ME 547: Linear Systems Linear Quadratic Optimal Control

Xu Chen

University of Washington

Motivation

state feedback control:

- ▶ allows to arbitrarily assign the closed-loop eigenvalues for a controllable system
- \triangleright the eigenvalue assignment has been manual thus far
- ▶ performance is implicit: we assign eigenvalues to induce proper error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator (or LQR):

- ▶ no need to specify closed-loop poles
- ▶ performance is explicit: a performance index is defined ahead of time

1. [Problem formulation](#page-2-0)

Goal

Consider an n-dimensional state-space system

$$
\begin{aligned} \dot{x}(t) &= Ax\left(t\right) + Bu\left(t\right), \ x\left(t_0\right) = x_0\\ y\left(t\right) &= Cx\left(t\right) \end{aligned} \tag{1}
$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^r$, and $y \in \mathbb{R}^m$.

LQ optimal control aims at minimizing the performance index

$$
J = \frac{1}{2} \mathbf{x}^{\mathsf{T}}(t_f) S \mathbf{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} \left(\mathbf{x}^{\mathsf{T}}(t) Q \mathbf{x}(t) + u^{\mathsf{T}}(t) R u(t) \right) dt
$$

- ▶ $S \succ 0$, $Q \succ 0$, $R \succ 0$: for a nonnegative cost and well-posed problem
- \Rightarrow $\frac{1}{2}x^{\mathcal{T}}(t_f)Sx(t_f)$ penalizes the deviation of x from the origin at t_f
- $\blacktriangleright \; \overline{x^{\mathsf{T}}(t)} Q x(t) \; t \in (t_0, t_f)$ penalizes the transient
- ▶ often, $Q = C^T C \Rightarrow x^T(t)Qx(t) = y(t)^T y(t)$
- \blacktriangleright $u^{\mathsf{T}}(t)R u(t)$ penalizes large control efforts

Observations

$$
J = \frac{1}{2}x^{T}(t_{f})Sx(t_{f}) + \frac{1}{2}\int_{t_{0}}^{t_{f}} (x^{T}(t)Qx(t) + u^{T}(t)Ru(t)) dt
$$

 \triangleright when the control horizon is made to be infinitely long, i.e., $t_f \rightarrow \infty$, the problem reduces to the infinite-horizon LQ problem

$$
J = \frac{1}{2} \int_{t_0}^{\infty} (x^{\mathsf{T}}(t) Qx(t) + u^{\mathsf{T}}(t) R u(t)) dt
$$

- \triangleright terminal cost is not needed, as it will turn out, that the control will have to drive x to the origin. Otherwise J will go unbounded.
- \blacktriangleright often, we have

$$
J = \frac{1}{2} \int_0^{\infty} \left(x^{\mathcal{T}}(t) Qx(t) + u^{\mathcal{T}}(t) R u(t) \right) dt
$$

2. [Solution to the infinite-horizon/stationary LQ problem](#page-5-0)

Solution concept: infinite-horizon/stationary LQ

Consider the performance index

$$
J = \frac{1}{2} \int_{t_0}^{\infty} \left(x(t)^T Qx(t) + u(t)^T R u(t) \right) dt, \ Q = C^T C
$$

with $\dot{x}(t) = Ax(t) + Bu(t)$, $x(t_0) = x_0$ and $R \succ 0$.

- recall when addressing $\overline{J} = \frac{1}{2}$ $\frac{1}{2} \int_0^\infty x^{\mathcal{T}}(t) \mathcal{Q}x(t) dt$, $\dot{x} = Ax$
- \blacktriangleright we defined $V(t) = \frac{1}{2} \mathbf{x}^{\mathsf{T}}(t) P\mathbf{x}(t)$, $P = P^{\mathsf{T}}$, such that

$$
\overline{J} + V(\infty) - V(0) = \frac{1}{2} \int_0^{\infty} x^T(t) Qx(t) dt + \int_0^{\infty} \dot{V}(t) dt
$$

$$
= \frac{1}{2} \int_0^{\infty} x^T(t) (Q + A^T P + P A) x(t) dt
$$

rielding $\overline{J}^0 = \frac{1}{2}$ $\frac{1}{2}$ x^T (0) P_+ x (0) where P_+ comes from $A^{\mathcal{T}}P+PA+\bar{Q}=0$, when the origin is asymptotically stable.

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 7 / 30

It turns out (see details in course notes) that for

$$
J = \frac{1}{2} \int_{t_0}^{\infty} \left(x(t)^T Qx(t) + u(t)^T R u(t) \right) dt, \ Q = C^T C
$$

with $\dot{x}(t) = Ax(t) + Bu(t)$, $x(t_0) = x_0$ and $R \succ 0$:

- \blacktriangleright if (A, B) is controllable (stabilizable) and (A, C) is observable (detectable)
- \triangleright then the optimal control input is given by

$$
u(t) = -R^{-1}B^{T}P_{+}x(t)
$$

 \blacktriangleright where $P_+\left(=P_+^{\mathcal{T}}\right)$ is the positive (semi)definite solution of the algebraic Riccati equation (ARE)

$$
A^T P + P A - P B R^{-1} B^T P + Q = 0
$$

 \triangleright and the closed-loop system is asymptotically stable, with

$$
J_{\min} = J^0 = \frac{1}{2} \chi(t_0)^T P_+ \chi(t_0)
$$
\n
$$
J_{\min} = J^0 = \frac{1}{2} \chi(t_0)^T P_+ \chi(t_0)
$$
\n
$$
B/30
$$

Observations

- ▶ the control $u(t) = -R^{-1}B^T P x(t)$ is a state feedback law
- \triangleright under the optimal control, the closed loop is given by $\dot{\mathsf{x}} = \mathsf{A}\mathsf{x} - \mathsf{B}\mathsf{R}^{-1}\mathsf{B}^\mathsf{T}\mathsf{P}\mathsf{x} = \left(\mathsf{A} - \mathsf{B}\mathsf{R}^{-1}\mathsf{B}^\mathsf{T}\mathsf{P}\right)\mathsf{x}$ and $\mathsf{J} =$ ${\overline{\qquad A_c}}$ $\overline{1}$ $\frac{1}{2} \int_{t_0}^{\infty} (x^T Q x + u^T R u) dt = \frac{1}{2}$ $\frac{1}{2}\int_{t_0}^{\infty}x^{\mathsf{T}}\left(Q + PBR^{-1}B^{\mathsf{T}}P\right)xdt$ Q_c Q_c
- \triangleright for the above closed-loop system, the Lyapunov Eq. is

$$
A_c^T P + P A_c = -Q_c
$$

\n
$$
\Leftrightarrow (A - BR^{-1}B^T P)^T P + P (A - BR^{-1}B^T P) = -Q - PBR^{-1}B^T P
$$

\n
$$
\Leftrightarrow A^T P + P A - PBR^{-1}B^T P = -Q \Leftrightarrow \text{the ARE!}
$$

 \blacktriangleright when the ARE solution P_+ is positive definite, $\frac{1}{2} \times^T P_+ \times$ is a Lyapunov function for the closed-loop system

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 9/30

Observations

▶ Lyapunov Eq. and the ARE:

 \blacktriangleright the guaranteed closed-loop stability is an attractive feature

 \triangleright more nice properties will show up later

Example: Stationary LQR of a pure inertia system

\blacktriangleright Consider

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, J = \frac{1}{2} \int_0^\infty \left(x^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} x + Ru^2 \right) dt, R > 0
$$

▶ the ARE is

$$
0 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} P + P \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - P \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{R} \begin{bmatrix} 0 & 1 \end{bmatrix} P \Rightarrow P_+ = \begin{bmatrix} \sqrt{2}R^{1/4} & R^{1/2} \\ R^{1/2} & \sqrt{2}R^{3/4} \end{bmatrix}
$$

 \triangleright the closed-loop A matrix can be computed to be

$$
A_c = A - BR^{-1}B^T P_+ = \begin{bmatrix} 0 & 1 \\ -R^{-1/2} & -\sqrt{2}R^{-1/4} \end{bmatrix}
$$

 $\triangleright \Rightarrow$ closed-loop eigenvalues:

$$
\lambda_{1,2} = -\frac{1}{\sqrt{2}R^{1/4}} \pm \frac{1}{\sqrt{2}R^{1/4}}j
$$

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \ J = \frac{1}{2} \int_0^\infty \left(x^T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} x + Ru^2 \right) dt
$$

Figure: **Eigenvalue** $\lambda_{1,2} = -\frac{1}{\sqrt{2}R^{1/4}} \pm \frac{1}{\sqrt{2}R^{1/4}}$ $\frac{1}{2R^{1/4}}$ j evolution (root locus)

- ▶ R \uparrow (more penalty on the control input) $\Rightarrow \lambda_1$, move closer to the origin \Rightarrow slower state convergence to zero
- ▶ R \downarrow (allow for large control efforts) $\Rightarrow \lambda_{1,2}$ move further to the left of the complex plane \Rightarrow faster speed of closed-loop dynamics

MATLAB commands

 \triangleright care: solves the ARE for a continuous-time system:

$$
[P, \Lambda, K] = \text{care} (A, B, C^T C, R)
$$

where $\mathcal{K} = R^{-1}B^{\mathsf{T}}P$ and $\mathsf{\Lambda}$ is a diagonal matrix with the closed-loop eigenvalues, i.e., the eigenvalues of $A - BK$, in the diagonal entries.

 \blacktriangleright lgr and lgry: provide the LQ regulator with

$$
[K, P, \Lambda] = \text{Iqr}(A, B, C^T C, R)
$$

$$
[K, P, \Lambda] = \text{Iqry}(sys, Q_y, R)
$$

where sys is defined by $\dot{x} = Ax + Bu$, $y = Cx + Du$, and

$$
J = \frac{1}{2} \int_0^\infty \left(y^T Q_y y + u^T R u \right) dt
$$

3. [Solution to the finite-horizon LQ problem](#page-13-0)

Consider the performance index

$$
J = \frac{1}{2}x^{T}(t_{f})Sx(t_{f}) + \frac{1}{2}\int_{t_{0}}^{t_{f}} (x^{T}(t)Qx(t) + u^{T}(t)Ru(t)) dt
$$

with $\dot{x} = Ax + Bu$, $x(t_0) = x_0$, $S \succeq 0$, $R \succ 0$, and $Q = C^{\mathsf{T}} C$.

▶ do a similar Lyapunov construction: $V(t) \triangleq \frac{1}{2}$ $\frac{1}{2}x^{\mathsf{T}}(t)P(t)x(t)$ \blacktriangleright then

$$
\frac{d}{dt}V(t) = \frac{1}{2}\dot{x}^{T}(t) P(t) x(t) + \frac{1}{2}x^{T}(t) \dot{P}(t) x(t) + \frac{1}{2}x^{T}(t) P(t) \dot{x}(t) \n= \frac{1}{2} (Ax + Bu)^{T} P x + \frac{1}{2}x^{T} \frac{dP}{dt} x + \frac{1}{2}x^{T} P(Ax + Bu) \n= \frac{1}{2} \left\{ x^{T}(t) \left(A^{T} P + \frac{dP}{dt} + PA \right) x(t) + u^{T} B^{T} P x + x^{T} P Bu \right\}
$$

with $\frac{d}{dt}V(t)$ from the last slide, we have

$$
V(t_f) - V(t_0) = \int_{t_0}^{t_f} V dt
$$

= $\frac{1}{2} \int_{t_0}^{t_f} \left(x^T \left(A^T P + PA + \frac{dP}{dt} \right) x + u^T B^T P x + x^T P B u \right) dt$

$$
\triangleright \text{ adding} \quad J = \frac{1}{2} \mathbf{x}^{\mathsf{T}}(t_f) S \mathbf{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} \left(\mathbf{x}^{\mathsf{T}}(t) Q \mathbf{x}(t) + u^{\mathsf{T}}(t) R u(t) \right) dt
$$

to both sides yields

$$
J + V(t_f) - V(t_0) = \frac{1}{2}x^{T}(t_f)Sx(t_f) +
$$

$$
\frac{1}{2}\int_{t_0}^{t_f} \left(x^{T}\left(A^{T}P + PA + Q + \frac{dP}{dt}\right)x + \underbrace{u^{T}B^{T}Px + x^{T}PBu}_{\text{products of } x \text{ and } u} + \underbrace{u^{T}Ru}_{\text{quadratic}}\right)dt
$$

$$
\begin{aligned}\n\bullet \text{ "complete the squares" in } \underbrace{u^T B^T P x + x^T P B u}_{\text{products of } x \text{ and } u} + \underbrace{u^T R u}_{\text{quadratic}}: \\
u^T B^T P x + x^T P B u + u^T R u^{\text{ scalar case}} R u^2 + 2 u B P x \\
= R u^2 + 2 \left(x P B R^{-1/2} \right) \underbrace{R^{1/2} u}_{\sqrt{R u^2}} + \left(R^{-1/2} B P x \right)^2 - \left(R^{-1/2} B P x \right)^2 \\
&= \left(R^{1/2} u + R^{-1/2} B P x \right)^2 - \left(R^{-1/2} B P x \right)^2\n\end{aligned}
$$

 \blacktriangleright extending the concept to the general vector case:

$$
u^T B^T P x + x^T P B u + u^T R u = ||R^{\frac{1}{2}} u + R^{-\frac{1}{2}} B^T P x ||_2^2 - x^T P B R^{-1} B^T P x
$$

$$
J + V(t_f) - V(t_0) = \frac{1}{2}x^{T}(t_f)Sx(t_f) +
$$

$$
\frac{1}{2}\int_{t_0}^{t_f} \left(x^{T}\left(A^{T}P + PA + Q + \frac{dP}{dt}\right)x + u^{T}B^{T}Px + x^{T}PBu + u^{T}Ru\right)dt
$$

⇓"completing the squares"

$$
J + \frac{1}{2} \chi^{T}(t_{f}) P(t_{f}) \chi(t_{f}) - \frac{1}{2} \chi^{T}(t_{0}) P(t_{0}) \chi(t_{0}) = \frac{1}{2} \chi^{T}(t_{f}) S \chi(t_{f}) +
$$

$$
\frac{1}{2} \int_{t_{0}}^{t_{f}} \left(\chi^{T} \left(\frac{dP}{dt} + A^{T} P + PA + Q - PBR^{-1}B^{T} P \right) \chi + ||\underline{R^{\frac{1}{2}} u + R^{\frac{-1}{2}} B^{T} P \chi}||_{2}^{2} \right) dt
$$

 \blacktriangleright the best that the control can do in minimizing the cost is to have

$$
u(t) = -K(t)x(t) = -R^{-1}B^{T}P(t)x(t)
$$

$$
-\frac{dP}{dt} = A^{T}P + PA - PBR^{-1}B^{T}P + Q, P(t_f) = S
$$
to yield the optimal cost $J^{0} = \frac{1}{2}x_{0}^{T}P(t_{0})x_{0}$

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 18 / 30

Observations

$$
u(t) = -K(t) \times (t) = -R^{-1}B^{T}P(t)\times(t)
$$
 optimal state feedback control
\n
$$
-\frac{dP}{dt} = A^{T}P + PA - PBR^{-1}B^{T}P + Q, P(t_f) = S
$$
 the Riccati differential equation

- \triangleright boundary condition of the Riccati equation is given at the final time $t_f \Rightarrow$ the equation must be integrated backward in time
- \triangleright backward integration of

$$
-\frac{dP}{dt} = A^T P + PA + Q - PBR^{-1}B^T P, P(t_f) = S
$$

is equivalent to the *forward* integration of

$$
\frac{dP^*}{dt} = A^T P^* + P^* A + Q - P^* B R^{-1} B^T P^*, P^*(0) = S \quad (2)
$$

by letting $P(t) = P^*(t_f - t)$

▶ Eq. [\(2\)](#page-18-0) can be solved by numerical integration, e.g., ODE45 in Matlab UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 19 / 30

Observations

$$
J = \frac{1}{2} \mathbf{x}^T(t_f) S \mathbf{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} (\mathbf{x}^T(t) Q \mathbf{x}(t) + u^T(t) R u(t)) dt
$$

$$
J^0 = \frac{1}{2} \mathbf{x}_0^T P(t_0) \mathbf{x}_0
$$

- \blacktriangleright the minimum value J^0 is a function of the initial state $x\left(t_0\right)$
- ▶ J (and hence J^0) is nonnegative $\Rightarrow P\left({t_0 } \right)$ is at least positive semidefinite
- ▶ t₀ can be taken anywhere in $(0,t_f) \Rightarrow P(t)$ is at least positive semidefinite for any t
- \blacktriangleright the state feedback law is time varying because of $P(t)$

Example: LQR of a pure inertia system

Consider

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \ J = \frac{1}{2} x^T \left(t_f \right) S x \left(t_f \right) + \frac{1}{2} \int_0^{t_f} \left(x^T Q x + R u^2 \right) dt
$$
\nwhere
$$
S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ Q = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ R > 0
$$
\n
$$
\text{we let } P(t) = P^* \left(t_f - t \right) \text{ and solve}
$$
\n
$$
\frac{dP^*}{dt} = A^T P^* + P^* A + Q - P^* B R^{-1} B^T P^*, \ P^* \left(0 \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
\n
$$
\Leftrightarrow \frac{dP^*}{dt} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} P^* + P^* \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - P^* \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{R} \begin{bmatrix} 0 & 1 \end{bmatrix} P^*
$$

 \blacktriangleright letting

$$
P^* = \begin{bmatrix} p_{11}^* & p_{12}^* \\ p_{12}^* & p_{22}^* \end{bmatrix} \Rightarrow \begin{cases} \frac{d}{dt} p_{11}^* = 1 - \frac{1}{R} \left(p_{12}^* \right)^2 & p_{11}^* \left(0 \right) = 1 \\ \frac{d}{dt} p_{12}^* = p_{11}^* - \frac{1}{R} p_{12}^* p_{22}^* & p_{12}^* \left(0 \right) = 0 \\ \frac{d}{dt} p_{22}^* = 2 p_{12}^* - \frac{1}{R} \left(p_{22}^* \right)^2 & p_{22}^* \left(0 \right) = 1 \end{cases}
$$

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 21 / 30

Example: LQR of a pure inertia system: analysis

Figure: **LQ example:** $P^*(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $P(t) = P^*(t_f - t)$

- if the final time t_f is large, $P^*(t)$ forward converges to a stationary value
- ▶ i.e., $P(t)$ backward converges to a stationary value at $P(0)$

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 22 / 30

Example: LQR of a pure inertia system: analysis

Figure: LQ example with different penalties on control. $P^*(0) = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

- a larger R results in a longer transient
- i.e., a larger penalty on the control input yields a longer time to settle

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 23 / 30

Example: LQR of a pure inertia system: analysis

Figure: LQ with different boundary values in Riccati difference Eq.

for the same R, the initial value $P(t_f) = S$ becomes irrelevant
Systems (X, Chen, ME547) UW Linear Systems (X. Chen, ME547) S ystems (X. Chen, ME547) and LQ and $24 / 30$

4. [From finite-horizon LQ to stationary LQ](#page-24-0)

From LQ to stationary LQ

\blacktriangleright the ARE and the Riccati differential Eq.:

- in the example, we see that P in the Riccati differential Eq. converges to a stationary value given sufficient time
- ▶ when $t_f \rightarrow \infty$, the Riccati differential Eq. converges to ARE and the LQ becomes the stationary LQ, under two conditions that we now discuss in details:
	- (A, B) is controllable/stabilizable
	- (A, C) is observable/detectable

Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then $P(t)$ is guaranteed to converge to a bounded and stationary value

- \blacktriangleright for uncontrollable or unstabilizable systems, there can be unstable uncontrollable modes that cause J to be unbounded
- In then if $J^0 = \frac{1}{2}$ $\frac{1}{2}$ x $_{0}^{T}P$ (0) x₀ is unbounded, we will have $||P(0)|| = \infty$
- ► e.g.: $\dot{x} = x + 0 \cdot u$, $x(0) = 1$, $Q = 1$ and R be any positive value \triangleright system is uncontrollable and the uncontrollable mode is unstable \triangleright x (t) will keep increasing to infinity
	- $\blacktriangleright \Rightarrow J = \frac{1}{2}$ $\frac{1}{2} \int_0^\infty \left(\mathsf{x}^{\mathcal{T}} Q \mathsf{x} + u^{\mathcal{T}} R u \right) dt$ unbounded regardless of $u(t)$ \blacktriangleright in this case, the Riccati equation is

$$
-\frac{dP}{dt} = P + P + 1 = 2P + 1 \Leftrightarrow \frac{dP^*}{dt} = 2P^* + 1
$$

forward integration of P^* (backward integration of P), will drive $P^*(\infty)$ and $P(0)$ to infinity

UW Linear Systems (X. Chen, ME547) [LQ](#page-0-0) 27 / 30

if (A, C) is observable or detectable, the optimal state feedback control system will be asymptotically stable

- intuition: if the system is observable, $y = Cx$ will relate to all states \Rightarrow regulating $\mathsf{x}^\mathsf{T} \mathsf{Q} \mathsf{x} = \mathsf{x}^\mathsf{T} \mathsf{C}^\mathsf{T} \mathsf{C} \mathsf{x}$ will regulate all states
- \triangleright formally: if (A, C) is observable (detectable), the solution of the Riccati equation will converge to a positive (semi)definite value P_{+} (proof in course notes)

Additional excellent properties of stationary LQ

- ▶ we know stationary LQR yields guaranteed closed-loop stability for controllable (stabilizable) and observable (detectable) systems
- It turns out that LQ regulators with full state feedback has excellent additional properties of:
	- \triangleright at least a 60 degree phase margin
	- \blacktriangleright infinite gain margin
	- \triangleright stability is guaranteed up to a 50% reduction in the gain

Applications and practice

choosing R and Q :

- \triangleright if there is not a good idea for the structure for Q and R, start with diagonal matrices;
- \triangleright gain an idea of the magnitude of each state variable and input variable
- ightharpoonup call them $x_{i,\max}$ $(i = 1, \ldots, n)$ and $u_{i,\max}$ $(i = 1, \ldots, r)$
- \triangleright make the diagonal elements of Q and R inversely proportional to $||x_{i,\text{max}}||^2$ and $||u_{i,\text{max}}||^2$, respectively.