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Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

» the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator
(or LQR):
» no need to specify closed-loop poles

» performance is explicit: a performance index is defined ahead of
time
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1. Problem formulation
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Goal

Consider an n-dimensional state-space system
x(t) = Ax(t) + Bu(t), x(to) = xo
y(t) = Cx(t)

where x € R", u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J = xT(t)Sx() + /t:f (xT()Qx(2) + uT (1) Ru(1)) ot

v

S$>0,Q > 0,R > 0: for a nonnegative cost and well-posed
problem

IxT(tr)Sx(tr) penalizes the deviation of x from the origin at t
xT(t)Qx(t) t € (to, tr) penalizes the transient

often, Q = CTC = xT(t)Qx(t) = y () y (¢)

» u'(t)Ru(t) penalizes large control efforts

vyvyy
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Observations

J::%XTUASXQJ—%%;/W(xT(ﬂCk(ﬂ—kuT@)RuUj)dt

to
» when the control horizon is made to be infinitely long, i.e.,
tr — o0, the problem reduces to the infinite-horizon LQ problem

J= %/m (xT(t)@x(t) + uT (t)Ru(t)) dt

to

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

» often, we have tg = 0 and
J:/ (xT(Qx(8) + v (t)Ru(t)) ot
2 Jo
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2. Solution to the finite-horizon LQ problem
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Solution to the finite-horizon LQ

Consider the performance index

J= %XT(tf)sx(tf) + % /tf (xT(£)Qx(t) + u”(£)Ru(t)) dt

to

with x = Ax + Bu, x(t)) =x, S>=0, R=0,and Q= C"C.
> do a Lyapunov-like construction: V (t) £ Ix7 (t) P (t) x (t)

» then

d 1-T 1 T . 1 T .

aV(t):EX (t)P(t)x(t)+§x (t)P(t)x(t)+§X (t) P(t)x(t)
1 T 1 +dP 1+
—»2(Ax%—Bu) Px+—2X dtx%—zx P (Ax + Bu)

1 T T aP TRT T
=51% (t) [ A P+E+PA x(t)+u'B'Px+x' PBu
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Solution to the finite-horizon LQ

with £V (t) from the last slide, we have
V (tr) — V (to) :/f Vdt
tr
= %/t <xT (ATP + PA + %) x+u' BT Px —i—xTPBu) dt
» adding
1 1 [*
J = ST (t)Sx(t) + §/ (xT()@x(t) + uT (t)Ru(t)) dt

to

yields

JHV (1)~ V (1) = T () Sx(tr)+

1 dP
> /t (XT (ATP +PA+Q+ E) x+u"B"Px+x"PBu+ u"Ru ) dt
products of x and u quadratic
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Solution to the finite-horizon LQ

» “complete the squares” in u’ BT Px + x"PBu+ u’ Ru (scalar
p q L -+ )+ (

TV .
products of x and u quadratic

case):

scalar case

u"BTPx+ x"PBu+ u"Ru Ru? + 2xPBu

—Ru? 42 (xPBR’1/2> B2y (R*1/2BPX)2 - (R*1/2BPX)2
VR
- (R1/2u + R_I/ZBPx>2 - (R_1/2BPX>2

» extending the concept to the general vector case:

uT BT Px+xTPBut+uTRu=||R2u+ R= BT Px|2 —xT PBR-'BT Px
recall ||7I§:7T7
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Solution to the finite-horizon LQ

J+V(tr) =V (to) = %XT(tf)SX(tf)"'

1 [ dP
5/ xT (ATP+PA+Q+E>x+ uTBTPx+xTPBu+u"Ru | dt
to

—1
IR2u+R 2 BT Px|3—xT PBR—1BT Px

|}“completing the squares”

J+ %XT(tf)P(tf)x(tf) - %XT(to)P(to)x(to) - %XT(tf)sx(tfH

1" dpP 5t
5/ <XT (E +ATP+PA+Q— PBRlBTP) x+||[R¥u+ RzBTPx||§) dt
to
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Solution to the flinite—horizon LQ
J+ V(tr) = V(to) = §xT(tf)Sx(t,c)+
L (" (T apP TRT T T
5/ x'"[A P—|—PA+Q—|—E x4+ u' B"Px+x"PBu+ u' Ru| dt
to
|}“completing the squares”

J+ %XT(tf)P(tf)x(tf) - %XT(tO)P(to)X(to) = %XT(tf)SX(tf)‘i’

2 dt

17 dpP =
f/ <XT< +ATP+PA+Q— PBRlBTP>x +||R2u+R= BTPX|§> dt
to

» the best that the control can do in minimizing the cost is to have
u(t) = —K (t)x(t) = —R*BT P(t)x(t)
dP T -1pT
~=- =ATP+PA-PBR'BTP+Q, P(t) =S
to yield the optimal cost J° = 2xJ P(t0)xo

UW Linear Systems (X. Chen, ME547) LQ 11/32




Observation 1

u(t) = —K (t)x(t) = —R7*BT P(t)x(t) optimal control law

dP
—r = ATP4+ PA—PBR™IBTP+Q, P(t/)=S  the Riccati differential equation

» the control u(t) = —R71BT P (t)x(t) is a state feedback law
(the power of state feedback!)

> the state feedback law is time-varying because of P (t)

» the closed-loop dynamics becomes

x(t) =Ax(t)+ Bu(t)= (A—BR'BTP(t)) x(t)

[ J/

TV
time-varying closed-loop dynamics
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Observation 2

u(t)
dP

—r = ATP4+PA—PBR™IBTP+Q, P(t/)=S the Riccati differential equation

—K (t)x(t) = —R7IBT P(t)x(t) optimal state feedback control

» boundary condition of the Riccati equation is given at the final
time ty = the equation must be integrated backward in time
» backward integration of

dP
— ATP+PA+Q—PBR'BTP, P(t;) =S
is equivalent to the forward integration of
dP*

= ATP* 4+ P*A+ Q—P*BR'BTP*, P*(0)=S (2)
by letting P (t) = P* (tr — t)

» Eq. (2) can be solved by numerical integration, e.g., ODE45 in
Matlab
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Observation 3

J= %XT(tf)Sx(tf) + % /tf (xT(t)@x(t) + u" (t)Ru(t)) dt

to

1 r
Jo = §X0 P(to)Xo
» the minimum value J° is a function of the initial state x ()

» J (and hence J%) is nonnegative = P (t,) is at least positive
semidefinite

> ty can be taken anywhere in (0, tr) = P(t) is at least positive
semidefinite for any t
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Example: LQR of a pure inertia system
Consider

. o1 0 14 1 [t )
X_[O O}X—i_[l} u,J_Ex (tf)Sx(tf)+2/0 <x QX—l—Ru)dt

10 10
where5:[0 1],02{0 0},R>O

> we let P(t) = P*(tr — t) and solve

dP*_ T p* * * -1pT p* * = 10

dt =A"P*+ P*A+ Q- P*BR BP,P(O)_[O 1]
dP* [0 0] o, puf0 1] 1 O] (0] 2 '
o< _[1 O]P +P [0 0:|+|:0 O]—P HR[O 1] P

> letting
* * )2
o pr %Pn:l—%(Plz) pi; (0) =1
p*:{il 12]:> Pl = Pl — &PLP = pR(0)=0
P12 P22 d x . 1/ %12 p3, (0) =1
4P = 2P — 7 (P3) 22
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Example: LQR of a pure inertia system: analysis

P* with R =0.0001

— P
0.8 — P

0.6

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

10

Figure: LQ example: P*(0) = [O 1

], P(t) = P*(tr—t)

» if the final time t; is large, P*(t) forward converges to a
stationary value

» i.e., P(t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis

P withR=1 P” with R =100
175
1.50 40
1.25
30
1.00 4 — P
0.75 20 i
: — P
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— i 10
0.25 —
0.00 Pz 0
[ 2 4 6 8 10 12 14 [ 5 10 15 20 25 30 35 40
time/s time/s

Figure: LQ example with different penalties on control. P*(0) = [(1) (1)]

» a larger R results in a longer transient

» i.e., a larger penalty on the control input yields a longer time to
settle
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Example: LQR of a pure inertia system: analysis

P” with R =100
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P* with R =100 and a different initial value
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Figure: LQ with different boundary values in Riccati difference Eq.

» for the same R, the initial value P (tf) = S becomes irrelevant

as tf — o0
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3. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ

P" with R =100 and a different initial value

P with R =100

» in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time
» when tr — oo, LQ becomes the stationary LQ problem, under
two additional conditions that we now discuss in details:
» (A, B) is controllable/stabilizable
» (A, C) is observable/detectable
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Need for controllability/stabilizability

J= s+ 5 [ (000 + o7 (ORu(0) o

dP
= ATP4+ PA—PBR™IBTP+Q, P(t/) =S the Riccati differential equation

SO = 1XOTP(?.‘())XQ
2
if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value

» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded

> then if J° = 2xJ P (0) X is unbounded, we will have
1P (0) ]| = o0
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
> eg: x=x+0-u,x(0)=1, Q@=1and R be any positive
value
» system is uncontrollable and the uncontrollable mode is unstable
» x (t) will keep increasing to infinity
> =)= %fooo (xTQx + uT Ru) dt unbounded regardless of u (t)

P in this case, the Riccati equation is

LT I L
dt dt

=2P" +1

forward integration of P* (backward integration of P), will drive
P* (00) and P (0) to infinity
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Need for observability /detectability

J=3 /oo (xT(t)@x(t) + uT (t)Ru(t)) dt

to
with x = Ax + Bu, x(t)) = x0, R>=0,and Q = C"C.
if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable
» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” Qx = x7 C" Cx will regulate all states

» formally: if (A, C) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P (proof in course notes)
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From LQ to stationary LQ

LQ stationary LQ

J= lX.’-(i‘f)sx(i‘f)-f—

Cost 2 J=1 12 (xTQx+ uTRu) dt
%ft:f (xT(t)@x(t) + uT (t)Ru(t)) dt 2 )i )
X = Ax + Bu
Syst. x = Ax+ Bu = (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq Riccati Eq. (RE) Algebraic RE (ARE)
: dP T —1gT
—9P _ ATP 4+ PA— PBR-1BTP _
dt = ATP+PA—-PBRIBTP =0
1Q. P(t)=5 N e
Opt.
control u(t) = —R™1BT P(t)x(t) = u(t) = —R™1BT P x(t)
& cost Jo = %XOTP(to)xo = Jo = %xJPp(o
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More formally: Solution of the infinite-horizon LQ

For

J:zftoo (x(0)7 @ (1) +u()T Ru(t)) dt. Q= CTC

with x(t) = Ax (t) + Bu(t), x(t) = x and R > 0:
> if (A, B) is controllable (stabilizable) and (A, C) is observable
(detectable)
» then the optimal control input is given by

u(t) = —R BT P x(t)

> where P, (= P]) is the positive (semi)definite solution of the
algebraic Riccati equation (ARE)

ATP4+PA—PBRB'P+Q=0
» and the closed-loop system is asymptotically stable, with
Jmin = N = %X(to)T Py x (to)
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Observations

» the control u(t) = —R7B7 Px(t) is a constant state feedback
law

» under the optimal control, the closed loop is given by
x=Ax—BRIB"Px=(A-BR'B"P)xand J =

-~

Ac

5 (XTQx+ uTRu) dt 2f°°xT(Q+PBR 'BTP) xdt

Qc
» for the above closed-loop system, the Lyapunov Eq. is

AIP+ PA. = -Q.
& (A-BRBTP) P+ P(A-BR'BTP)=—-Q— PBR'BTP
= ATP 4+ PA— PBR7'BTP = —Q (the ARE!)
> when the ARE solution P, is positive definite, 2x" P, x is a

Lyapunov function for the closed-loop system
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Observations

» Lyapunov Eq. and the ARE:

Cost J=3J3 x" Qexdt J=13 t:O (xTQx + uT Ru) dt
x = Ax + Bu
Syst. dynamics x = Acx (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq. ATP+PA.+Q.=0 ATP+PA—PBR'BTP+ Q=0
Optimal control N/A u(t) = —R71BT P, x(t)
Opt. cost  J° = 1xT (0) P,x(0) 10 = 1x(to) T Pyx(to)

» the guaranteed closed-loop stability is an attractive feature

» more nice properties will show up later
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Example: Stationary LQR of a pure inertia system
» Consider

. 101 0 Y A A 2
X_{O 0}X+|:]}U’J_§/O <x [O O}x+Ru>dt,R>0

» the ARE is

~fo o 0o 1], 1 o o] 1 _ [V2RY*  RY/?
e L i R R R R L W e

» the closed-loop A matrix can be computed to be

0 1
_ 1T _
Ac=A—-BR"B'P, = {_R_1/2 _\/§R—1/4}

» = closed-loop eigenvalues:
1 1
_ 4 '
\/§R1/4 \/§R1/4J
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Root locus

Imag axis
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Figure: Eigenvalue A1 = —\@,1?1/4 + \@,1?1/41' evolution (root locus)

» R 1 (more penalty on the control input) = \;, move closer to
the origin = slower state convergence to zero

» R | (allow for large control efforts) = A1, move further to the
left of the complex plane = faster speed of closed-loop dynamics
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MATLAB commands
» care: solves the ARE for a continuous-time system:
[P\, K] = care (A,B,C"C,R)

where K = R7!BTP and A is a diagonal matrix with the

closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.

» Igr and Igry: provide the LQ regulator with

[K,P,A] =lar (A,B,C"C,R)
[K, P,\] = lqry (sys, Qy, R)

where sys is defined by x = Ax + Bu, y = Cx + Du, and

JZE/O (yT nyruTRu)dt
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Additional excellent properties of stationary LQ

» we know stationary LQR vyields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:

> at least a 60 degree phase margin
» infinite gain margin

» stability is guaranteed up to a 50% reduction in the gain
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Applications and practice

choosing R and Q:
» if there is not a good idea for the structure for @ and R, start
with diagonal matrices;

» gain an idea of the magnitude of each state variable and input
variable

» call them Ximax (F=1,...,n) and Ujmax (Ii=1,...,r)

» make the diagonal elements of @ and R inversely proportional to
|[Xi max||? and ||u; max||?, respectively.
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