0 Q
1
2

] [
0 0
0 Q

∗
2

]

Q = D − CA−1B,

where
A

1
2A

∗
2 = A, Q

1
2Q

∗
2 = Q.

Hence [
A B
C D

]
= LU,

where

LU =

[
A

1
2 0

CA−
∗
2 0

] [
A

∗
2 A−

1
2B

0 0

]
+

[
0 0

0 Q
1
2

] [
0 0
0 Q

∗
2

]
=

[
A

1
2 0

CA−
∗
2 Q

1
2

] [
A

∗
2 A−

1
2B

0 Q
∗
2

]
.

8.3 Determinant and matrix inverse identity

Although AB ̸= BA in general, the determinants of products have the following property:

det (AB) = det (BA) = detA detB,

where A and B should be square to start with.

Theorem 29 (Sylvester’s determinant theorem). For A ∈ Rm×n and B ∈ Rn×m,

det (Im + AB) = det (In +BA) ,

where Im and In are the m×m and n× n identity matrices, respectively.
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Proof. Construct

M =

[
Im −A
B In

]
.

From the decomposition

M =

[
Im 0
B In

] [
Im −A
0 In +BA

]
,

we have
detM = det (In +BA) .

Alternatively

M =

[
Im + AB −A

0 In

] [
Im 0
B In

]
.

Hence
detM = det (Im + AB) .

Therefore
det (Im + AB) = detM = det (In +BA) .

More generally, for any invertible m×m matrix X

det (X + AB) = det (X) det
(
In +BX−1A

)
,

which comes from

X + AB = X
(
I +X−1AB

)

⇒ det (X + AB) = det
[
X
(
I +X−1AB

)]
= detX det

(
I +X−1AB

)
.

8.4 Matrix inversion lemma

Fact 30 (Matrix inversion lemma). Assume A is nonsingular and (A+BC)−1 exists. The following is
true

(A+BC)−1 = A−1
(
I −B

(
CA−1B + I

)−1
CA−1

)
. (23)

Proof. Consider
(A+BC)x = y. (24)

We aim at getting
x = (∗) y, where (∗) will be our (A+BC)−1. (25)

First, let
Cx = d. (26)

Equation (24) can be written as

Ax+Bd = y

Cx− d = 0.
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Solving the first equation yields
x = A−1 (y −Bd) . (27)

Then (26) becomes
CA−1 (y −Bd) = d.

Combining the terms about d and applying matrix inversion yield

d =
(
CA−1B + I

)−1
CA−1y.

Putting the result in (27) yields

x = A−1
(
y −B

(
CA−1B + I

)−1
CA−1y

)

= A−1
(
I −B

(
CA−1B + I

)−1
CA−1

)
y.

Comparing the above with (25), we obtain (23).

Exercise 31. The matrix inversion lemma is a powerful tool useful for many applications. One appli-
cation in adaptive control and system identification uses

(
A+ ϕϕT

)−1
= A−1

(
I − ϕϕTA−1

ϕTA−1ϕ+ 1

)
.

Prove the above result. Prove also the general case (called rank one update):

(
A+ bcT

)
= A−1 − 1

1 + cTA−1b

(
A−1b

) (
cTA−1

)
.

Fact 32 (More extended matrix inversion lemma). Assume A, C, and A + BCBT are nonsingular.
The following is true

(
A+BCBT

)−1
= A−1

(
I −B

(
CBTA−1B + I

)−1
CBTA−1

)
(28)

= A−1 − A−1B
(
CBTA−1B + I

)−1
CBTA−1 (29)

= A−1 − A−1B
(
BTA−1B + C−1

)−1
BTA−1. (30)

Proof. Consider (
A+BCBT

)
x = y.

We aim at getting x = (∗) y, where (∗) will be our
(
A+BCBT

)−1. First, let

CBTx = d.

We have

Ax+Bd = y

CBTx− d = 0.
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Solving the first equation yields
x = A−1 (y −Bd) .

Then
CBTA−1 (y −Bd) = d

gives
d =

(
CBTA−1B + I

)−1
CBTA−1y.

Hence

x = A−1
(
y −B

(
CBTA−1B + I

)−1
CBTA−1y

)

= A−1
(
I −B

(
CBTA−1B + I

)−1
CBTA−1

)
y

and (28) follows.

The extended matrix inversion lemma is key in transforming the Kalman filter to the information
filter when inverting the innovation of covariance matrices.

8.5 Special inverse equalities

Fact 33. The following matrix equalities are true

• (I +GK)−1G = G (I +KG)−1

to prove the result, start with G (I +KG) = (I +GK)G

• GK (I +GK)−1 = G (I +KG)−1K = (I +GK)−1GK (the proof uses the first equality twice)

• generalization 1: (σ2I +GK)
−1
G = G (σ2I +KG)

−1

• generalization 2: if M is invertible then (M +GK)−1G =M−1G (I +KM−1G)
−1

Exercise 34. Check validity of the following equality, assuming proper dimensions and invertibility of
matrices:

• Z (I + Z)−1 = I − (I + Z)−1

• (I +XY )−1 = I −XY (I +XY )−1 = I −X (I + Y X)−1 Y

• extension
(
I +XZ−1Y

)−1
= I −XZ−1Y

(
I +XZ−1Y

)−1
= I −XZ−1

(
I + Y XZ−1

)−1
Y

= I −X (Z + Y X)−1 Y
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9 Spectral mapping theorem

Theorem 35 (Spectral Mapping Theorem). Take any A ∈ Cn×n and a polynomial (in s) f (s) (more
generally, analytic functions). Then

eig (f (A)) = f (eig (A)) .

Proof. Let
f (A) = x0I + x1A+ x2A

2 + . . . .

Let λ be an eigenvalue of A. We first observe that λn is an eigenvalue of An. This can be seen from
det (λnI − An) = det [(λI − A) p (A)] = det (λI − A) det (p (A)) where p (A) is a polynomial of A.

Now consider f (λ) = x0 + x1λ+ x2λ
2 + . . . . We have

det (f (λ) I − f (A)) = det
[
x1 (λI − A) + x2

(
λ2I − A2

)
+ x3

(
λ3I − A3

)
+ . . .

]

= det [(λI − A) q (A)]

= det (λI − A) det (q (A)) .

Hence f (λ) is an eigenvalue of f (A).
Conversely, if γ is an eigenvalue of f (A), we need to prove that γ is in the form of f (λ). Factorize

the polynomial
f (λ)− γ = a0 (λ− α1) (λ− α2) . . . (λ− αn) .

On the other hand, we note that as a matrix polynomial with the same coefficients:

f (A)− γI = a0 (A− α1I) (A− α2I) . . . (A− αnI) .

But det (f (A)− γI) = 0, which means that there is at least one αi such that

det (A− αiI) = 0,

which says that αi is an eigenvalue of A. Hence

f (λ)− γ = a0 (λ− αi)
∏

k ̸=i

(λ− αk) = 0,

i.e.
γ = f (λ) ,

where λ is an eigenvalue of A.

Example 36. Compute the eigenvalues of

A =

[
99.8 2000
−2000 99.8

]
.

Solution:

A = 99.8I + 2000

[
0 1
−1 0

]
.

So

eig(A) = 99.8 + 2000 eig

[
0 1
−1 0

]
= 99.8± 2000i.
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10 Matrix exponentials

Since the Taylor series

est = 1 + st+
s2t2

2!
+
s3t3

3!
+ . . .

converges everywhere, we can define the exponential of a matrix A ∈ Cn×n by

eAt = I + At+
A2t2

2!
+
A3t3

3!
+ . . . .

Fact 37. Properties of matrix exponentials

1. eA0 = I

2. eA(t+s) = eAteAs

3. If AB = BA then e(A+B)t = eAteBt = eBteAt

4. det
(
eAt
)
= etrace(A)t

5. eAt is nonsingular for all t ∈ R and
(
eAt
)−1

= e−At

6. eAt is the unique solution X of the linear system of ordinary differential equations

Ẋ = AX, subject to X(0) = I
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11 Inner product

11.1 Inner product spaces

Basics: Inner product, or dot product, brings a metric for vector lengths. It takes two vectors and
generates a number. In Rn, we have

⟨a, b⟩ ≜ aT b = [a1, a2, . . . , an]




b1
b2
...
bn


 .

Clearly, ⟨a, b⟩ ≜ aT b = ⟨b, a⟩. Letting b = a above, we get the square of the length of a:

||a|| =
√
a21 + a22 + · · ·+ a2n.

Formal definitions:

Definition 38. A real vector space V is called a real inner product space, if for any vectors a and b in
V there is an associated real number ⟨a, b⟩, called the inner product of a and b, such that the following
axioms hold:

• (linearity) For all scalars q1 and q2 and all vectors a, b, c ∈ V

⟨q1a+ q2b, c⟩ = q1 ⟨a, b⟩+ q2 ⟨b, c⟩

• (symmetry) ∀a, b ∈ V
⟨a, b⟩ = ⟨b, a⟩

• (positive definiteness) ∀a ∈ V
⟨a, a⟩ ≥ 0

where ⟨a, a⟩ = 0 if and only if a = 0.

Definition 39 (2-norm of vectors). The length of a vector in V is defined by

||a|| =
√
⟨a, a⟩ ≥ 0.

For Rn,
||a|| =

√
aTa =

√
a21 + a22 + · · ·+ a2n.

This is the Euclidean norm or 2-norm of the vector. Rn equiped with the inner product ⟨a, b⟩ =
√
aT b

is called the n-dimensional Euclidean space.
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Example 40 (Inner product for functions, function spaces). The set of all real-valued continuous
functions f (x), g (x), . . . x ∈ [α, β] is a real vector space under the usual addition of functions and
multiplication by scalars. An inner product on this function space is

⟨f, g⟩ =
∫ β

α

f (x) g (x) dx

and the norm of f is

||f (x) || =
√∫ β

α

f (x)2 dx.

Inner products is also closely related to the geometric relationships between vectors. For the two-
dimensional case, it is readily seen that

v1 =

[
1
0

]
, v2 =

[
0
1

]

is a basis of the vector space. The two vectors are additionally orthogonal, by direct observation.
More generally, we have:

Definition 41 (Orthogonal vectors). Vectors whose inner product is zero are called orthogonal.

Definition 42 (Orthonormal vectors). Orthogonal vectors with unity norm is called orthonormal.

Definition 43. The angle between two vectors is defined by

cos∠ (a, b) =
⟨a, b⟩

||a|| · ||b|| =
⟨a, b⟩√

⟨a, a⟩ ·
√
⟨b, b⟩

.

11.2 Trace (standard matrix inner product)

The trace of an n× n matrix A = [ajk] is given by

Tr (A) =
n∑

i=1

aii. (31)

Trace defines the so-called matrix inner product:

⟨A,B⟩ = Tr
(
ATB

)
= Tr

(
BTA

)
= ⟨B,A⟩ , (32)

which is closely related to vector inner products. Take an example in R3×3: write the matrices in the
column-vector form B = [b1,b2,b3] , A = [a1, a2, a3], then

ATB =




aT
1 b1 ∗ ∗
∗ aT

2 b2 ∗
∗ ∗ aT

3 b3


 . (33)
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So
Tr
(
ATB

)
= aT

1 b1 + aT
2 b2 + aT

3 b3,

which is nothing but the inner product of the two “stacked” vectors




a1

a2

a3


 and




b1

b2

b3


. Hence

⟨A,B⟩ = Tr
(
ATB

)
=

〈


a1

a2

a3


 ,




b1

b2

b3



〉
.

Exercise 44. If x is a vector, show that

Tr(xxT ) = xTx.

12 Norms

Previously we have used || · || to denote the Euclidean length function. At different times, it is useful
to have more general notions of size and distance in vector spaces. This section is devoted to such
generalizations.

12.1 Vector norm

Definition 45. A norm is a function that assigns a real-valued length to each vector in a vector space
Cm. To develop a reasonable notion of length, a norm must satisfy the following properties: for any
vectors a, b and scalars α ∈ C,

• the norm of a nonzero vector is positive: ||a|| ≥ 0, and ||a|| = 0 if and only if a = 0

• scaling a vector scales its norm by the same amount: ||αa|| = |α| ||a||

• triangle inequality: ||a+ b|| ≤ ||a||+ ||b||

Let w1 be a n× 1 vector. The most important class of vector norms, the p norms, of w are defined by

||w||p =
(

n∑

i=1

|wi|p
)1/p

, 1 ≤ p <∞.

Specifically, we have

∥w∥1 =
∑n

i=1 |wj| (absolute column sum)

∥w∥∞ = maxi |wi|

∥w∥2 =
√
wHw (Euclidean norm)

Remark 46. When unspecified, || · || refers to 2 norm in this set of notes.
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Intuitions for the infinity norm By definition

||w||∞ = lim
p→∞

(
n∑

i=1

|wi|p
)1/p

.

Intuitively, as p increases, maxi |wi| takes more and more weighting in
∑n

i=1 |wi|p. More rigorously, we
have

lim
p→∞

((max |wi|)p)1/p ≤ lim
p→∞

(
n∑

i=1

|wi|p
)1/p

≤ lim
p→∞

(
n∑

i=1

(max |wi|)p
)1/p

.

Both limp→∞ ((max |wi|)p)1/p and limp→∞ (
∑n

i=1 (max |wi|)p)1/p equals maxi |wi|. Hence ||w||∞ =
max |wi|.

12.2 Induced matrix norm

As matrices define linear transformations between vector spaces, it makes sense to have a measure of
the “size” of the transformation. Induced matrix norms2 are defined by

||M ||p←q = max
x ̸=0

||Mx||p
||x||q

. (34)

In other words, ||M ||q←q is the maximum factor by which M can “stretch” a vector x.
In particular, the following matrix norms are common:

∥M∥1←1 = maxj
∑n

i=1 |Mij| maximum absolute column sum

∥M∥∞←∞ = maxi
∑m

j=1 |Mij| maximum absolute row sum

∥M∥2←2 =
√
λmax (M∗M) maximum singular value

The induced 2 norm can be understood as follows:

||M ||2←2 = max
x ̸=0

||Mx||2
||x||2

= max
x ̸=0

√
x∗M∗Mx

⟨x, x⟩2
=
√
λmax (M∗M).

Remark 47. When p = q in (34), often the induced matrix norm is simply written as ||M ||p.

12.3 Frobenius norm and general matrix norms

Matrix norms do not have to be induced by vector norms.
2It is ’induced’ from other vector norms as shown in the definition.
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Formal definition: Let Mn be the set of all n × n real- or complex-valued matrices. We call a
function || · || : Mn → R a matrix norm if for all A,B ∈ Mn it satisfies the following axioms:

1. ||A|| ≥ 0

2. ∥A∥ = 0 if and only if A = 0

3. ||cA∥ = |c|∥A∥ for all complex scalars c

4. ∥A+B∥ ≤ ∥A∥+ ∥B∥

5. ∥AB∥ ≤ ∥A∥∥B∥

The formal definition of matrix norms is slightly amended from vector norms. This is because although
Mn is itself a vector space of dimension n2, it has a natural multiplication operation that is obsent in
regular vector spaces. A vector norm on matrices that satisfies the first four axioms and not necessarily
axiom 5 is often called a generalized matrix norm.

Frobenius norm: The most important matrix norm which is not induced by a vector norm is the
Frobenius norm, defined by

∥A∥F ≜
√
Tr (A∗A) =

√
< A,A > =

√∑

i,j

|ai,j|2.

Frobenius norm is just the Euclidean norm of the matrix, written out as a long column vector:

||A||F = (Tr (A∗A))
1
2 =

(
m∑

i=1

m∑

j=1

|ai,j|2
) 1

2

.

We also have bounds for Frobenius norms:

||AB||2F ≤ ||A||2F ||B||2F .

Transforming from one matrix norm to another:

Theorem 48. If || · || is a matrix norm on Mn and if S ∈ Mn is nonsingular, then

||A||S = ||S−1AS|| ∀A ∈ Mn

is a matrix norm.

Exercise 49. Prove Theorem 48.
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12.4 Norm inequalities

1. Cauchy-Schwartz Inequality:
|⟨x, y⟩| ≤ ||x||2||y||2,

which is the special case of the Holder inequality

|⟨x, y⟩| ≤ ||x||p||y||q,
1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞. (35)

Both bounds are tight: for certain choices of x and y, the inequalities become equalities.

2. Bounding induced matrix norms:

||AB||l←n ≤ ||A||l←m||B||m←n, (36)

which comes from

||ABx||l ≤ ||A||l←m||Bx||m ≤ ||A||l←m||B||m←n||x||n.
In general, the bound is not tight. For instance, ||An|| = ||A||n does not hold for n ≥ 2 unless A
has special structures.

3. (35) and (36) are useful for computing bounds of difficult-to-compute norms. For instance, ||A||22
is expensive to compute but ||A||1 and ||A||∞ are not. As a special case of (36), we have

||A||22 ≤ ||A||1||A||∞.
We can obtain an upper bound of ||A||22 by computing ||A||1||A||∞.

4. Any matrix induced norms of A are larger than the absolute eigenvalues of A:

|λ (A) | ≤ ||A||p.
Hence as a special case, the spectral radius is upper bounded by any matrix norms:

ρ (A) ≤ ∥A∥.

5. Let A ∈ Mn and ϵ > 0 be given. There is a matrix norm such that

ρ (A) ≤ ∥A∥ ≤ ρ (A) + ϵ.

Hint: A can be decomposed as A = U∗∆U where U is unitary and ∆ is upper triangular [Schur
triangulariztion theorem]. Let Dt = diag(t, t2, . . . , tn) and compute

Dt∆D
−1
t =




λ1 t−1d12 . . . . . . t−n+1d1n
0 λ2 t−1d23 . . . t−n+2d1n
... . . . λ3

. . . ...
. . . . . . . . . ...

... . . . . . . t−1dn−1,n
0 . . . . . . 0 λn




.

For t large enough, the sum of the absolute values of the off-diagonal entries is less than ϵ and
in particular

∥Dt∆D
−1
t ∥1 ≤ ρ (A) + ϵ.
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12.5 Exercises

1. Let x be an m vector and A be an m× n matrix. Verify each of the following inequalities, and
give an example when the equality is achieved.

(a) ||x||∞ ≤ ||x||2
(b) ||x||2 ≤

√
m||x||∞

(c) ||A||∞ ≤ √
n||A||2

(d) ||A||2 ≤
√
m||A||∞

2. Let x be a random vector with mean E [x] = 0 and covariance E
(
xxT

)
= I, then

∥A∥2F = E
[
∥Ax∥22

]
.

Hint: use Exercise 44.

13 Symmetric, skew-symmetric, and orthogonal matrices

13.1 Definitions and basic properties

A real square matrix A is called symmetric if A = AT , skew-symmetric if A = −AT .

Fact 50. Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

R =
1

2

(
A+ AT

)
, S =

1

2

(
A− AT

)
.

If A = [ajk], then the complex conjugate of A is denoted asA = [ajk], i.e., each element
ajk = α + iβ is replaced with its complex conjugate ajk = α− iβ.

A square matrix A is called Hermitian if AT = A; skew-Hermitian if AT = −A.

Example 51. Find the symmetric, skew-symmetric, Hermitian, and skew-Hermitian matrices in the
set: {[

1 2
2 1

]
,

[
1 2i
2i 1

]
,

[
1 2i

−2i 1

]
,

[
0 2
−2 0

]
,

[
0 2 + 2i

2− 2i 0

]}
.

We introduce one more class of important matrices: a real square matrix A is called orthogonal3

if
ATA = AAT = I. (37)

Writing A in the column-vector notation

A = [a1, a2, . . . , an] ,

3Some people also call use the notion of orthonormal matrix. But orthogonal matrix is more often used (we can say
orthonormal basis).
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we get the equivalent form of (37):

ATA =




aT1
aT2
...
aTn



[
a1, a2, . . . , an

]
=




aT1 a1 aT1 a2 . . . aT1 an
aT2 a1 aT2 a2 . . . aT2 an

...
...

...
...

aTna1 aTna2 . . . aTnan


 = I.

Hence it must be that

aTj aj = 1

aTj am = 0 ∀j ̸= m,

namely, aj and am are orthonormal for any j ̸= m.
The complex version of an orthogonal matrix is the unitary matrix. A square matrix A is called

unitary if AA
T
= A

T
A = I, namely A−1 = A

T
.

Remark 52. Often the complex conjugate transpose A
T

is written as A∗.

Theorem 53. The eigenvalues of symmetric matrices are all real.

Proof. ∀ : A ∈ Rn×n with AT = A. Au = λu⇒ uTAu = λuTu, where u is the complex conjugate of
u. uTAu is a real number, as

uTAu = uTAu

= uTAu ∵ A ∈ Rn×n

= uTATu ∵ A = AT

= λuTu ∵ (Au)T = (λu)T

= λuTu ∵ uTu ∈ R
= uTAu ∵ Au = λu.

By definition of complex conjugate numbers, uTu ∈ R. So λ = uTAu
uTu

is also a real number.

Theorem 54. The eigenvalues of skew-symmetric matrices are all imaginary or zero.

The proof is left as an exercise.

Fact 55. An orthogonal transformation preserves the value of the inner product of vectors a and b
in Rn. That is, for any a and b in Rn, orthogonal n × n matrix A, and u = Aa, v = Ab we have
⟨u, v⟩ = ⟨a, b⟩, as

uTv = aTATAb = aT b.

Hence the transformation also preserves the length or 2-norm of any vector a in Rn given by ||a||2 =√
⟨a, a⟩.

Theorem 56. The determinant of an orthogonal matrix is either 1 or -1.
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Proof. UUT = I ⇒ detU detUT = (detU)2 = 1.

Theorem 57. The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and
have absolute value 1.

Proof. Au = λu ⇒ ATAu = λATu ⇒ u = λATu ⇒ uTu = λuTATu ⇒ uTu = λuTA
T
u =

λλuTu⇒
(
|λ|2 − 1

)
uTu = 0.

Properties of the special matrices From the above results, we have the following table:

real matrix complex matrix properties
symmetric (A = AT ) Hermitian (A∗ = A) eigenvalues are all real

orthogonal
(ATA = AAT = I)

unitary
(A∗A = AA∗ = I)

eigenvalues have unity magnitude; Ax
maintains the 2-norm of x

skew-symmetric
(AT = −A)

skew-Hermitian
(A∗ = −A)

eigenvalues are all imaginary or zero

Based on the eigenvalue characteristics, we have:

• symmetric and Hermitian matrices are like the real line in the complex domain

• skew-symmetric/Hermitian matrices are like the imaginary line

• orthogonal/unitary matrices are like the unit circle

Exercise 58 (Representation of matrices using special matrices). Many unitary matrices can be mapped
as functions of skew-Hermitian matrices as follows

U = (I − S)−1 (I + S) ,

where S ̸= I. Show that if S is skew-Hermitian, then U is unitary.

13.2 Symmetric eigenvalue decomposition (SED)

When A ∈ Rn×n has n distinct eigenvalues, we have seen the useful result of matrix diagonalization:

A = UΛU−1 = [u1, . . . , un]



λ1

. . .
λn


 [u1, . . . , un]

−1 , (38)

where λi’s are the distinct eigenvalues associated to the eigenvector ui’s.
The inverse matrix in (38) can be cumbersome to compute though.
The spectral theorem, aka symmetric eigenvalue decomposition theorem,4 significantly simplifies the

result when A is symmetric.
4Recall that the set of all the eigenvalues of A is called the spectrum of A. The largest of the absolute values of the

eigenvalues of A is called the spectral radius of A.
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Theorem 59. ∀ : A ∈ Rn×n, AT = A, there always exist λi and ui, such that

A =
n∑

i=1

λiuiu
T
i = UΛUT , (39)

where:5

• λi’s: eigenvalues of A

• ui: eigenvector associated to λi, normalized to have unity norms

• U = [u1, u2, · · · , un]T is an orthogonal matrix, i.e., UTU = UUT = I

• {u1, u2, · · · , un} forms an orthonormal basis

• Λ =



λ1

. . .
λn


 .

To understand the result, we show an important theorem first.

Theorem 60. ∀ : A ∈ Rn×n with AT = A, then eigenvectors of A, associated with different eigenval-
ues, are orthogonal.

Proof. Let Aui = λiui and Auj = λjuj. Then uTi Auj = uTi λjuj = λju
T
i uj. In the meantime,

uTi Auj = uTi A
Tuj = (Aui)

T uj = λiu
T
i uj. So λiu

T
i uj = λju

T
i uj. But λi ̸= λj. It must be that

uTi uj = 0.

Theorem 59 now follows. If A has distinct eigenvalues, then U = [u1, u2, · · · , un]T is orthogonal if
we normalize all the eigenvectors to unity norm. If A has r(< n) distinct eigenvalues, we can choose
multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

Observations:

• If we “walk along” uj, then

Auj =

(∑

i

λiuiu
T
i

)
uj = λjuju

T
j uj = λjuj, (40)

where we used the orthonormal condition of uTi uj = 0 if i ̸= j. This confirms that uj is an
eigenvector.

5uiu
T
i ∈ Rn×n is a symmetric dyad, the so-called outerproduct of ui and ui. It has the following properties:

• ∀ v ∈ Rn×1,
(
vvT

)
ij
= vivj . (Proof:

(
vvT

)
ij
= eTi

(
vvT

)
ej = vivj , where ei is the unit vector with all but the

ith elements being zero.)

• link with quadratic functions: q (x) = xT
(
vvT

)
x =

(
vTx

)2
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• {ui}ni=1 is a orthonormal basis ⇒∀x ∈ Rn, ∃ x =
∑

i αiui, where αi =< x, ui >. And we have

Ax = A
∑

i

αiui =
∑

i

αiAui =
∑

i

αiλiui =
∑

i

(αiλi)ui, (41)

which gives the (intuitive) picture of the geometric meaning of Ax: decompose first x to the
space spanned by the eigenvectors of A, scale each components by the corresponding eigenvalue,
sum the results up, then we will get the vector Ax.

With the spectral theorem, next time we see a symmetric matrix A, we immediately know
that

• λi is real for all i

• associated with λi, we can always find one or more real eigenvectors

• ∃ an orthonormal basis {ui}ni=1, which consists of the eigenvectors

• if A ∈ R2×2, then if you compute first λ1, λ2 and u1, you won’t need to go through the regular
math to get u2, but can simply solve for a u2 that is orthogonal to u1 with ∥u2∥ = 1.

Example 61. Consider the matrix A =

[
5

√
3√

3 7

]
. Computing the eigenvalues gives

det

[
5− λ

√
3√

3 7− λ

]
= 35− 12λ+ λ2 − 3 = (λ− 4) (λ− 8) = 0

⇒λ1 = 4, λ2 = 8.

We can know one of the eigenvectors from

(A− λ1I) t1 = 0 ⇒
[

1
√
3√

3 3

]
t1 = 0 ⇒ t1 =

[
−
√
3
2

1
2

]
.

Note here we normalized t1 such that ||t1||2 = 1. With the above computation, we no more need to do
(A− λ2I) t2 = 0 for getting t2. Keep in mind that A here is symmetric, so has eigenvectors orthogonal
to each other. By direct observation, we can see that

x =

[ 1
2√
3
2

]

is orthogonal to t1 and ||x||2 = 1. So t2 = x.

Theorem 62 (Eigenvalues of symmetric matrices). If A = AT ∈ Rn×n, then the eigenvalues of A
satisfy
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λmax = max
x∈Rn, x̸=0

xTAx

∥x∥22
(42)

λmin = min
x∈Rn, x̸=0

xTAx

∥x∥22
. (43)

Proof. Perform SED to get

A =
n∑

i=1

λiu
T
i ui,

where {ui}ni=1 form a basis of Rn. Then any vector x ∈ Rn can be decomposed as

x =
n∑

i=1

αiui.

Thus

max
x ̸=0

xTAx

∥x∥22
= max

αi

(
∑

i αiui)
T ∑

i λiαiui∑
i α

2
i

= max
αi

∑
i λiα

2
i∑

i α
2
i

= λmax.

The proof for (43) is analogous and omitted.

13.3 Symmetric positive-definite matrices

Definition 63. A symmetric matrix P ∈ Rn×n is called positive-definite, written P ≻ 0, if xTPx > 0
for all x (̸= 0) ∈ Rn. P is called positive-semidefinite, written P ⪰ 0, if xTPx ≥ 0 for all x ∈ Rn

Definition 64. A symmetric matrix P ∈ Rn×n is called negative-definite, written P ≺ 0, if −P ≻ 0,
i.e., xTPx < 0 for all x (̸= 0) ∈ Rn. P is called negative-semidefinite, written P ⪯ 0, if xTPx ≤ 0
for all x ∈ Rn

When A and B have compatible dimensions, A ≻ B means A−B ≻ 0.
Positive-definite matrices can have negative entries, as shown in the next example.

Example 65. The following matrix is positive-definite

P =

[
2 −1
−1 2

]
,

as P = P T and take any v = [x, y]T , we have

vTPv =

[
x
y

]T [
2 −1
−1 2

] [
x
y

]
= 2x2 + 2y2 − 2xy = x2 + y2 + (x+ y)2 ≥ 0,

and the equality sign holds only when x = y = 0.

Conversely, matrices whose entries are all positive are not necessarily positive-definite.
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Example 66. The following matrix is not positive-definite

A =

[
1 2
2 1

]
,

as [
1
−1

]T [
1 2
2 1

] [
1
−1

]
= −2 < 0.

Theorem 67. For a symmetric matrix P , P ≻ 0 if and only if all the eigenvalues of P are positive.

Proof. Since P is symmetric, we have

λmax (P ) = max
x∈Rn, x ̸=0

xTAx

∥x∥22
(44)

λmin (P ) = min
x∈Rn, x ̸=0

xTAx

∥x∥22
, (45)

which gives
xTAx ∈

[
λmin∥x∥22, λmax∥x∥22

]
.

For x ̸= 0, ∥x∥22 is always positive. It can thus be seen that xTAx > 0, x ̸= 0 ⇔ λmin > 0.

Lemma. For a symmetric matrix P , P ⪰ 0 if and only if all the eigenvalues of P are none-negative.

Theorem. If A is symmetric positive definite, X is full column rank, then XTAX is positive definite.

Proof. Consider y
(
XTAX

)
y = xTAx, which is always positive unless x = 0. But X is full rank so

Xy = x = 0 if and only if y = 0. This proves XTAX is positive definite.

Fact. All principle submatrices of A are positive definite.

Proof. Use the last theorem. Take X = e1, X = [e1, e2], etc. Here ei is a column vector whose
ith-entry is 1 and all other entries are zero.

Example 68. The following matrices are all not positive-definite:
[
−1 0
0 1

]
,

[
−1 1
1 2

]
,

[
2 1
1 −1

]
,

[
1 2
2 1

]
.

Positive-definite matrices are like positive real numbers. We can have the concept of square root of
positive-definite matrices.

Definition 69. Let P ⪰ 0. We can perform symmetric eigenvalue decomposition to obtain P = UDUT

where U is orthogonal with UUT = I and D is diagonal with all diagonal elements being none negative

D =




λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λn


 ⪰ 0
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. Then the square root of P , written P
1
2 , is defined as

P
1
2 = UD

1
2UT

,where

D
1
2 =




√
λ1 0 . . . 0

0
√
λ2

. . . ...
... . . . . . . 0
0 . . . 0

√
λn




.

13.4 General positive-definite matrices

Definition 70. A general square matrix Q ∈ Rn×n is called positive-definite, written as Q ≻ 0, if
xTQx > 0 ∀x ̸= 0.

We have discussed the case when Q is symmetric. If not, recall that any real square matrix can be
decomposed as the sum of a symmetric matrix and a skew symmetric matrix:

Q =
Q+QT

2
+
Q−QT

2
,

where Q+QT

2
is symmetric.

Notice that xT Q−QT

2
x = xTQx−

(
xTQx

)T
= 0. So for a general square real matrix:

Q ≻ 0 ⇔ Q+QT ≻ 0.

Example 71. The following matrices are positive definite but not symmetric
[
1 1
0 1

]
,

[
1 0
1 1

]
.

For complex matrices with Q = Q∗ = QR + jQI , we have

Q ≻ 0 ⇔ x∗Qx > 0, ∀x ̸= 0

⇔
(
xTR − jxTI

)
(QR + jQI) (xR + jxI) > 0

⇔
(
xR
xI

)T (
1
j

)(
QR QI

)( 1
j

)(
1
j

)T (
xR
xI

)

⇔
(
xR
xI

)T (
QR QI

−QI QR

)(
xR
xI

)
> 0

⇔ xTRQRxR − xTI QIxR + xTRQIxI + xTI QRxI > 0.
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13.5 *Positive-definite functions and non-constant matrices

We can further extend the concept of positive definiteness to general and even time-varying functions,
by placing upper and/or lower bounds that are “positive-definite like”.

Define first two special functions:

1. class-K function: ψ ∈ C0 : [0, a] → [0,∞) with ψ (0) = 0 and ψ strictly increasing,

2. class-K∞ function: if the domain a = ∞ and ψ (r) → ∞ as r → ∞.

Note: ψ is continuous but does not need to be continuously differentiable, e.g.

ψ = min
{
x, x2

}

is a class-K function.

Lemma 72. Let V : D → R be a continuous, positive definite function. Let Br ⊂ D for some r > 0.
Then there exist class-K functions ψ and ϕ defined on [0, r] such that

ϕ (∥x∥) ≤ V (x) ≤ ψ (∥x∥)

for all x ∈ Br.

• if the domain D = Rn then r = ∞ ,

• if V (x) is radially unbounded, then ψ and ϕ can be class-K∞.

Definition 73. A time-dependent function V (t, x) is positive-semidefinite if

V (t, x) ≥ ϕ(∥x∥),

where ϕ is class-K.

Definition 74. A time-varying matrix P (t) is positive definite if there exists a lower-bounding positive
definite matrix such that

P (t) ⪰ c3I ≻ 0, ∀t ≥ 0.
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14 Singular value and singular value decomposition (SVD)

14.1 Motivation

Symmetric eigenvalue decomposition is great but many matrices are not symmetric. A general matrix
A may actually not even be square. Singular value decomposition is an important matrix decomposition
technique that works for arbitrary matrices.6

For a general none-square matrix A ∈ Cm×n, eigenvalues and eigenvectors are generalized to

Avj = σjuj (46)

Be careful about the dimensions: if m > n, we have



.

.

.
. . A . .

.

.

.






v1 v2 . . . vn




︸ ︷︷ ︸
V

=




u1 u2 . . . un




︸ ︷︷ ︸
Û




σ1
σ2

. . .
σn




︸ ︷︷ ︸
Σ̂

.

It turns out that, if A has full column rank n, then we can find a V that is unitary (V V ∗ = V ∗V = I)
and a Û that has orthonormal columns. Hence

A = ÛΣ̂V ∗. (47)

14.2 SVD

(47) forms the so-called reduced singular value decomposition (SVD). The idea of a “full” SVD is as
follows. The columns of Û are n orthonormal vectors in the m-dimensional space Cm. They do not
form a basis for Cm unless m = n. We can add additional m − n orthonormal columns to Û and
augment it to a unitary matrix U . Now the matrix dimension has changed, Σ̂ needs to be augmented
to compatible dimensions as well. To maintain the equality (47), the newly added elements to Σ̂ are
set to zero.

Theorem 75. Let A ∈ Cm×n with rank r. Then we can find orthogonal matrices U ∈ Cm×m and
V ∈ Cn×n such that

A = UΣV ∗,

6History of SVD: discovered between 1873 and 1889, independently by several pioneers; did not became widely known
in applied mathematics until the late 1960s, when it was shown that SVD can be computed effectively and used as the
basis for solving many problems.
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where

Σ ∈ Rm×n is diagonal
U ∈ Cm×m is unitary
V ∈ Cn×n is unitary.

In addition, the diagonal entries σj of Σ are nonnegative and in nonincreasing order; that is, σ1 ≥ σ2 ≥
· · · ≥ σr > 0.

Proof. Notice that A∗A is positive semi-definite. Hence, A∗A has a full set of orthonormal eigenvectors;
its eigenvalues are real and nonnegative. Order these eigenvalues as

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = λr+2 = · · · = λn = 0.

7Let {v1, . . . , vn} be an orthonormal choice of eigenvectors of A∗A corresponding to these eigenvalues:

A∗Avi = λivi.

Then,
||Avi||2 = v∗iA

∗Avi = λiv
∗
i vi = λi.

For i > r, it follows that Avi = 0.
For 1 ≤ i ≤ r, we have

A∗Avi = λivi.

Recall (46), we define σi =
√
λi and get

Avi = σiui

A∗ui = σivi.

For 1 ≤ i, j ≤ r, we have

⟨ui, uj⟩ = u∗iuj =
1

σiσj
v∗iA

∗Avj =
1

σiσj
λjv

∗
i vj =

σj
σi
v∗i vj =

{
1 i = j,

0 i ̸= j.

Hence {u1, . . . , ur} is an orthonormal set of eigenvectors. Extending this set to form an orthonormal
basis for Cm gives

U =
[
u1, . . . , ur ur+1, . . . , um

]
.

For i ≤ r, we already have
Avi = σiui,

7Fact: rank (A) = rank (A∗A). To see this, notice first, that rank (A) ≥ rank (A∗A) by definition of rank. Second,
A∗Ax = 0 ⇒ x∗A∗Ax = 0 ⇒ ||Ax|| = 0 ⇒ Ax = 0, hence rank (A) ≤ rank (A∗A).
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namely

A [v1, . . . vr] = [u1, . . . , ur]




σ1
σ2

. . .
σr




=
[
u1, . . . , ur ur+1, . . . , um

]




σ1
σ2

. . .
σr
0
...
0




.

For vr+1, . . . , we have already seen that Avr+1 = Avr+2 = · · · = 0, hence

A [v1, . . . vr|vr+1, . . . , vn]︸ ︷︷ ︸
n×n

=
[
u1, . . . , ur ur+1, . . . , um

]
︸ ︷︷ ︸

m×m




σ1
. . .

σr
0

. . .
0
...
0




︸ ︷︷ ︸
m×n

⇒ A = UΣV ∗.

Theorem 76. The range space of A is spanned by {u1, . . . , ur}. The null space of A is spanned by
{vr+1, . . . , vn}.

Theorem 77. The nonzero singular values of A are the square roots of the nonzero eigenvalues of
A∗A or AA∗.

Theorem 78. ||A||2 = σ1, i.e., the induced two norm of A is the maximum singular value of A.

The next important theorem can be easily proved via SVD.
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Theorem (Fundermental theory of linear algebra). Let A ∈ Rm×n. Then

R (A) +N
(
AT
)
= Rm,

and
R (A)⊥N

(
AT
)
.

Proof. By singular value decomposition, we have

A = UΣV T

AT = V ΣUT .

The range space of A is the first r columns of U , from the first equation. The null space of AT is the
last m− r columns of U , from the second equation.

New intuition of matrix vector operation With A = UΣV ∗, a new intuition for Ax = UΣV ∗x
is formed. Since V is unitary, it is norm-preserving, in the sense that V ∗x does not change the 2-norm
of the vector x. In other words, V ∗x only rotates x in Cn. The diagonal matrix Σ then functions to
scale (by its diagonal values) the rotated vector. Finally, U is another rotation in Cm.

14.3 Properties of singular values

Fact. Let A and B be matrices with compatible dimensions. The following are true
σ (A+B) ≤ σ (A) + σ (B) ,
σ (AB) ≤ σ (A)σ (B) .

Proof. The first inequality comes from

σ (A+B) = max
v ̸=0

||Av +Bv||2
||v||2

≤ max
v ̸=0

||Av||2 + ||Bv||2
||v||2

.

The second inequality uses

σ (AB) = max
v ̸=0

||ABv||2
||v||2

≤ max
v ̸=0

||A||2||Bv||2
||v||2

.

14.4 Exercises

1. Compute the singular values of the following matrices

(a)

[
3

−2

]
, (b)

[
2

3

]
, (c)




0 2
0 0
0 0


 , (d)

[
1 1
0 0

]
, (e)

[
1 1
1 1

]
.
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2. Show that if A is real, then it has a real SVD (i.e., U and V are both real).

3. For any matrix A ∈ Rn×m, construct

M =




n×n︷︸︸︷
0

n×m︷︸︸︷
A

AT
︸︷︷︸
m×n

0︸︷︷︸
m×m


 ∈ R(n+m)×(n+m),

which satisfies
MT =M.

M is Hermitian, and hence has real eigenvalues and eigenvectors:
[

0 A
AT 0

] [
uj
vj

]
= σj

[
uj
vj

]
. (48)

(a) Show that

i. vj is in the co-kernal (perpendicular to kernal/null space) of A and uj is in the range
of A.

ii. if σj and
[
uj
vj

]
form a eigen pair for M , then−σj and

[
uTj ,−vTj

]T also form an eigen

pair for M
iii. eigenvalues of M always appear in pairs that are symmetric to the imaginary axis.

(b) Use the results to show that, if

A =

[
1 2 4
1 4 32

]
,

then M must have eigenvalues that are equal to 0.

4. Suppose A ∈ Cm×m and has an SVD A = UΣV ∗. Find an eigenvalue decomposition of
[

0 A∗

A 0

]
.

5. Worst input direction in matrix vector multiplications. Recall that any matrix defines a linear
transformation:

Mw = z

What is the worst input direction for the vector w? Here worst means: if we fix the input norm,
say ∥w∥ = 1, ∥z∥ will reach a maximum value (the worst case) for a specific input direction in
w.

(a) Show that the worst ||z|| is ||M || when ||w|| = 1.

(b) Provide procedures to obtain the w that gives the maximum ||z||, for the cases of 1 norm,
∞ norm, and 2 norm.
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homogeneous system, 5
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L
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lower triangular matrices, 1

M
Matrix inversion lemma, 26
matrix product, 2

N
nonhomogeneous system, 5
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nullity, 10

O
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R
range space, 10
rank, 10
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S
singular, 11
skew-symmetric, 4
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spectrum, 14
symmetric, 4

T
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U
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V
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