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Motivation

> At the center of designing control systems is the idea of

feedback.

» In such transfer-function approaches as lead-lag and root locus
methods, the primal goal is to achieve a proper map of
closed-loop poles with output feedback.

Key questions:
» How much freedom do we have for state-space systems?

» Are there fundamental system properties that yield higher
achievable performance?

» How to implement the design algorithms?
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1. Goal and realization of state feedback
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Goal

Consider an n-dimensional state-space system

 x(t) = Ax(t)+ Bu(t) B
Z'{y(t) = Cx(t) + Du(t) x(to) = xo

where x € R", u € R", and y € R™.

» Denominators of the transfer function
G (s) = C (sl — A)"* B+ D come from the characteristic
polynomial det (s/ — A) that arises when computing the inverse
(sl — A",

» We shall investigate the use of feedback to alter the qualitative
behavior of the system by changing the eigenvalues of the
closed-loop “A" matrix.
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Realization

v—to U Ik:Ax+Bu,y:Cx—|—Du|—>y

Consider the state-feedback law
u=—-Kx+v (1)

» v: new input which we will deal with later
» K € R™": n-number of states, m-number of inputs
» closed-loop system:
[ x(t) = (A—BK)x(t)+ Bv(t) B
d { W) = Cx(t) + Dult) x(to) =0 (2)

> key closed-loop property: eigenvalues of A — BK.
» How freely can we place the eigenvalues of A, = A — BK?
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2. Closed-loop eigenvalue placement by state feedback
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Eigenvalue placement by state feedback

Fact

If¥ = (A, B, C,D) is in controllable canonical form, we can
completely change all the eigenvalues of A — BK by choice of
state-feedback gain matrix K.

» Problem setup: single-input single-output system in c.c.f.

n—1
H(s) = Bn-15 _+ + B1s + Bo d Y= A|B
ST+ op_1" L4+ 15 + o c|D

0 1 0 0 0
0 0 1 0
A= . 7B:
. 0
0 0 1 0
—QQ ... ... —Qp_2 —Qp_1 1
C=[HB B - ... Pa1],D=d
det(s/ —A) =s"+ a, 15" '+ -+ a5+ ap (3)
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Eigenvalue placement by state feedback: c.c.f.

» Goal: achieve desired closed-loop eigenvalue locations
P, 5 Pn le.

det(s/ — (A—BK)) = (s — p1)(s — p2) - - (s — pn) (4)
="+ 918" s+ ()
» Let K = [ko, k1, ..., ks_1]. The structured A and B give

0 0 0 0 0
0 o 0 o0 o0
BK = | . | [ko,ki,..., kn—1] = . .
: . 0
(1’ 0 0 0
ko kn—2 kn—1
0 1 0 0
0 0 1 0
A— BK = .
. 0
0 0 1
—Qo — kO cee o —ap_2 — kp—2 —ap—1 — kn—1
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Eigenvalue placement by state feedback: c.c.f.

» A and A — BK have the same structure
» the only difference is the last row:

matrix last row
A [ —Qp ... e —Op—2 —Oph_1 :|
A— BK [ —Qp — ko cee vee —Op_2 — k,,_2 —Op_1 — kn—l }
> recall (3): det(s/ — A) =s"+a, 15" 1+ + ais + ap.
» thus
det (sl — (A— BK)) = 5"+ (ap_1 + kn_1) " 1+ + (a0 + ko)
—_—— —_——

target: vp—1 target: o

» hence

ko = Yo — o

Kn—1 = Yn-1 — Qp_1
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Eigenvalue placement by state feedback: c.c.f.

Eigenvalue-placement Algorithm

1 | determine desired eigenvalue locations py, - - , p,

2 | calculate desired closed-loop characteristic polynomial
(s=pi)(s = p2) (s = pn) ="+ Y181+ + M5+
3 | calculate open-loop characteristic polynomial

det(sl — A) =s"+ a, 15"+ + 15 + ag

4 | define the matrices:

K= [70 — Qo+, Yn-1 — an—l]

Powerful result: if the system is in controllable canonical form, we
can arbitrarily place the closed-loop eigenvalues by state feedback!
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General eigenvalue placement by state feedback

» What if the given state-space realization ¥ = (A, B, C, D) is not
in the required form?

» We can then transform it to c.c.f. via a similarity transformation
(See lecture on controllability and observability).

» Powerful fact: if system ¥ = (A, B, C, D) is controllable, then
we can arbitrarily place the closed-loop eigenvalues via state

feedback.
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Stabilization

> if a single-input system is uncontrollable, arbitrary closed-loop

eigenvalue plaement is not available
» Kalman decomposition gives

|

|

controllable part
d [z g i < 1.[ B
B XC c 12 XC C
gt | %ue 0 Ao [x]+[ 0 ]“
N~~~
uncontrollable part
applying controll law
v = — [Res Rod] { % } v
Xuc
gives
i )_(c . /Z\c - BCRC A12 e Eckuc )_<c + éc v
dt | Xue | 0 Auc Xuc 0
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Stabilization cont'd
» closed-loop dynamics

d )_<c /Z\c - BCKC /Z\12 - Eckuc )_<c Bc
dt - i % | v

XLIC

» closed-loop eigenvalues come from

eigenvalues can be arbitrarily placed

det (AC/ — )\I) = det ((AC — BCRC) — )\/) - det (/_\uc — )\/)

g

from the controllable subsystem uncontrollable eigenvalues

» = single-input systems are stabilizable if and only if the
uncontrollable portion of the system does not have any unstable
eigenvalue.
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Discrete-time case

» the eigenvalue assignment of discrete-time systems is analogous:

> system dynamics:

x (k +1) = Ax (k) + Bu (k)
y (k) = Cx (k)

» controller: u(k) = —Kx (k) + v (k)
> closed-loop dynamics:

x (k + 1) = Ax (k)—BKx (k)+Bv (k) = (A — BK) x (k)+Bv (k)

» arbitrary closed-loop eigenvalue assignment if system is
controllable
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The case with output feedback

» if the full state is not measurable, state feedback control is not
feasible

» consider output feedback

x = Ax+ Bu
y = Cx = x = Ax — BFy + Bv = (A— BFC) x + Bv
u =—Fy+v

» A — BFC not as structured as A — BK (exercise: write out the
case for SISO systems)

» arbitrary closed-loop eigenvalue assignment not feasible

15 /16



The case with output feedback

Example

Controllable mass-spring-damper system

i X1 . 0 1 X1 0

O Rl IR L
=84 } HE

» arbitrary closed-loop eigenvalue assignment if u* = —kyx; — koo,
namely U*(S) e —k1X1(5) — k2X2(5) = — (kl —+ k25) Xl(S) = a
proportional plus derivative (PD) control law

;

» if with only proportional control, u* = —k;x, arbitrary
closed-loop eigenvalue assignment is not possible
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