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Controllable subspace: Introduction

Example

> there exists controllable and uncontrollable states: x;
controllable and x, uncontrollable

» how to compute the dimensions of the two for general systems?
» how to separate them?
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Controllable subspace: Assumptions

Consider an uncontrollable LTI system

x(k+1)=Ax(k)+ Bu(k), Ae R™"
y (k) = Cx (k) + Du (k)

Let the controllability matrix
P=[B,AB,A’B,..., A" 'B]

have rank n; < n.
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Controllable subspace

» The controllable subspace ¢ is the set of all vectors x € R"
that can be reached from the origin.

» From
u(n—1)
x(n) ~ A" (0) = [B.AB, A°B...., A""'B] ”(":_ 2)
13 u(.O)

Xc is the range space of P: xyc =R (P)
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Observable subspace: Introduction

Example

> exists observable and unobservable states: x; observable and x,
unobservable

> how to separate the two?

» how to separate controllable but observable states, controllable
but unobservable states, etc?
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Observable subspace: Assumptions

Consider an unobservable LTI system

x(k+1) = Ax (k) + Bu(k), Ae R™"
y (k) = Cx (k) + Du (k)

Let the observability matrix
CA
(;4n—1

have rank n, < n.
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Unobservable subspace

» The unobservable subspace x . is the set of all nonzero initial
conditions x (0) € R” that produce a zero free response.

» From

y(0) C

y(:l) _ C:A < (0)
y (n.— 1) CAr-1
T 2

Xuo is the null space of Q: xuo = N (Q)
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Separating the uncontrollable subspace

» recall 1: similarity transform x = Mx™* preserves controllability

x (k +1) = Ax (k) + Bu (k) x* (k +1) = M—*AMx* (k) + M—*Bu (k)
y (k) = Cx (k) + Du (k) y (k) = CMx* (k) 4+ Du (k)

» recall 2: the uncontrollable system structure at introduction

A= [ 01
» decoupled structure for generalized systems

X(k+1) 1 [A A X (k) B.
{?uc(kﬂ) } _{ 0 A } [iuc(k) 1o Uk

Yk =[G G { @ } -+ Du(k)

11 s |1 xi(k+1) =x(k)+ xa(k) + u(k)
]’B_[O]ﬁ{@w+n — x(k)

X, impacted by neither u nor Xx..
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Theorem (Kalman canonical form (controllability))

Let x € R", x(k 4+ 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
uncontrollable with rank of the controllability matrix,

rank(P) =n; < n. Let M = [ M. M, ] where

M. = [myq, ..., m, ] consists of ny linearly independent columns of P,
and Myc = [mp, 41, .., m,| are added columns to complete the basis
and yield a nonsingular M. Then x = MXx transforms the system
equation to

T B T
y(K)=[ G Cu] { o } -+ Du(k)

Furthermore, (A, B.) is controllable, and
C(zl —A)'B+D=Cczl —A)'B.+D
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Theorem (Kalman canonical form (controllability))

M-1B
X-(k + 1) A. A X (k) B
Xc o c 112 Xc c
e =T R ] LS e
intuition: the “B" matrix after transformation

» columns of B € column space of P, which is equivalent to
R (M)

» columns of M,. and M. are linearly independent = columns of
B & R (M)

» thus

denote as B

B:[Mc Muc} //*\ :>M_IB:|:%C:|
0
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Theorem (Kalman canonical form (controllability))

Ke(k+1) :%AL %(K) B.
l)_(uc(k+1):| l 0 Auc] [Yuc(k)]+[ 0 ]U(k)

intuition: the “A" matrix after transformation
> the range space of M, is “A-invariant™

columns of AM, € {AB,A’B,...,A"B} € R(M,)
where columns of A"B € R (P) =R (M,) (-.- Cayley Halmilton

Thm)
> ie., AM. = M.A. for some A.=

é/au

- ,/\ - -

A[Ma MuC] = [Mm MUC] Ae AZ = M~ AM = { /?)C 212 ]
uc uc
0 *
—_———

A
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Theorem (Kalman canonical form (controllability))
M~1B

xe(k+1) ] _ AAZ_IZZ T %K) "gc‘\
{iuc(kﬂ) ] { 0 A ] {iuc(k) ] + { 0 ] u(k)

(A, B,) is controllable

» controllability matrix after similarity transform

5_ B. AB. ... An"'B.|... Ar1p.
o 0 .. 0 0

[ P.|AmB. ... AT1B,

|0 0o ... 0

» similarity transform does not change

controllability=- rank(P) = rank(P) = m
» thus rank(P.) = n; = (A, B.) is controllable
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Theorem (Kalman canonical form (controllability))

LT AL ER L e
y(k)=[ C Cuc ] { )_fjc((’j()) ] + Du(k)

C(zl —=A)*B+D=Cozl —A)'B.+D

we can check that

= = ZI—AC —Alz -1 éc
|G C“C][ 0 zl—%_\uc} {O}JFD
= = - A~ . [B ]
— Cu (Z C ~ C D
[ c c ] [ 0 (ZI—AUC)_l ] 0 +
—C. (2l —A) B+ D
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Matlab commands

M~1AM M—1B
% (k + 1) A. A % (k) B
Xc + . c 112 Xc c
[fq,c(k+1) ] - { 0 A ] {iuc(k) ] * { 0 ] (k)
x = MXx where M = [ M. MUC]
» M. =[my,...,m,] consists of all the linearly independent
columns of P: Mc = orth(P)
» Mye = [mp,41,-..,m,] are added columns to complete the basis

and yield a nonsingular M
> from linear algebra: the orthogonal complement of the range
space of P is the null space of PT:

R" = R (P) &N (PT)

» hence Muc = null(P’) (the transpose is important here)
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The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be uncontrollable with the rank of the controllability matrix

rank(P) =n; < n. Let M = [ M. M, ] where

M. = [my, ..., m, ] consists of ny linearly independent columns of P,
M,c = [Mp, 41, ..., m,] are added columns to complete the basis for
R" and yield a nonsingular M. Then the similarity transformation

x = MXx transforms the system equation to

i )_<c _ /Z\c 412 )_<c + éc
dt | Roe | [ 0 Auc ]| e 0o "

y-[ ¢ Cuc}{f_(c]+Du

>

XLIC
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Example

d | vm —b/m —1/m —1/m Vi 1/m
B ki 0 0 Foo | + 0 |F
R, ko 0 0 F, 0

letm=1,b=1

1 -1 1—k—ko 1 -1 0 1 1/kk O
P=1|0 Kk —ky ,M=|0 k 0|, M*=]|0 1/k O
0 ky —ko 0 k 1 0 —ko/ky 1
0 —(kthk)|1l 1
A=M1TTAM=| 1 -1 0|,B=M1B=1|0
0 0 10 0
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Stabilizability

The system is stabilizable if

» all its unstable modes, if any, are controllable

> i.e., the uncontrollable modes are stable (A, is Schur, namely,
all eigenvalues are in the unit circle)
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4. Separating the unobservable subspace
Discrete-time version
Detectability
Continuous-time version
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Separating the unobservable subspace

» recall 1: similarity transform x = O~1x* preserves observability

x (k +1) = Ax (k) + Bu (k) N x* (k 4+ 1) = OAO~1x* (k) + OBu (k)
y (k) = Cx (k) + Du (k) y (k) = CO~1x* (k) + Du (k)

» an unobservable system structure

(
= 10 = 1
o110 3). - 3
C=[1 0]
» decoupled structure for generalized systems
X(k+1) ] [ A 0 %o (k) B,
|: )?uo(k+ 1) :| B l AZI /Z\uo :| |: )?uo(k) i Buo U(k)

w0 =€ o] | 2 |+ ouk

the “observed” X, doesn't reflect X, (%(k + 1) = Aoo (k) + Bou (k)
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Theorem (Kalman canonical form (observability))
Let x € R", x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
unobservable with rank of the observability matrix,

rank(Q) = ny < n. Let O = [ OO° } where O, consists of n,

. . T
linearly independent rows of Q, and O,o = [0] ,1,...,0]] are

»¥n

added rows to complete the basis and yield a nonsingular O. Then
X = Ox transforms the system equation to

{ g } - { A } { = } + { e ] (k)

v =[G o] | 2 |+ ouk

Furthermore, (A,, O,) is observable, and
C(zl —A) B+ D= Co(zl —A) B, +D
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Theorem (Kalman canonical form)

Case for observability

{ gy } - { A } { = } + { e ] (k)

v.s. case for controllability

s A R ][5 e
C

Intuition: duality between controllability and observability
(A, B) unconrollable < (A", B") unobservable

24/31



Detectability

The system is detectable if

» all its unstable modes, if any, are observable

> i.e., the unobservable modes are stable (A,, is Schur)
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Continuout-time version

Theorem (Kalman canonical form (observability))

Let a n-dimensional state-space system x = Ax + Bu, y = Cx + Du
be unobservable with the rank of the observability matrix

rank (Q) = ny < n. Then there exists similarity transform x = Ox
that transforms the system equation to

il =LA zf’H e la ]

e a[z] o

Furthermore (/_\ o) I
C(sl —A)*B+D

_s bservgble, a_nd
= Co(sl — A,)™'B, + D.
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Transfer-function perspective

uncontrollable system: C(zl — A)*B+ D = C.(zl — A.)"'B.+ D

unobservable system: C(zI — A)*B+ D = Co(zl — A,) B, + D

where A € R™" A, € Rm*m A, ¢ Rmxm
» Order reduction exists
B(z2)

(=)’ A(z) = det(zI — A) order: n
z

G(z)=C(zl —A)'B+D =

>

G(z) = Ce(zl-A)1BA4D = _C(Z), Ac(z) = det (zI — Ac) order: ny

(2

» =A(z) and B(z) are not co-prime | pole-zero
cancellation exists

» same applies to unobservable systems

>
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Example

Consider

RN HE

d[x
dt | Xo
X1
a2
» The transfer function is

G(s)

_ s+ _ s+a
24354+ 2  (s+1)(s+2)

» System is in controllable canonical form and is controllable.

» observability matrix

Q:[i qi3ydaQ:kr4ﬂq—m

=>unobservable if c; =1 or 2
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Kalman decomposition

an extended example:

A 0 [Aiz] O B

| A | A | A | Ao _ | B
A= 0 0 |[As3| O » B= 0
0 0 | Ay | Aus 0

C=[G 0 G 0]

» A, G and B; are nonzero

» The A;; mode is controllable and observable. The Ay, mode is
controllable but not observable. The A3z mode is not
controllable but observable. The A4y mode is not controllable
and not observable.
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