ME 547: Linear Systems Controllable and Observable Subspaces Kalman Canonical Decomposition

Xu Chen

University of Washington

1. [Controllable subspace](#page-1-0)

2. [Observable subspace](#page-5-0)

3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

- 5. [Transfer-function perspective](#page-26-0)
- 6. [Kalman decomposition](#page-29-0)

Controllable subspace: Introduction

Example

$$
\bar{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ \bar{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} x_1(k+1) & = x_1(k) + u(k) \\ x_2(k+1) & = 0 \end{cases}
$$

$$
\bar{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ \bar{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} x_1(k+1) & = x_1(k) + x_2(k) + u(k) \\ x_2(k+1) & = x_2(k) \end{cases}
$$

- \triangleright there exists controllable and uncontrollable states: x_1 controllable and x_2 uncontrollable
- \triangleright how to compute the dimensions of the two for general systems?
- \blacktriangleright how to separate them?

Controllable subspace: Assumptions

Consider an uncontrollable LTI system

$$
x(k + 1) = Ax(k) + Bu(k), A \in \mathbb{R}^{n \times n}
$$

$$
y(k) = Cx(k) + Du(k)
$$

Let the controllability matrix

$$
P = [B, AB, A^2B, \ldots, A^{n-1}B]
$$

have rank $n_1 < n$.

Controllable subspace

► The controllable subspace χ_C is the set of all vectors $x \in \mathbb{R}^n$ that can be reached from the origin.

 \blacktriangleright From

$$
x(n) - Anx(0) = \underbrace{[B, AB, A2B, \dots, An-1B]}_{P} \left[\begin{array}{c} u(n-1) \\ u(n-2) \\ \vdots \\ u(0) \end{array}\right]
$$

 χ_C is the range space of P: $\chi_C = \mathcal{R}(P)$

1. [Controllable subspace](#page-1-0)

2. [Observable subspace](#page-5-0)

3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

5. [Transfer-function perspective](#page-26-0)

6. [Kalman decomposition](#page-29-0)

Observable subspace: Introduction

Example

$$
\bar{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \ \bar{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \Leftrightarrow \begin{cases} x_1(k+1) & = x_1(k) + u(k) \\ x_2(k+1) & = x_1(k) + x_2(k) \\ y(k) & = x_1(k) \end{cases}
$$

$$
\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}
$$

- ighthrow exists observable and unobservable states: x_1 observable and x_2 unobservable
- \blacktriangleright how to separate the two?
- \triangleright how to separate controllable but observable states, controllable but unobservable states, etc?

Observable subspace: Assumptions

Consider an unobservable LTI system

$$
x(k + 1) = Ax(k) + Bu(k), A \in \mathbb{R}^{n \times n}
$$

$$
y(k) = Cx(k) + Du(k)
$$

Let the observability matrix

$$
Q = \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array} \right]
$$

have rank $n_2 < n$.

Unobservable subspace

 \blacktriangleright From

 \blacktriangleright The unobservable subspace $\chi_{\mu\rho}$ is the set of all nonzero initial conditions $x(0) \in \mathbb{R}^n$ that produce a zero free response.

$$
\left[\begin{array}{c}y(0)\\y(1)\\ \vdots\\y(n-1)\end{array}\right]=\left[\begin{array}{c}C\\CA\\ \vdots\\ CA^{n-1}\end{array}\right]x(0)
$$

 $\chi_{\mu\rho}$ is the null space of Q: $\chi_{\mu\rho} = \mathcal{N}(Q)$

1. [Controllable subspace](#page-1-0)

2. [Observable subspace](#page-5-0)

3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

- 5. [Transfer-function perspective](#page-26-0)
- 6. [Kalman decomposition](#page-29-0)

Separating the uncontrollable subspace

recall 1: similarity transform $x = Mx^*$ preserves controllability

$$
\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases} \Rightarrow \begin{cases} x^*(k+1) = M^{-1}AMx^*(k) + M^{-1}Bu(k) \\ y(k) = CMx^*(k) + Du(k) \end{cases}
$$

 \triangleright recall 2: the uncontrollable system structure at introduction

$$
\bar{A} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right], \ \bar{B} = \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \Leftrightarrow \begin{cases} x_1(k+1) & = x_1(k) + x_2(k) + u(k) \\ x_2(k+1) & = x_2(k) \end{cases}
$$

decoupled structure for generalized systems

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{c} & \bar{C}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + Du(k)
$$

 \bar{x}_{uc} impacted by neither u nor \bar{x}_{c} .

Let $x \in \mathbb{R}^n$, $x(k + 1) = Ax(k) + Bu(k)$, $y(k) = Cx(k) + Du(k)$ be uncontrollable with rank of the controllability matrix, rank $(P)=n_{1} <$ n. Let $M=\left[\begin{array}{cc} M_{c} & M_{uc}\end{array}\right]$, where $M_c = [m_1, \ldots, m_{n_1}]$ consists of n_1 linearly independent columns of P, and $M_{\mu c} = [m_{n+1}, \ldots, m_n]$ are added columns to complete the basis and yield a nonsingular M. Then $x = M\overline{x}$ transforms the system equation to

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{c} & \bar{C}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + Du(k)
$$

Furthermore, (\bar{A}_c, \bar{B}_c) is controllable, and $C(zI - A)^{-1}B + D = \bar{C}_c(zI - \bar{A}_c)^{-1}\bar{B}_c + D$

$$
\begin{bmatrix}\n\bar{x}_c(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_c & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_c(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_c \\
0\n\end{bmatrix} u(k)
$$

 $intuition$: the " B " matrix after transformation

- \triangleright columns of $B \in$ column space of P, which is equivalent to $\mathcal{R}(M_c)$
- \triangleright columns of M_{uc} and M_{c} are linearly independent \Rightarrow columns of $B \notin \mathcal{R}(M_{uc})$

 \blacktriangleright thus

$$
B = \left[\begin{array}{cc} M_c & M_{uc} \end{array} \right] \left[\begin{array}{c} \xleftarrow{\text{denote as }} \bar{B}_c \\ \uparrow \searrow \\ 0 \end{array} \right] \Rightarrow M^{-1}B = \left[\begin{array}{c} \bar{B}_c \\ 0 \end{array} \right]
$$

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix}\begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$

intuition: the "A" matrix after transformation

$$
\blacktriangleright
$$
 range space of M_c is "A-invariant":

columns of $AM_c \in \{AB, A^2B, \ldots, A^nB\} \in \mathcal{R}(M_c)$ where columns of $A^nB\in\mathcal{R}$ $(P)=\mathcal{R}$ (M_c) $(\because$ Cayley Halmilton Thm)

i.e.,
$$
AM_c = M_c \overline{A}_c
$$
 for some $\overline{A}_c \Rightarrow$

$$
A\left[M_c, M_{uc}\right] = \left[M_c, M_{uc}\right] \underbrace{\begin{bmatrix} \bar{A}_c & \stackrel{\triangle}{\ast} \bar{A}_{12} \\ \stackrel{\triangle}{\ast} \\ 0 & \stackrel{\triangle}{\ast} \end{bmatrix}}_{\bar{A}} \Rightarrow M^{-1}AM = \begin{bmatrix} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{uc} \end{bmatrix}
$$

$$
\begin{bmatrix} \bar{x}_{c}(k+1) \\ \bar{x}_{uc}(k+1) \end{bmatrix} = \begin{bmatrix} \bar{A}_{c} & \bar{A}_{12} \\ 0 & \bar{A}_{uc} \end{bmatrix} \begin{bmatrix} \bar{x}_{c}(k) \\ \bar{x}_{uc}(k) \end{bmatrix} + \begin{bmatrix} \bar{B}_{c} \\ 0 \end{bmatrix} u(k)
$$

 (\bar{A}_c, \bar{B}_c) is controllable

 \triangleright controllability matrix after similarity transform

$$
\begin{aligned}\n\bar{P} &= \left[\begin{array}{cccc} \bar{B}_c & \bar{A}_c \bar{B}_c & \dots & \bar{A}_c^{n_1-1} \bar{B}_c & \dots & \bar{A}_c^{n-1} \bar{B}_c \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \end{array} \right] \\
&= \left[\begin{array}{cccc} \bar{P}_c & \bar{A}_c^{n_1} \bar{B}_c & \dots & \bar{A}_c^{n-1} \bar{B}_c \\ 0 & 0 & \dots & 0 \end{array} \right]\n\end{aligned}
$$

 \triangleright similarity transform does not change controllability \Rightarrow rank(\bar{P}) = rank(P) = n_1

▶ thus rank $(\bar{P}_c) = n_1 \Rightarrow (\bar{A}_c, \bar{B}_c)$ is controllable

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{c} & \bar{C}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + Du(k)
$$

 $C(zI - A)^{-1}B + D = \bar{C}_c(zI - \bar{A}_c)^{-1}\bar{B}_c + D$

we can check that

$$
\begin{bmatrix}\n\bar{C}_c & \bar{C}_{uc}\n\end{bmatrix}\n\begin{bmatrix}\n zI - \bar{A}_c & -\bar{A}_{12} \\
 0 & zI - \bar{A}_{uc}\n\end{bmatrix}^{-1}\n\begin{bmatrix}\n\bar{B}_c \\
 0\n\end{bmatrix} + D
$$
\n
$$
= \begin{bmatrix}\n\bar{C}_c & \bar{C}_{uc}\n\end{bmatrix}\n\begin{bmatrix}\n (zI - \bar{A}_c)^{-1} & * \\
 0 & (zI - \bar{A}_{uc})^{-1}\n\end{bmatrix}\n\begin{bmatrix}\n\bar{B}_c \\
 0\n\end{bmatrix} + D
$$
\n
$$
= \bar{C}_c (zI - \bar{A}_c)^{-1} \bar{B}_c + D
$$

Matlab commands

$$
\begin{bmatrix} \bar{x}_{c}(k+1) \\ \bar{x}_{uc}(k+1) \end{bmatrix} = \begin{bmatrix} \bar{A}_{c} & \bar{A}_{12} \\ 0 & \bar{A}_{uc} \end{bmatrix} \begin{bmatrix} \bar{x}_{c}(k) \\ \bar{x}_{uc}(k) \end{bmatrix} + \begin{bmatrix} \bar{B}_{c} \\ 0 \end{bmatrix} u(k)
$$

 $\chi=M\bar{\chi}$ where $M=\left[\begin{array}{cc} M_{c} & M_{uc}\end{array}\right]$

- $M_c = [m_1, \ldots, m_{n_1}]$ consists of all the linearly independent columns of P: $Mc = orth(P)$
- $M_{uc} = [m_{n+1}, \ldots, m_n]$ are added columns to complete the basis and yield a nonsingular M
	- \triangleright from linear algebra: the orthogonal complement of the range space of P is the null space of $P^{\mathcal{T}}$:

$$
\mathbb{R}^{n}=\mathcal{R}\left(P\right)\oplus\mathcal{N}\left(P^{\mathcal{T}}\right)
$$

 \triangleright hence Muc = null(P') (the transpose is important here)

The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))

Let a n-dimensional state-space system $\dot{x} = Ax + Bu$, $y = Cx + Du$ be uncontrollable with the rank of the controllability matrix rank $(P)=n_1 < n$. Let $M=\left[\begin{array}{cc} M_c & M_{uc}\end{array}\right]$ where $M_c = [m_1, \ldots, m_{n_1}]$ consists of n_1 linearly independent columns of P, $M_{uc} = [m_{n_1+1}, \ldots, m_n]$ are added columns to complete the basis for \mathbb{R}^n and yield a nonsingular M. Then the similarity transformation $x = M\bar{x}$ transforms the system equation to

$$
\frac{d}{dt} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{uc} \end{bmatrix} = \begin{bmatrix} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{uc} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{uc} \end{bmatrix} + \begin{bmatrix} \bar{B}_c \\ 0 \end{bmatrix} u
$$

$$
y = \begin{bmatrix} \bar{C}_c & \bar{C}_{uc} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{uc} \end{bmatrix} + Du
$$

Example

$$
\frac{d}{dt} \begin{bmatrix} v_m \\ F_{k_1} \\ F_{k_2} \end{bmatrix} = \begin{bmatrix} -b/m & -1/m & -1/m \\ k_1 & 0 & 0 \\ k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_m \\ F_{k_1} \\ F_{k_2} \end{bmatrix} + \begin{bmatrix} 1/m \\ 0 \\ 0 \end{bmatrix} F
$$

Let $m = 1, b = 1$

$$
P = \begin{bmatrix} 1 & -1 & 1 - k_1 - k_2 \\ 0 & k_1 & -k_1 \\ 0 & k_2 & -k_2 \end{bmatrix}, M = \begin{bmatrix} 1 & -1 & 0 \\ 0 & k_1 & 0 \\ 0 & k_2 & 1 \end{bmatrix}, M^{-1} = \begin{bmatrix} 1 & 1/k_1 & 0 \\ 0 & 1/k_1 & 0 \\ 0 & -k_2/k_1 & 1 \end{bmatrix}
$$

$$
\bar{A} = M^{-1}AM = \begin{bmatrix} 0 & -(k_1 + k_2) & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \bar{B} = M^{-1}B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$

Stabilizability

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{c} & \bar{C}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + Du(k)
$$

The system is stabilizable if

- \blacktriangleright all its unstable modes, if any, are controllable
- i.e., the uncontrollable modes are stable (\bar{A}_{uc} is Schur, namely, all eigenvalues are in the unit circle)
- 1. [Controllable subspace](#page-1-0)
- 2. [Observable subspace](#page-5-0)
- 3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

- 5. [Transfer-function perspective](#page-26-0)
- 6. [Kalman decomposition](#page-29-0)

Separating the unobservable subspace recall 1: similarity transform $x = O^{-1}x^*$ preserves observability

$$
\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases} \Rightarrow \begin{cases} x^*(k+1) = OAO^{-1}x^*(k) + OBu(k) \\ y(k) = CO^{-1}x^*(k) + Du(k) \end{cases}
$$

an unobservable system structure

$$
\bar{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \ \bar{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \Leftrightarrow \begin{cases} x_1(k+1) & = x_1(k) + u(k) \\ x_2(k+1) & = x_1(k) + x_2(k) \\ y(k) & = x_1(k) \end{cases}
$$

$$
\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}
$$

 \blacktriangleright decoupled structure for generalized systems

$$
\begin{bmatrix}\n\bar{x}_{o}(k+1) \\
\bar{x}_{uo}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{o} & 0 \\
\bar{A}_{21} & \bar{A}_{uo}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{o} \\
\bar{B}_{uo}\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{o} & 0\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + Du(k)
$$

the "observed" \bar{x}_{o} doesn't reflect \bar{x}_{uc} ($\bar{x}_{o}(k+1) = \bar{A}_{o}\bar{x}_{o}(k) + \bar{B}_{o}u(k)$)

Theorem (Kalman canonical form (observability))

Let $x \in \mathbb{R}^n$, $x(k + 1) = Ax(k) + Bu(k)$, $y(k) = Cx(k) + Du(k)$ be unobservable with rank of the observability matrix,

rank $(Q)=$ $n_{2} < n$. Let $O=$ $\left[\begin{array}{c} O_{o}\\ O_{uo} \end{array}\right]$ where O_{o} consists of n_2

linearly independent rows of Q, and $O_{uo}=\left [o_{n_1+1}^{\mathcal{T}}, \ldots, o_n^{\mathcal{T}} \right]^{\mathcal{T}}$ are added rows to complete the basis and yield a nonsingular O. Then \bar{x} = Ox transforms the system equation to

$$
\begin{bmatrix}\n\bar{x}_{o}(k+1) \\
\bar{x}_{uo}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{o} & 0 \\
\bar{A}_{21} & \bar{A}_{uo}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{o} \\
\bar{B}_{uo}\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{o} & 0\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + Du(k)
$$

Furthermore, $(\bar{A}_{o},\bar{O}_{o})$ is observable, and $C(zI - A)^{-1}B + D = \bar{C}_o(zI - \bar{A}_o)^{-1}\bar{B}_o + D$

Theorem (Kalman canonical form)

Case for observability

$$
\begin{bmatrix}\n\bar{x}_{o}(k+1) \\
\bar{x}_{uo}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{o} & 0 \\
\bar{A}_{21} & \bar{A}_{uo}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{o} \\
\bar{B}_{uo}\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{o} & 0\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + Du(k)
$$

v.s. case for controllability

$$
\begin{bmatrix}\n\bar{x}_{c}(k+1) \\
\bar{x}_{uc}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{c} & \bar{A}_{12} \\
0 & \bar{A}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{c} \\
0\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{c} & \bar{C}_{uc}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{c}(k) \\
\bar{x}_{uc}(k)\n\end{bmatrix} + Du(k)
$$

Intuition: duality between controllability and observability (A, B) unconrollable $\Leftrightarrow (A^{\mathcal{T}}, B^{\mathcal{T}})$ unobservable

UW Linear Systems (X. Chen, ME547) [Kalman decomposition](#page-0-0) 24 / 31

Detectability

$$
\begin{bmatrix}\n\bar{x}_{o}(k+1) \\
\bar{x}_{uo}(k+1)\n\end{bmatrix} = \begin{bmatrix}\n\bar{A}_{o} & 0 \\
\bar{A}_{21} & \bar{A}_{uo}\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_{o} \\
\bar{B}_{uo}\n\end{bmatrix} u(k)
$$
\n
$$
y(k) = \begin{bmatrix}\n\bar{C}_{o} & 0\n\end{bmatrix} \begin{bmatrix}\n\bar{x}_{o}(k) \\
\bar{x}_{uo}(k)\n\end{bmatrix} + Du(k)
$$

The system is detectable if

- \blacktriangleright all its unstable modes, if any, are observable
- i.e., the unobservable modes are stable (\bar{A}_{uo}) is Schur)

Continuout-time version

Theorem (Kalman canonical form (observability))

Let a n-dimensional state-space system $\dot{x} = Ax + Bu$, $y = Cx + Du$ be unobservable with the rank of the observability matrix rank (Q) = $n_2 < n$. Then there exists similarity transform $\bar{x} = 0x$ that transforms the system equation to

$$
\frac{d}{dt}\begin{bmatrix} \bar{x}_o \\ \bar{x}_{uo} \end{bmatrix} = \begin{bmatrix} \bar{A}_o & 0 \\ \bar{A}_{21} & \bar{A}_{uo} \end{bmatrix} \begin{bmatrix} \bar{x}_o \\ \bar{x}_{uo} \end{bmatrix} + \begin{bmatrix} \bar{B}_o \\ \bar{B}_{uo} \end{bmatrix} u
$$

$$
y = \begin{bmatrix} \bar{C}_o & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_o \\ \bar{x}_{uo} \end{bmatrix} + Du
$$

Furthermore, $(\bar{A}_{o},\bar{C}_{o})$ is observable, and $C(sl - A)^{-1}B + D = \bar{C}_o(sl - \bar{A}_o)^{-1}\bar{B}_o + D.$

1. [Controllable subspace](#page-1-0)

2. [Observable subspace](#page-5-0)

3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

5. [Transfer-function perspective](#page-26-0)

6. [Kalman decomposition](#page-29-0)

Transfer-function perspective

uncontrollable system: $\;\mathcal{C}(zI-A)^{-1}B+D=\;\bar{\mathcal{C}}_{c}(zI-\bar{A}_{c})^{-1}\bar{B}_{c}+D$ unobservable system: $C(zI-A)^{-1}B+D=\bar C_o(zI-\bar A_o)^{-1}\bar B_o+D$ where $A \in \mathbb{R}^{n \times n}$, $\bar{A}_c \in \mathbb{R}^{n_1 \times n_1}$, $\bar{A}_o \in \mathbb{R}^{n_2 \times n_2}$ • Order reduction exists

$$
G(z) = C(zI - A)^{-1}B + D = \frac{B(z)}{A(z)}, A(z) = \det(zI - A)
$$
 order : n

$$
G(z) = \bar{C}_c(zI - \bar{A}_c)^{-1}\bar{B}_c + D = \frac{\bar{B}_c(z)}{\bar{A}_c(z)}, \ \bar{A}_c(z) = \det(zI - \bar{A}_c) \ \text{ order} : n_1
$$

- $\triangleright \Rightarrow A(z)$ and $B(z)$ are not co-prime | pole-zero cancellation exists
- \triangleright same applies to unobservable systems

Example

Consider

$$
\frac{d}{dt}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u
$$

$$
y = \begin{bmatrix} c_1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

 \blacktriangleright The transfer function is

$$
G(s) = \frac{s + c_1}{s^2 + 3s + 2} = \frac{s + c_1}{(s + 1)(s + 2)}
$$

 \triangleright System is in controllable canonical form and is controllable. \blacktriangleright observability matrix

$$
Q = \begin{bmatrix} c_1 & 1 \\ -2 & c_1 - 3 \end{bmatrix}, \text{ det } Q = (c_1 - 1) (c_1 - 2)
$$

\n
$$
\Rightarrow \text{unobservable if } c_1 = 1 \text{ or } 2
$$

1. [Controllable subspace](#page-1-0)

2. [Observable subspace](#page-5-0)

3. [Separating the uncontrollable subspace](#page-9-0)

[Discrete-time version](#page-10-0) [Continuous-time version](#page-17-0) **[Stabilizability](#page-19-0)**

4. [Separating the unobservable subspace](#page-20-0)

[Discrete-time version](#page-21-0) **[Detectability](#page-24-0)** [Continuous-time version](#page-25-0)

5. [Transfer-function perspective](#page-26-0)

6. [Kalman decomposition](#page-29-0)

Kalman decomposition

an extended example:

$$
A = \begin{bmatrix} A_{11} & 0 & A_{13} & 0 \\ \hline A_{21} & A_{22} & A_{23} & A_{24} \\ 0 & 0 & A_{33} & 0 \\ 0 & 0 & A_{43} & A_{44} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ B_2 \\ 0 \\ 0 \end{bmatrix}
$$

$$
C = \begin{bmatrix} C_1 & 0 & C_3 & 0 \end{bmatrix}
$$

 \blacktriangleright A_{ii} , C_i and B_i are nonzero

 \blacktriangleright The A_{11} mode is controllable and observable. The A_{22} mode is controllable but not observable. The A_{33} mode is not controllable but observable. The A_{44} mode is not controllable and not observable.