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Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

> the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator

(or LQRY):
» no need to specify closed-loop poles

» performance is explicit: a performance index is defined ahead of
time
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1. Problem formulation
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Goal

Consider an n-dimensional state-space system
x(t) = Ax (t) + Bu(t), x(to) = xo
y(t) = Cx(t)

where x € R”, u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /tf (XT(t)QX(t) - uT(t)Ru(t)> dt

to

» S>0,Q = 0,R > 0: for a nonnegative cost and well-posed
problem

%XT(tf)SX(tf) penalizes the deviation of x from the origin at t¢
xT(t)Qx(t) t € (to, tr) penalizes the transient

often, Q = CTC = xT(t)Qx(t) = y (t)" y (¢)

u' (t)Ru(t) penalizes large control efforts

vvyyy
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Observations

J= %XT(tf)sx(tf) N % / (xT(£)Qx(t) + uT (t)Ru(t)) dt

» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J=3 /OO (xT(t)@x(t) + uT (t)Ru(t)) dt

to

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

> often, we have
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2. Solution to the infinite-horizon /stationary LQ problem
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Solution concept: infinite-horizon /stationary LQ

Consider the performance index
J= 5/ (X(t)T Qx(t) +u(t)” Ru(t)) dt, Q=CTC
to

with x(t) = Ax (t) + Bu(t), x(t) = xo and R > 0.
> recall when addressing J = 1 [ x7 (t) Qx (t) dt, x = Ax
> we defined V (t) = 3x7 (t) Px(t), P = PT, such that

J+V(0)—-V(0) = /OOOXT(t)QX(t)dt+/()OOV(t)dt

(
1
2
L[ 7 T
/ X7 (0) (Q+ ATP + PA) x (1) ot
2 Jo
> vyielding 7= 2xT(0) Pyx (0) where P, comes from

ATP + PA+ Q = 0, when the origin is asymptotically stable.
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Solution of the infinite-horizon LQ

It turns out (see details in course notes) that for
J= %/ (X(t)T Qx(t) +u(t)” Ru(t)) dt, Q=CTC
to

with x(t) = Ax (t) + Bu(t), x(t) = x and R > 0:
> if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)
» then the optimal control input is given by
u(t) = —R7'BT Py x(t)
> where P, (= P]) is the positive (semi)definite solution of the
algebraic Riccati equation (ARE)
ATP+PA—-PBR'BTP+ Q=0
» and the closed-loop system is asymptotically stable, with
Jmin = JO = iX(to)T P+X(t0)
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Observations

» the control u(t) = —R™1BT Px(t) is a state feedback law

» under the optimal control, the closed loop is given by
x=Ax—BR'BTPx=(A— BR‘IBTP) xand J =

3 [0 (xTQ@x + uTRu) dt = 3 f (Q + PBR™'B"P) xdt
Qe
» for the above closed-loop system, the Lyapunov Eq. is

AZ—P + PAC = _QC
& (A—BRBTP) P+ P(A—BR'BTP)=—-Q— PBR'BTP
=S ATP+ PA—PBRIB™P = —Q <« the ARE!

» when the ARE solution P, is positive definite, %XTPJFX is a
Lyapunov function for the closed-loop system
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Observations

» Lyapunov Eq. and the ARE:

Cost J= %fooo xT Qxdt J= %ftzo (XTQX + uTRu) dt
x = Ax+ Bu
Syst. dynamics x = Ax (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq. ATP+PA+Q=0 ATPLPA—PBRBTP+Q=0
Optimal control N/A u(t) = —R71BT P, x(t)
Opt. cost  J° = 1x7(0) Pyx(0) 10 = 1x(t0) Pyx(to)

» the guaranteed closed-loop stability is an attractive feature

» more nice properties will show up later
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Example: Stationary LQR of a pure inertia system

» Consider

. |01 0 Y A s ’
X_[O O]X—i—{l]u,J—E/o (x {0 01x+Ru>dt,R>O

» the ARE is

~fo o 0o 1], 1 o o] 1 _ [V2RY*  RY/?
e L i R e R U L W e

» the closed-loop A matrix can be computed to be

0 1
_ “1pTp _
Ac=A—-BRB'P, = |:_R—1/2 —\/§R‘1/4]

» = closed-loop eigenvalues:
1 n 1
\/§R1/4 \/§R1/4J

Ao =
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Figure: Eigenvalue Ao = _\/511?1/4 + ﬁ,l?mj evolution (root locus)

» R 1 (more penalty on the control input) = A; > move closer to
the origin = slower state convergence to zero

» R | (allow for large control efforts) = A1, move further to the
left of the complex plane = faster speed of closed-loop dynamics
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MATLAB commands

» care: solves the ARE for a continuous-time system:
[P\, K] = care (A,B,C"C,R)

where K = R71BTP and A is a diagonal matrix with the

closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.

» Igr and Igry: provide the LQ regulator with
[K,P,A] =lar (A,B,C"C,R)
[K, P,\] = lary (sys, Qy, R)
where sys is defined by x = Ax + Bu, y = Cx + Du, and
1 o
J= §/0 (y"Q,y + uTRu) dt
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3. Solution to the finite-horizon LQ problem
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Solution to the finite-horizon LQ
Consider the performance index

J= %XT(tf)SX(tf) + % /: (xT(t)@x(t) + u" (t)Ru(t)) dt

with x = Ax + Bu, x(t)) =x, S>=0, R=0,and Q= C"C.
> do a similar Lyapunov construction: V (t) £ Ix7 (t) P (t)x (t)

» then
d 1-T 1 T . 1 T .
IV(t):ix (t)P(t)x(t)+§x (t)P(t)x(t)+§x (t) P(t)x(t)
= %(Ax + Bu)T Px + %XT%X + %XTP(AX + Bu)

N dt

1
=5 {XT (t) <ATP L PA) x(t)+u"BTPx + XTPBu}
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Solution to the finite-horizon LQ

with £V (t) from the last slide, we have

V(tr) — V(to) = /tf Vdt

_ ;/: <XT (ATP L PAL ‘;’:) x+uTBTPx+ xTPBu) dt
» adding .
1 1 f

J= 5XT(t,f)Sx(tf) + 5/ (xT(t)@x(t) + uT (t)Ru(t)) dt

to

to both sides yields

SV (1)~ V (1) = 3T () Sx(tr)+

products of x and u quadratic

1 dP
2/to (XT <ATP+ PA+ Q+ dt) x+u"BTPx + x" PBu+ uTRu) dt
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Solution to the finite-horizon LQ

> ‘“complete the squares” in u" B" Px + x" PBu+ u" Ru:
A ~ J/ v
products of x and u quadratic

u"BTPx +x"PBu+ u"Ru scalar case Ru? + 2uBPx

—Ru?+2 (xPBR_1/2> RV2y+ (R—1/2BPX)2 _ (R—1/2BPX)2
VR
- (Rl/zu + R_I/ZBPx)z - (R—1/2BPX)2

» extending the concept to the general vector case:

uT BT Px+xTPBu+u"Ru = |Rzu+R= BT Px|3—x" PBR™ BT Px
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Solution to the finite-horizon LQ

T4V (t) =V (ko) = %XT(rf)sx(tfH

1 [ dP
5 / (XT (ATP +PA+Q+ dt) x4+ u"B"Px+ x"PBu + uTRu) dt
to

|}“completing the squares”

J+ %XT(tf)P(tf)x(tf) - %XT(to)P(to)x(to) - %XT(tf)sx(tfH

1 tr P 1 —1
5/ <XT (‘:jt +ATP4+PA+ Q- PBR—lBTP>x +[|Rzu+ RzBTPx§> dt
to

> the best that the control can do in minimizing the cost is to have

u(t)= —K (t)x (t) = =R BT P(t)x(t)

—%: ATP+PA-PBR'BTP+Q, P(tr)=S

to yield the optimal cost J° = 2xJ P(to)xo
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Observations

u(t) = —K (t) x (t) = —R™IBT P(t)x(t) optimal state feedback control
dP

= ATP+PA—PBRIBTP+Q, P(t/)=S the Riccati differential equation
» boundary condition of the Riccati equation is given at the final

time t = the equation must be integrated backward in time
» backward integration of

P
—% =ATP+PA+Q—PBR'BTP, P(tf) =S
is equivalent to the forward integration of
d:t =ATP*+PA+Q—PBR'BTP*, P*(0)=S (2)

by letting P (t) = P* (tr — t)

> Eq. (2) can be solved by numerical integration, e.g., ODE45 in
Matlah
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Observations

J- %XT(tf)sx(tf) + % / C(xT(0)@x(t) + uT (t)Ru(t)) dt

to

17
Jo = §X0 P(to)Xo
» the minimum value J° is a function of the initial state x (ty)

» J (and hence J°) is nonnegative = P (ty) is at least positive
semidefinite

> to can be taken anywhere in (0, tf) = P (t) is at least positive
semidefinite for any t

> the state feedback law is time varying because of P (t)
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Example: LQR of a pure inertia system

Consider
[8 (1)} + m u, J = %XT(tf)SX(tf) + % /Otf (xTQer Ru2) dt
where S = [é (1)], Q= Ll) 8}, R>0
> we let P (t) = P*(tr — t) and solve
% =ATP*+P*A4+ Q- P*BR'BTP*, P*(0) = [é ﬂ

dP* 0 0],  ,.[0 1] [1 0] _.[0]1 ,
(:}dt_[l O}P“D [0 o]*[o O]PMR[O 1P

> letting
1

e dtpn =1-3 (Pu) pri(0) =1
F= {pil piz] = dtp12 = Po— §p12p22 Pi> (0) =0
12 P22 doi _ope 1032 pi(0)=1

gtP2 = 4P12 — & (p32) 22
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Example: LQR of a pure inertia system: analysis

P* with R =0.0001

Figure: LQ example: P*(0) = [1 0}, P(t) = P*(tr — t)

> if the final time tf is large, P* (t) forward converges to a
stationary value

> i.e., P(t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis

P* withR=1 P* with R =100

404

304

0.75 204

0 2 a4 6 8 10 12 14 0 5 10 15 20 25 30 35 40
time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) (1)]

» a larger R results in a longer transient

> i.e., a larger penalty on the control input yields a longer time to

settle
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Example: LQR of a pure inertia

P* with R =100

40
30
— P
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109
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@Po=|y 3

601 |
504 ¢

404 :

system: analysis

P with R =100 and a different initial value

304 :

2]

5 10 15 20 25 30 35 40
time/s

o Po=[7

Figure: LQ with different boundary values in Riccati difference Eq.

» for the same R, the initial value P (tf) = S becomes irrelevant

24/30



4. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ

» the ARE and the Riccati differential Eq.:

J= %XT(tf)SX(tf)JF
¥ (xT(£)Qx(t) + uT (t)Ru(t)) dt

to

1

Cost J=3J (xTQx+uRu) dt L
x =Ax+ Bu

Syst. (A, B) controllable/stabilizable x = Ax+ Bu

(A, C) observable/detectable
9 — ATP 4+ PA—PBR™IBTP+Q

Key Eq. ATP+PA—PBRIBTP+ Q=0 d
P(tf)=S
Opt. control u(t) = —R™1BT P x(t) u(t) = —R™1BT P(t)x(t)
Opt. cost 12 = 2] Pixo 2 = IxJ P(to)xo

> in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time
» when t; — 00, the Riccati differential Eq. converges to ARE and
the LQ becomes the stationary LQ, under two conditions that
we now discuss in details:
> (A, B) is controllable/stabilizable
> (A, C) is observable/detectable
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded
> then if J° = IxJ P (0)x is unbounded, we will have
1P (0) ]| = o0

> eg.:

| 2

>
>
>

x=x+0-u,x(0) =1, Q@ =1 and R be any positive value
system is uncontrollable and the uncontrollable mode is unstable
x (t) will keep increasing to infinity

=J =37 (x"Qx + uT Ru) dt unbounded regardless of u (t)
in this case, the Riccati equation is

P i1 ®
dt dt

forward integration of P* (backward integration of P), will drive
P*(o0) and P (0) to infinity

=2P"+1
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Need for observability /detectability

if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” Qx = x7 CT Cx will regulate all states

» formally: if (A, C) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P, (proof in course notes)
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Additional excellent properties of stationary LQ

» we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:

> at least a 60 degree phase margin
> infinite gain margin
> stability is guaranteed up to a 50% reduction in the gain
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Applications and practice

choosing R and Q:

| 4

if there is not a good idea for the structure for @ and R, start
with diagonal matrices;

gain an idea of the magnitude of each state variable and input
variable

call them x; max (i=1,....n) and Ujmax (i=1,...,r)

make the diagonal elements of Q and R inversely proportional to
|| X max||? and ||u;max||?, respectively.
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