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Motivation

state feedback control:

» allows to arbitrarily assign the closed-loop eigenvalues for a
controllable system

> the eigenvalue assignment has been manual thus far

» performance is implicit: we assign eigenvalues to induce proper
error convergence

linear quadratic (LQ) optimal regulation control, aka, LQ regulator

(or LQRY):
» no need to specify closed-loop poles

» performance is explicit: a performance index is defined ahead of
time
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1. Problem formulation

2. Solution to the infinite-horizon /stationary LQ problem

3. Solution to the finite-horizon LQ problem

4. From finite-horizon LQ to stationary LQ



Goal

Consider an n-dimensional state-space system
x(t) = Ax (t) + Bu(t), x(to) = xo
y(t) = Cx(t)

where x € R”, u € R", and y € R™.
LQ optimal control aims at minimizing the performance index

J= %XT(tf)sx(tf) + % /tf (XT(t)QX(t) + uT(t)Ru(t)> dt

to

» S>0,Q = 0,R > 0: for a nonnegative cost and well-posed
problem

%XT(tf)SX(tf) penalizes the deviation of x from the origin at t¢
xT(t)@Qx(t) t € (to, tr) penalizes the transient

often, Q = CTC = xT(t)Qx(t) = y (t)" y (¢)

u' (t)Ru(t) penalizes large control efforts

vvyyy
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Observations

J= %XT(tf)sx(tf) N % / (xT(£)Qx(t) + uT (t)Ru(t)) dt

» when the control horizon is made to be infinitely long, i.e.,
tr — oo, the problem reduces to the infinite-horizon LQ problem

J=3 /OO (xT(t)@x(t) + uT (t)Ru(t)) dt

to

» terminal cost is not needed, as it will turn out, that the control
will have to drive x to the origin. Otherwise J will go
unbounded.

> often, we have
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2. Solution to the infinite-horizon /stationary LQ problem
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Solution concept: infinite-horizon /stationary LQ

Consider the performance index
J= 5/ (X(t)T NOETION Ru(t)) dt, Q=CTC
to

with x(t) = Ax (t) + Bu(t), x(t) = x and R > 0.
> recall when addressing J = 1 [ x7 (t) Qx (t) dt, x = Ax
> we defined V (t) = 3x7 (t) Px(t), P = PT, such that

J+V(0)—-V(0) = /OOOXT(t)QX(t)dt+/()OOV(t)dt

(
1
2
L[ 7 T
/ X7 (0) (Q+ ATP + PA) x (1) ot
2 Jo
> vyielding 7= 2xT(0) Pyx (0) where P, comes from

ATP + PA+ @ = 0, when the origin is asymptotically stable.
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Solution of the infinite-horizon LQ

It turns out that for

J:%/: (x()7 @x(t) + u()T Ru(t)) o, @ = CTC

with x(t) = Ax (t) + Bu(t), x(t) = x and R > 0:
» if (A, B) is controllable (stabilizable) & (A, C) is observable
(detectable)
» then the optimal control input is given by
u(t) = —R'BTP x(t)
> where Py (= P]) is the positive (semi)definite solution of the
algebraic Riccati equation (ARE)
ATP4+PA—PBR'B'P+Q=0
» and the closed-loop system is asymptotically stable, with
Inin = = 2 x (1) Px (1)
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Observations

» the control u(t) = —R™1BT Px(t) is a state feedback law

» under the optimal control, the closed loop is given by
x=Ax—BR'BTPx=(A- BR‘IBTP) x and J =

3 [0 (xTQ@x + uTRu) dt = 3 f (Q + PBR™'B"P) xdt
Qe
» for the above closed-loop system, the Lyapunov Eq. is

AZ—P + PAC = _QC
& (A—BRBTP) P+ P(A—BR'BTP)=—Q— PBR'BTP
=S ATP+ PA—PBRIB™P = —Q <« the ARE!

» when the ARE solution P, is positive definite, %XTPJFX is a
Lyapunov function for the closed-loop system
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Observations

» Lyapunov Eq. and the ARE:

Cost J= %fooo xT Qxdt J= %ftzo (XTQX + uTRu) dt
x = Ax+ Bu
Syst. dynamics x = Ax (A, B) controllable/stabilizable
(A, C) observable/detectable
Key Eq. ATP+PA+Q=0 ATP+PA—PBRBTP+Q=0
Optimal control N/A u(t) = —R71BT P, x(t)
Opt. cost  J° = 1x7(0) Pyx(0) 10 = 1x(to) Pyx(to)

> the guaranteed closed-loop stability is an attractive feature

» more nice properties will show up later

10/34



Example

The derivation of the equations of
available at thislink

ample in

Item 4: From the algebraic Riccati equation, we have

- BR7'BTP)] + (AL, + AT) P, +CTC =0
Let f; be the eigenvector of A — BR™'BTP, associated with the cigenvalue
Ai-Set A = A; in the last equality and multiply f; from the right. Then, the

first term vanishes after multiplication:

(Al + AT) P.

Afi~ BRBTP.
—CTCH-ATP.f; |~

This implies that "" ’ I is the eigenvector of H associated with a stable

eigenvalue A;. (iv) follows from this fact.

13.4.4 Example: Inverted Pendulum on a Cart

The inverted pendulum on a cart model is widely used and applied to
many systems we see regularly. It is a classical problem in dynamics and is
used extensively in control theory for designing controllers. Applications
include rocket balancing, segway and hoverboards, vertical robots, to name.
afew

The system has two equations of motion:
(M +m)¥ + bz +mldcos0 = F
(14 mP)0 + mglsin®

where I is the moment of inertia of the pendulum, n is the mass of the
pendulum, M is the mass of the cart, s the length between the pendulum
center of mass to the mounting joint, and b is the damping of the cart in
the horizontal movement direction. Substituting for  in 13.20 from 13.21
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Example

States of nonlinearized system under LQ Derived states of linearized system under LQ
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LQ with State Feedback

States (solid lines) and their estimates (dashed lines)) States (solid lines) and their estimates (dashed lines)
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Example: Stationary LQR of a pure inertia system

» Consider

. |01 0 1/ 410 ?
X_[O O]X—i—{l]u,J—E/o (x {0 01x+Ru>dt,R>O

» the ARE is

~fo o 0o 1], 1 o o] 1 _ [V2RY*  RY/?
e L i R R R U L W e

» the closed-loop A matrix can be computed to be

0 1
_ “1pTp _
Ac=A-BRB'P, = |:_R—1/2 —\/§R‘1/4]

» = closed-loop eigenvalues:
1 n 1
\/§R1/4 \/§R1/4J

Ao =
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Figure: Eigenvalue Ao = —ﬁ}?m == \/5,1?1/41' evolution (root locus)

» R 1 (more penalty on the control input) = A; > move closer to
the origin = slower state convergence to zero

» R | (allow for large control efforts) = A1, move further to the
left of the complex plane = faster speed of closed-loop dynamics
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MATLAB commands

» care: solves the ARE for a continuous-time system:
[P\, K] = care (A,B,C"C,R)

where K = R71BTP and A is a diagonal matrix with the

closed-loop eigenvalues, i.e., the eigenvalues of A — BK, in the
diagonal entries.

» Igr and Igry: provide the LQ regulator with
[K,P,A] =lar (A,B,C"C,R)
[K, P,\] = lary (sys, Qy, R)
where sys is defined by x = Ax + Bu, y = Cx + Du, and
1 o
J= §/0 (y"Q,y + uTRu) dt
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3. Solution to the finite-horizon LQ problem
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Solution to the finite-horizon LQ

Consider the performance index

= %XT(tf)SX(tf) + % /: (xT(t)@x(t) + u" (t)Ru(t)) dt

with x = Ax + Bu, x(t)) =x, S>=0, R=0,and Q= C"C.
> do a similar Lyapunov construction: V (t) £ Ix7 (t) P (t)x (t)
> then

d 1-T 1 T . 1 T .
IV(t):ix (t)P(t)x(t)+§x (t)P(t)x(t)+§x (t) P(t)x(t)
= %(Ax + Bu)T Px + %XT%X + %XTP(AX + Bu)

1
=5 {XT (t) <ATP + % + PA) x(t)+u"BTPx + XTPBu}
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Solution to the finite-horizon LQ

with 2V (t) from the last slide, we have

V(tr) — V(to) = /tf Vdt

_ ;/: <XT (ATP L PAL ‘;’:) x+uTBTPx+ xTPBu) dt
» adding .
1 1 f

J= 5XT(t,f)Sx(tf) + 5/ (xT(t)@x(t) + uT (t)Ru(t)) dt

to

to both sides yields

SV (1) =V (10) = 3T () Sx(tr)+

products of x and u quadratic

1 dP
2/to (XT <ATP+ PA+ Q+ dt) x+u"BTPx + x" PBu+ uTRu) dt
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Solution to the finite-horizon LQ

> ‘“complete the squares” in u" B" Px + x" PBu+ u" Ru:
A ~ J/ v
products of x and u quadratic

u"BTPx +x"PBu+ u" Ru scalar case Ru? + 2uBPx

—Ru?+2 (xPBR_1/2> Ry (R—1/2BPX)2 _ (R—1/2BPX)2
VR
- (Rl/zu + R_I/ZBPx)z - (R—1/2BPX)2

> extending the concept to the general vector case:

uT BT Px+xTPBu+u"Ru = |Rzu+R= BT Px|2—xT PBR BT Px
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Solution to the finite-horizon LQ

T4V (t) = V (k) = %XT(rf)sx(tfH

1 [ dP
5 / (XT (ATP +PA+Q+ dt) x4+ u"B"Px+ x"PBu + uTRu) dt
to

|}“completing the squares”

J+ %XT(tf)P(tf)x(tf) - %XT(to)P(to)x(to) - %XT(tf)sx(tfH

1 tr P 1 -1
5/ <XT (‘:jt +ATP4+PA+ Q- PBR—lBTP>x +||Rzu+ RzBTPx§> dt
to

> the best that the control can do in minimizing the cost is to have

u(t)= —K (t)x (t) = =R BT P(t)x(t)

—%: ATP+PA-PBR'BTP+Q, P(tr)=S

to yield the optimal cost J° = 2xJ P(to)xo
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Observations

u(t) = —K (t) x (t) = —R1BT P(t)x(t) optimal state feedback control

dpP
= ATP4+ PA—PBR™'BTP+Q, P(t/)=S  the Riccati differential equation

» boundary condition of the Riccati equation is given at the final
time t; = the equation must be integrated backward in time
» backward integration of

dP
— ATP+PA+Q—PBR'BTP, P(t;) =S
is equivalent to the forward integration of
dP*

ol ATP* + P*A+Q—P*BR'BTP*, P*(0)=S (2

by letting P (t) = P*(tr — t)
» Eq. (2) can be solved by numerical integration
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Observations

J- %XT(tf)sx(tf) + % / C(xT(H)@x(t) + uT (t)Ru(t)) dt

to

17
Jo = §X0 P(to)Xo
» the minimum value J° is a function of the initial state x (ty)

» J (and hence J°) is nonnegative = P (t,) is at least positive
semidefinite

> to can be taken anywhere in (0, tf) = P(t) is at least positive
semidefinite for any t

> the state feedback law is time varying because of P (t)
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Example: LQR of a pure inertia system

Consider
[8 (1)} + m u, J = %XT(tf)SX(tf) + % /Otf (xTQer Ru2) dt
where S = [é (1)], Q= Ll) 8}, R>0
> we let P(t) = P*(tr — t) and solve
% =ATP*+P*A+ Q- P*BR'BTP*, P*(0) = [é ﬂ

dP* 0 0],  ,.[0 1] [1 0] _.[0]1 ,
(:}dt_[l O}P“D [0 o]*[o O]PMR[O 1P

> letting
1

e dtpn =1-3 (Pu) pri(0) =1
r= {pil piz] = dtp12 = Pi— §p12p22 Pi> (0) =0
12 P22 doi _opr 1032 pi(0)=1

gtP2 = 4P12 — & (p32) 22
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Example: LQR of a pure inertia system
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Example: LQR of a pure inertia system: analysis

P* with R =0.0001

LQ example: P*(0) = [(1) ﬂ P(t) = P*(tr — t)
if the final time tf is large, P* (t) forward converges to a
stationary value
i.e., P(t) backward converges to a stationary value at P (0)
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Example: LQR of a pure inertia system: analysis

P" withR=1 P" with R =100

LQ example with different penalties on control. P*(0) = [é (1)]

a larger R results in a longer transient

i.e., a larger penalty on the control input yields a longer time to

settle
27/34



Example: LQR of a pure inertia system: analysis

P" with R =100 P* with R=100 and a different initial value

ro-[b o2 ]

LQ with different boundary values in Riccati difference Eq.

for the same R, the initial value P (tf) = S becomes irrelevant
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4. From finite-horizon LQ to stationary LQ
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From LQ to stationary LQ

» the ARE and the Riccati differential Eq.:

J= %XT(tf)SX(tf)JF
¥ (xT(£)Qx(t) + uT (t)Ru(t)) dt

to

1

Cost J=3J (xTQx+uRu) dt 1
x =Ax+ Bu

Syst. (A, B) controllable/stabilizable x = Ax+ Bu

(A, C) observable/detectable
9 — ATP 4+ PA—PBR™IBTP+Q

Key Eq. ATP+PA—PBR1BTP+ Q=0 d
P(tf)=S
Opt. control u(t) = —R™1BTPix(t) u(t) = —R™1BT P(t)x(t)
Opt. cost 12 = 2] Pixo 2 = IxJ P(to)xo

> in the example, we see that P in the Riccati differential Eq.
converges to a stationary value given sufficient time
» when t; — 00, the Riccati differential Eq. converges to ARE and
the LQ becomes the stationary LQ, under two conditions that
we now discuss in details:
> (A, B) is controllable/stabilizable
> (A, C) is observable/detectable
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Need for controllability/stabilizability

if (A, B) is controllable or stabilizable, then P (t) is
guaranteed to converge to a bounded and stationary value
» for uncontrollable or unstabilizable systems, there can be
unstable uncontrollable modes that cause J to be unbounded
> then if J° = IxJ P (0)x is unbounded, we will have
1P (0) ]| = o0

> eg.:

>

>
>
>

x=x+0-u,x(0) =1, Q@ =1 and R be any positive value
system is uncontrollable and the uncontrollable mode is unstable
x (t) will keep increasing to infinity

=J =3 ;7 (x"Qx + uT Ru) dt unbounded regardless of u (t)
in this case, the Riccati equation is

L S RS L
dt dt

forward integration of P* (backward integration of P), will drive
P* (o0) and P (0) to infinity

=2P"+1
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Need for observability /detectability

if (A, C) is observable or detectable, the optimal state
feedback control system will be asymptotically stable

» intuition: if the system is observable, y = Cx will relate to all
states = regulating x” @x = x" CT Cx will regulate all states

» formally: if (A, C) is observable (detectable), the solution of the
Riccati equation will converge to a positive (semi)definite value
P, (proof in course notes)
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Additional excellent properties of stationary LQ

» we know stationary LQR yields guaranteed closed-loop stability
for controllable (stabilizable) and observable (detectable)
systems

It turns out that LQ regulators with full state feedback has excellent
additional properties of:

> at least a 60 degree phase margin
> infinite gain margin
> stability is guaranteed up to a 50% reduction in the gain
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Applications and practice

choosing R and Q:

| 4

if there is not a good idea for the structure for @ and R, start
with diagonal matrices;

gain an idea of the magnitude of each state variable and input
variable

call them x; max (i=1,....n) and Ujmax (i=1,...,r)

make the diagonal elements of @ and R inversely proportional to
|| X max||? and ||u;max||?, respectively.
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