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Motivation

state feedback control:
▶ allows to arbitrarily assign the closed-loop eigenvalues for a

controllable system
▶ the eigenvalue assignment has been manual thus far
▶ performance is implicit: we assign eigenvalues to induce proper

error convergence
linear quadratic (LQ) optimal regulation control, aka, LQ regulator
(or LQR):
▶ no need to specify closed-loop poles
▶ performance is explicit: a performance index is defined ahead of

time
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1. Problem formulation

2. Solution to the infinite-horizon/stationary LQ problem

3. Solution to the finite-horizon LQ problem

4. From finite-horizon LQ to stationary LQ
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Goal
Consider an n-dimensional state-space system

ẋ(t) = Ax (t) + Bu (t) , x (t0) = x0

y (t) = Cx (t)
(1)

where x ∈ Rn, u ∈ Rr , and y ∈ Rm.
LQ optimal control aims at minimizing the performance index

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ S ⪰ 0,Q ⪰ 0,R ≻ 0: for a nonnegative cost and well-posed
problem

▶ 1
2x

T (tf )Sx(tf ) penalizes the deviation of x from the origin at tf
▶ xT (t)Qx(t) t ∈ (t0, tf ) penalizes the transient
▶ often, Q = CTC ⇒ xT (t)Qx(t) = y (t)T y (t)

▶ uT (t)Ru(t) penalizes large control efforts
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Observations

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ when the control horizon is made to be infinitely long, i.e.,
tf → ∞, the problem reduces to the infinite-horizon LQ problem

J =
1
2

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

▶ terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

▶ often, we have

J =
1
2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt
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1. Problem formulation

2. Solution to the infinite-horizon/stationary LQ problem

3. Solution to the finite-horizon LQ problem

4. From finite-horizon LQ to stationary LQ
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Solution concept: infinite-horizon/stationary LQ
Consider the performance index

J =
1
2

∫ ∞

t0

(
x (t)T Qx (t) + u (t)T Ru (t)

)
dt, Q = CTC

with ẋ(t) = Ax (t) + Bu (t) , x (t0) = x0 and R ≻ 0.
▶ recall when addressing J = 1

2

∫∞
0 xT (t)Qx (t) dt, ẋ = Ax

▶ we defined V (t) = 1
2x

T (t)Px (t) , P = PT , such that

J + V (∞)− V (0) =
1
2

∫ ∞

0
xT (t)Qx (t) dt +

∫ ∞

0
V̇ (t) dt

=
1
2

∫ ∞

0
xT (t)

(
Q + ATP + PA

)
x (t) dt

▶ yielding J
0
= 1

2x
T (0)P+x (0) where P+ comes from

ATP + PA+ Q = 0, when the origin is asymptotically stable.
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Solution of the infinite-horizon LQ
It turns out (see details in course notes) that for

J =
1
2

∫ ∞

t0

(
x (t)T Qx (t) + u (t)T Ru (t)

)
dt, Q = CTC

with ẋ(t) = Ax (t) + Bu (t) , x (t0) = x0 and R ≻ 0:
▶ if (A,B) is controllable (stabilizable) and (A,C ) is observable

(detectable)
▶ then the optimal control input is given by

u(t) = −R−1BTP+x(t)

▶ where P+

(
= PT

+

)
is the positive (semi)definite solution of the

algebraic Riccati equation (ARE)

ATP + PA− PBR−1BTP + Q = 0
▶ and the closed-loop system is asymptotically stable, with

Jmin = J0 =
1
2
x (t0)

T P+x (t0)
UW Linear Systems (X. Chen, ME547) LQ 8 / 30



Observations

▶ the control u(t) = −R−1BTPx(t) is a state feedback law

▶ under the optimal control, the closed loop is given by
ẋ = Ax − BR−1BTPx =

(
A− BR−1BTP

)︸ ︷︷ ︸
Ac

x and J =

1
2

∫∞
t0

(
xTQx + uTRu

)
dt = 1

2

∫∞
t0

xT
(
Q + PBR−1BTP

)︸ ︷︷ ︸
Qc

xdt

▶ for the above closed-loop system, the Lyapunov Eq. is

AT
c P + PAc = −Qc

⇔
(
A− BR−1BTP

)T
P + P

(
A− BR−1BTP

)
= −Q − PBR−1BTP

⇔ ATP + PA− PBR−1BTP = −Q ⇐ the ARE!

▶ when the ARE solution P+ is positive definite, 1
2x

TP+x is a
Lyapunov function for the closed-loop system
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Observations

▶ Lyapunov Eq. and the ARE:

Cost J = 1
2

∫∞
0 xTQxdt J = 1

2

∫∞
t0

(
xTQx + uTRu

)
dt

Syst. dynamics ẋ = Ax
ẋ = Ax + Bu

(A,B) controllable/stabilizable
(A,C ) observable/detectable

Key Eq. ATP + PA+ Q = 0 ATP + PA− PBR−1BTP + Q = 0
Optimal control N/A u(t) = −R−1BTP+x(t)

Opt. cost J
0
= 1

2x
T (0)P+x (0) J0 = 1

2x (t0)
T P+x (t0)

▶ the guaranteed closed-loop stability is an attractive feature
▶ more nice properties will show up later
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Example: Stationary LQR of a pure inertia system
▶ Consider

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u, J =

1
2

∫ ∞

0

(
xT
[
1 0
0 0

]
x + Ru2

)
dt, R > 0

▶ the ARE is

0 =

[
0 0
1 0

]
P+P

[
0 1
0 0

]
+

[
1 0
0 0

]
−P

[
0
1

]
1
R

[
0 1

]
P ⇒ P+ =

[√
2R1/4 R1/2

R1/2
√

2R3/4

]
▶ the closed-loop A matrix can be computed to be

Ac = A− BR−1BTP+ =

[
0 1

−R−1/2 −
√

2R−1/4

]
▶ ⇒ closed-loop eigenvalues:

λ1,2 = − 1√
2R1/4

± 1√
2R1/4

j
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ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, J =

1
2

∫ ∞

0

(
xT

[
1 0
0 0

]
x + Ru2

)
dt
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Figure: Eigenvalue λ1,2 = − 1√
2R1/4 ± 1√

2R1/4 j evolution (root locus)

▶ R ↑ (more penalty on the control input) ⇒ λ1,2 move closer to
the origin ⇒ slower state convergence to zero

▶ R ↓ (allow for large control efforts) ⇒ λ1,2 move further to the
left of the complex plane ⇒ faster speed of closed-loop dynamics
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MATLAB commands

▶ care: solves the ARE for a continuous-time system:

[P ,Λ,K ] = care
(
A,B ,CTC ,R

)
where K = R−1BTP and Λ is a diagonal matrix with the
closed-loop eigenvalues, i.e., the eigenvalues of A− BK , in the
diagonal entries.

▶ lqr and lqry: provide the LQ regulator with

[K ,P ,Λ] = lqr
(
A,B ,CTC ,R

)
[K ,P ,Λ] = lqry (sys,Qy ,R)

where sys is defined by ẋ = Ax + Bu, y = Cx + Du, and

J =
1
2

∫ ∞

0

(
yTQyy + uTRu

)
dt
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1. Problem formulation

2. Solution to the infinite-horizon/stationary LQ problem

3. Solution to the finite-horizon LQ problem

4. From finite-horizon LQ to stationary LQ
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Solution to the finite-horizon LQ

Consider the performance index

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

with ẋ = Ax + Bu, x (t0) = x0, S ⪰ 0, R ≻ 0, and Q = CTC .
▶ do a similar Lyapunov construction: V (t) ≜ 1

2x
T (t)P (t) x (t)

▶ then
d

dt
V (t) =

1
2
ẋT (t)P (t) x (t) +

1
2
xT (t) Ṗ (t) x (t) +

1
2
xT (t)P (t) ẋ (t)

=
1
2
(Ax + Bu)T Px +

1
2
xT

dP

dt
x +

1
2
xTP (Ax + Bu)

=
1
2

{
xT (t)

(
ATP +

dP

dt
+ PA

)
x (t) + uTBTPx + xTPBu

}
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Solution to the finite-horizon LQ
with d

dt
V (t) from the last slide, we have

V (tf )− V (t0) =

∫ tf

t0

V̇ dt

=
1
2

∫ tf

t0

(
xT
(
ATP + PA+

dP

dt

)
x + uTBTPx + xTPBu

)
dt

▶ adding

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

to both sides yields

J + V (tf )− V (t0) =
1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

xT
(
ATP + PA+ Q +

dP

dt

)
x + uTBTPx + xTPBu︸ ︷︷ ︸

products of x and u

+ uTRu︸ ︷︷ ︸
quadratic

 dt
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Solution to the finite-horizon LQ

▶ “complete the squares” in uTBTPx + xTPBu︸ ︷︷ ︸
products of x and u

+ uTRu︸ ︷︷ ︸
quadratic

:

uTBTPx + xTPBu + uTRu
scalar case

= Ru2 + 2uBPx

=Ru2 + 2
(
xPBR−1/2

)
R1/2u︸ ︷︷ ︸
√
Ru2

+
(
R−1/2BPx

)2
−
(
R−1/2BPx

)2

=
(
R1/2u + R−1/2BPx

)2
−
(
R−1/2BPx

)2

▶ extending the concept to the general vector case:

uTBTPx+xTPBu+uTRu = ∥R
1
2 u+R

−1
2 BTPx∥2

2−xTPBR−1BTPx
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Solution to the finite-horizon LQ

J + V (tf )− V (t0) =
1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

(
xT
(
ATP + PA+ Q +

dP

dt

)
x + uTBTPx + xTPBu + uTRu

)
dt

⇓“completing the squares”

J +
1
2
xT (tf )P (tf ) x(tf )−

1
2
xT (t0)P (t0) x(t0) =

1
2
xT (tf )Sx(tf )+

1
2

∫ tf

t0

(
xT
(
dP

dt
+ ATP + PA+ Q − PBR−1BTP

)
x + ∥R 1

2 u + R
−1
2 BTPx∥2

2

)
dt

▶ the best that the control can do in minimizing the cost is to have

u(t)= −K (t) x (t) = −R−1BTP(t)x(t)

−dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S

to yield the optimal cost J0 = 1
2x

T
0 P(t0)x0
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Observations

u(t) = −K (t) x (t) = −R−1BTP(t)x(t) optimal state feedback control

−
dP

dt
= ATP + PA− PBR−1BTP + Q, P(tf ) = S the Riccati differential equation

▶ boundary condition of the Riccati equation is given at the final
time tf ⇒ the equation must be integrated backward in time

▶ backward integration of

−dP

dt
= ATP + PA+ Q − PBR−1BTP , P (tf ) = S

is equivalent to the forward integration of
dP∗

dt
= ATP∗ + P∗A+ Q − P∗BR−1BTP∗, P∗ (0) = S (2)

by letting P (t) = P∗ (tf − t)
▶ Eq. (2) can be solved by numerical integration, e.g., ODE45 in

Matlab
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Observations

J =
1
2
xT (tf )Sx(tf ) +

1
2

∫ tf

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

J0 =
1
2
xT0 P(t0)x0

▶ the minimum value J0 is a function of the initial state x (t0)

▶ J (and hence J0) is nonnegative ⇒ P (t0) is at least positive
semidefinite

▶ t0 can be taken anywhere in (0, tf ) ⇒ P (t) is at least positive
semidefinite for any t

▶ the state feedback law is time varying because of P (t)
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Example: LQR of a pure inertia system
Consider

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, J =

1
2
xT (tf ) Sx (tf ) +

1
2

∫ tf

0

(
xTQx + Ru2

)
dt

where S =

[
1 0
0 1

]
, Q =

[
1 0
0 0

]
, R > 0

▶ we let P (t) = P∗ (tf − t) and solve
dP∗

dt
= ATP∗ + P∗A+ Q − P∗BR−1BTP∗, P∗ (0) =

[
1 0
0 1

]
⇔ dP∗

dt
=

[
0 0
1 0

]
P∗ + P∗

[
0 1
0 0

]
+

[
1 0
0 0

]
− P∗

[
0
1

]
1
R

[
0 1

]
P∗

▶ letting

P∗ =

[
p∗11 p∗12
p∗12 p∗22

]
⇒


d
dt
p∗11 = 1 − 1

R
(p∗12)

2

d
dt
p∗12 = p∗11 − 1

R
p∗12p

∗
22

d
dt
p∗22 = 2p∗12 − 1

R
(p∗22)

2

p∗11 (0) = 1
p∗12 (0) = 0
p∗22 (0) = 1

UW Linear Systems (X. Chen, ME547) LQ 21 / 30



Example: LQR of a pure inertia system: analysis

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

0.0

0.2

0.4

0.6

0.8

1.0

P *  with R = 0.0001
p *

11

p *
12

p *
22

Figure: LQ example: P∗ (0) =
[
1 0
0 1

]
, P (t) = P∗ (tf − t)

▶ if the final time tf is large, P∗ (t) forward converges to a
stationary value

▶ i.e., P (t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis
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Figure: LQ example with different penalties on control. P∗ (0) =
[
1 0
0 1

]
▶ a larger R results in a longer transient
▶ i.e., a larger penalty on the control input yields a longer time to

settle
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Example: LQR of a pure inertia system: analysis
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(a) P∗ (0) =
[
1 0
0 1
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P *  with R = 100 and a different initial value
p *
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(b) P∗ (0) =
[
20 0
0 2

]
Figure: LQ with different boundary values in Riccati difference Eq.

▶ for the same R , the initial value P (tf ) = S becomes irrelevant
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1. Problem formulation

2. Solution to the infinite-horizon/stationary LQ problem

3. Solution to the finite-horizon LQ problem

4. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ
▶ the ARE and the Riccati differential Eq.:

Cost J = 1
2

∫∞
t0

(
xTQx + uTRu

)
dt

J = 1
2 x

T (tf )Sx(tf )+
1
2

∫ tf
t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

Syst.
ẋ = Ax + Bu

(A,B) controllable/stabilizable ẋ = Ax + Bu
(A,C) observable/detectable

Key Eq. ATP + PA− PBR−1BTP + Q = 0 − dP
dt

= ATP + PA− PBR−1BTP + Q
P(tf ) = S

Opt. control u(t) = −R−1BTP+x(t) u(t) = −R−1BTP(t)x(t)
Opt. cost J0 = 1

2 x
T
0 P+x0 J0 = 1

2 x
T
0 P(t0)x0

▶ in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time

▶ when tf → ∞, the Riccati differential Eq. converges to ARE and
the LQ becomes the stationary LQ, under two conditions that
we now discuss in details:
▶ (A,B) is controllable/stabilizable
▶ (A,C ) is observable/detectable
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Need for controllability/stabilizability
if (A,B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
▶ for uncontrollable or unstabilizable systems, there can be

unstable uncontrollable modes that cause J to be unbounded
▶ then if J0 = 1

2x
T
0 P (0) x0 is unbounded, we will have

||P (0) || = ∞
▶ e.g.: ẋ = x + 0 · u, x (0) = 1, Q = 1 and R be any positive value

▶ system is uncontrollable and the uncontrollable mode is unstable
▶ x (t) will keep increasing to infinity
▶ ⇒J = 1

2

∫∞
0

(
xTQx + uTRu

)
dt unbounded regardless of u (t)

▶ in this case, the Riccati equation is

−dP

dt
= P + P + 1 = 2P + 1 ⇔ dP∗

dt
= 2P∗ + 1

forward integration of P∗ (backward integration of P), will drive
P∗ (∞) and P (0) to infinity
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Need for observability/detectability

if (A,C ) is observable or detectable, the optimal state
feedback control system will be asymptotically stable
▶ intuition: if the system is observable, y = Cx will relate to all

states ⇒ regulating xTQx = xTCTCx will regulate all states

▶ formally: if (A,C ) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P+ (proof in course notes)
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Additional excellent properties of stationary LQ

▶ we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:
▶ at least a 60 degree phase margin
▶ infinite gain margin
▶ stability is guaranteed up to a 50% reduction in the gain
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Applications and practice

choosing R and Q:
▶ if there is not a good idea for the structure for Q and R , start

with diagonal matrices;

▶ gain an idea of the magnitude of each state variable and input
variable

▶ call them xi ,max (i = 1, . . . , n) and ui ,max (i = 1, . . . , r)
▶ make the diagonal elements of Q and R inversely proportional to

||xi ,max||2 and ||ui ,max||2, respectively.
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