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Controllable subspace: Introduction

Example

Ā =

[
1 0
0 0

]
, B̄ =

[
1
0

]
⇔

{
x1(k + 1) = x1(k) + u(k)

x2(k + 1) = 0

Ā =

[
1 1
0 1

]
, B̄ =

[
1
0

]
⇔

{
x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = x2(k)

I there exists controllable and uncontrollable states: x1

controllable and x2 uncontrollable
I how to compute the dimensions of the two for general systems?
I how to separate them?
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Controllable subspace: Assumptions

Consider an uncontrollable LTI system

x (k + 1) = Ax (k) + Bu (k) , A ∈ Rn×n

y (k) = Cx (k) + Du (k)

Let the controllability matrix

P =
[
B ,AB ,A2B , . . . ,An−1B

]
have rank n1 < n.

UW Linear Systems (X. Chen, ME547) Kalman decomposition 4 / 31



Controllable subspace

I The controllable subspace χC is the set of all vectors x ∈ Rn

that can be reached from the origin.
I From

x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]︸ ︷︷ ︸
P


u (n − 1)
u (n − 2)

...
u (0)


χC is the range space of P : χC = R (P)
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Observable subspace: Introduction

Example

Ā =

[
1 0
1 1

]
, B̄ =

[
1
0

]
, ⇔


x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x1(k) + x2(k)

y(k) = x1(k)

C̄ =
[
1 0

]
I exists observable and unobservable states: x1 observable and x2

unobservable
I how to separate the two?
I how to separate controllable but observable states, controllable

but unobservable states, etc?
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Observable subspace: Assumptions

Consider an unobservable LTI system

x (k + 1) = Ax (k) + Bu (k) , A ∈ Rn×n

y (k) = Cx (k) + Du (k)

Let the observability matrix

Q =


C
CA
...

CAn−1


have rank n2 < n.

UW Linear Systems (X. Chen, ME547) Kalman decomposition 8 / 31



Unobservable subspace

I The unobservable subspace χuo is the set of all nonzero initial
conditions x (0) ∈ Rn that produce a zero free response.

I From 
y (0)
y (1)
...

y (n − 1)


︸ ︷︷ ︸

Y

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Q

x (0)

χuo is the null space of Q: χuo = N (Q)
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Separating the uncontrollable subspace
I recall 1: similarity transform x = Mx∗ preserves controllability{

x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)
⇒

{
x∗ (k + 1) = M−1AMx∗ (k) + M−1Bu (k)

y (k) = CMx∗ (k) + Du (k)

I recall 2: the uncontrollable system structure at introduction

Ā =

[
1 1
0 1

]
, B̄ =

[
1
0

]
⇔

{
x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = x2(k)

I decoupled structure for generalized systems[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

x̄uc impacted by neither u nor x̄c .
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Theorem (Kalman canonical form (controllability))
Let x ∈ Rn, x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
uncontrollable with rank of the controllability matrix,
rank (P) = n1 < n. Let M =

[
Mc Muc

]
, where

Mc = [m1, . . . ,mn1] consists of n1 linearly independent columns of P ,
and Muc = [mn1+1, . . . ,mn] are added columns to complete the basis
and yield a nonsingular M . Then x = Mx̄ transforms the system
equation to[

x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

Furthermore, (Āc , B̄c) is controllable, and

C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

intuition: the “B” matrix after transformation
I columns of B ∈ column space of P , which is equivalent to
R (Mc)

I columns of Muc and Mc are linearly independent ⇒ columns of
B /∈ R (Muc)

I thus

B =
[
Mc Muc

]  denote as B̄c︷︸︸︷
∗
0

⇒ M−1B =

[
B̄c

0

]
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

intuition: the “A” matrix after transformation
I range space of Mc is “A-invariant”:

columns of AMc ∈
{
AB ,A2B , . . . ,AnB

}
∈ R (Mc)

where columns of AnB ∈ R (P) = R (Mc) (∵ Cayley Halmilton
Thm)

I i.e., AMc = McĀc for some Āc⇒

A [Mc ,Muc ] = [Mc ,Muc ]

 Āc

,Ā12︷︸︸︷
∗

0
,Āuc︷︸︸︷
∗


︸ ︷︷ ︸

Ā

⇒ M−1AM =

[
Āc Ā12
0 Āuc

]
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

(Āc , B̄c) is controllable

I controllability matrix after similarity transform

P̄ =

[
B̄c Āc B̄c . . . Ān1−1

c B̄c . . . Ān−1
c B̄c

0 0 . . . 0 . . . 0

]
=

[
P̄c Ān1

c B̄c . . . Ān−1
c B̄c

0 0 . . . 0

]
I similarity transform does not change

controllability⇒ rank(P̄) = rank(P) = n1

I thus rank(P̄c) = n1 ⇒(Āc , B̄c) is controllable
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Theorem (Kalman canonical form (controllability))

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D

we can check that[
C̄c C̄uc

] [ zI − Āc −Ā12
0 zI − Āuc

]−1 [
B̄c

0

]
+ D

=
[
C̄c C̄uc

] [ (zI − Āc

)−1 ∗
0

(
zI − Āuc

)−1

] [
B̄c

0

]
+ D

=C̄c

(
zI − Āc

)−1
B̄c + D
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Matlab commands

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

M−1AM︷ ︸︸ ︷[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

M−1B︷ ︸︸ ︷[
B̄c

0

]
u(k)

x = Mx̄ where M =
[
Mc Muc

]
I Mc = [m1, . . . ,mn1] consists of all the linearly independent

columns of P : Mc = orth(P)
I Muc = [mn1+1, . . . ,mn] are added columns to complete the basis

and yield a nonsingular M
I from linear algebra: the orthogonal complement of the range

space of P is the null space of PT :

Rn = R (P)⊕N
(
PT
)

I hence Muc = null(P’) (the transpose is important here)
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The techniques apply to CT systems

Theorem (Kalman canonical form (controllability))
Let a n-dimensional state-space system ẋ = Ax + Bu, y = Cx + Du
be uncontrollable with the rank of the controllability matrix
rank (P) = n1 < n. Let M =

[
Mc Muc

]
where

Mc = [m1, . . . ,mn1] consists of n1 linearly independent columns of P ,
Muc = [mn1+1, . . . ,mn] are added columns to complete the basis for
Rn and yield a nonsingular M . Then the similarity transformation
x = Mx̄ transforms the system equation to

d

dt

[
x̄c
x̄uc

]
=

[
Āc Ā12

0 Āuc

] [
x̄c
x̄uc

]
+

[
B̄c

0

]
u

y =
[
C̄c C̄uc

] [ x̄c
x̄uc

]
+ Du
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Example

d

dt

 vm
Fk1

Fk2

 =

 −b/m −1/m −1/m
k1 0 0
k2 0 0

 vm
Fk1

Fk2

+

 1/m
0
0

F

Let m = 1, b = 1

P =

 1 −1 1− k1 − k2
0 k1 −k1
0 k2 −k2

 , M =

 1 −1 0
0 k1 0
0 k2 1

 , M−1 =

 1 1/k1 0
0 1/k1 0
0 −k2/k1 1


Ā = M−1AM =

 0 − (k1 + k2) 1
1 −1 0
0 0 0

 , B̄ = M−1B =

 1
0
0
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Stabilizability

[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

The system is stabilizable if
I all its unstable modes, if any, are controllable
I i.e., the uncontrollable modes are stable (Āuc is Schur, namely,

all eigenvalues are in the unit circle)

UW Linear Systems (X. Chen, ME547) Kalman decomposition 20 / 31



1. Controllable subspace

2. Observable subspace

3. Separating the uncontrollable subspace
Discrete-time version
Continuous-time version
Stabilizability

4. Separating the unobservable subspace
Discrete-time version
Detectability
Continuous-time version

5. Transfer-function perspective

6. Kalman decomposition

UW Linear Systems (X. Chen, ME547) Kalman decomposition 21 / 31



Separating the unobservable subspace
I recall 1: similarity transform x = O−1x∗ preserves observability{

x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)
⇒

{
x∗ (k + 1) = OAO−1x∗ (k) + OBu (k)

y (k) = CO−1x∗ (k) + Du (k)

I an unobservable system structure

Ā =

[
1 0
1 1

]
, B̄ =

[
1
0

]
, ⇔


x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x1(k) + x2(k)

y(k) = x1(k)

C̄ =
[

1 0
]

I decoupled structure for generalized systems[
x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

the “observed” x̄o doesn’t reflect x̄uc (x̄o(k + 1) = Āo x̄o (k) + B̄ou (k))
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Theorem (Kalman canonical form (observability))
Let x ∈ Rn, x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) be
unobservable with rank of the observability matrix,

rank (Q) = n2 < n. Let O =

[
Oo

Ouo

]
where Oo consists of n2

linearly independent rows of Q, and Ouo =
[
oT
n1+1, . . . , o

T
n

]T are
added rows to complete the basis and yield a nonsingular O. Then
x̄ = Ox transforms the system equation to[

x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

Furthermore, (Āo , Ōo) is observable, and

C (zI − A)−1B + D = C̄o(zI − Āo)−1B̄o + D
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Theorem (Kalman canonical form)
Case for observability[

x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

v.s. case for controllability[
x̄c(k + 1)
x̄uc(k + 1)

]
=

[
Āc Ā12

0 Āuc

] [
x̄c(k)
x̄uc(k)

]
+

[
B̄c

0

]
u(k)

y(k) =
[
C̄c C̄uc

] [ x̄c(k)
x̄uc(k)

]
+ Du(k)

Intuition: duality between controllability and observability

(A,B) unconrollable⇔
(
AT ,BT

)
unobservable
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Detectability

[
x̄o(k + 1)
x̄uo(k + 1)

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o(k)
x̄uo(k)

]
+

[
B̄o

B̄uo

]
u(k)

y(k) =
[
C̄o 0

] [ x̄o(k)
x̄uo(k)

]
+ Du(k)

The system is detectable if
I all its unstable modes, if any, are observable
I i.e., the unobservable modes are stable (Āuo is Schur)
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Continuout-time version

Theorem (Kalman canonical form (observability))
Let a n-dimensional state-space system ẋ = Ax + Bu, y = Cx + Du
be unobservable with the rank of the observability matrix
rank (Q) = n2 < n. Then there exists similarity transform x̄ = Ox
that transforms the system equation to

d

dt

[
x̄o
x̄uo

]
=

[
Āo 0
Ā21 Āuo

] [
x̄o
x̄uo

]
+

[
B̄o

B̄uo

]
u

y =
[
C̄o 0

] [ x̄o
x̄uo

]
+ Du

Furthermore, (Āo , C̄o) is observable, and
C (sI − A)−1B + D = C̄o(sI − Āo)−1B̄o + D.
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Transfer-function perspective

uncontrollable system: C (zI − A)−1B + D = C̄c(zI − Āc)−1B̄c + D

unobservable system: C (zI − A)−1B + D = C̄o(zI − Āo)−1B̄o + D

where A ∈ Rn×n, Āc ∈ Rn1×n1 , Āo ∈ Rn2×n2

I Order reduction exists

G (z) = C (zI − A)−1B + D =
B(z)

A(z)
, A(z) = det (zI − A) order : n

G (z) = C̄c(zI−Āc)−1B̄c+D =
B̄c(z)

Āc(z)
, Āc(z) = det

(
zI − Āc

)
order : n1

I ⇒A(z) and B(z) are not co-prime | pole-zero
cancellation exists

I same applies to unobservable systems
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Example
Consider

d

dt

[
x1

x2

]
=

[
0 1
−2 −3

] [
x1

x2

]
+

[
0
1

]
u

y =
[
c1 1

] [ x1

x2

]
I The transfer function is

G (s) =
s + c1

s2 + 3s + 2
=

s + c1

(s + 1) (s + 2)

I System is in controllable canonical form and is controllable.
I observability matrix

Q =

[
c1 1
−2 c1 − 3

]
, detQ = (c1 − 1) (c1 − 2)

⇒unobservable if c1 = 1 or 2
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Kalman decomposition

an extended example:

A =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

 , B =


B1

B2

0
0


C =

[
C1 0 C3 0

]
I Aij , Ci and Bi are nonzero
I The A11 mode is controllable and observable. The A22 mode is

controllable but not observable. The A33 mode is not
controllable but observable. The A44 mode is not controllable
and not observable.

UW Linear Systems (X. Chen, ME547) Kalman decomposition 31 / 31


	Controllable subspace
	Observable subspace
	Separating the uncontrollable subspace
	Discrete-time version
	Continuous-time version
	Stabilizability

	Separating the unobservable subspace
	Discrete-time version
	Detectability
	Continuous-time version

	Transfer-function perspective 
	Kalman decomposition 

