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Recap

General LTI state-space models:

ẋ (t) = Ax (t) + Bu (t) or x (k + 1) = Ax (k) + Bu (k)

y = Cx + Du

continuous time discrete time
Lyapunov Eq. ATP + PA = −Q ATPA− P = −Q
unique sol. λi(A) + λj(A) ̸= 0 |λi(A)| |λj(A)| < 1

cond. ∀ i , j ∀ i , j

solution P =
∫∞

0 eA
T tQeAtdt P =

∑∞
k=0

(
AT

)k
QAk

(if A is Hurwitz stable) (if A is Schur stable)
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The concept of controllability and observability

Controllability:
▶ inputs do not act directly on the states but via state dynamics:

ẋ (t) = Ax (t) + Bu (t) or x (k + 1) = Ax (k) + Bu (k) (1)

▶ can the inputs drive the system to any value in the state space
in a finite time?

Observability:
▶ states are not all measured directly but instead impact the

output via the output equation:

y = Cx + Du

▶ can we infer fully the initial state from the outputs and the
inputs? (can then reveal the full state trajectory through (1))
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In-class demo
Controllability and inverted pendulum on a cart
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The concept of controllability and observability

m mu

k k

b b

x1, x2 x3, x4

ẋ1 = x2
ẋ3 = x4

floating force source

▶ assume x (0) = 0
▶ because of symmetry, we always have

x1 (t) = x3 (t) , x2 (t) = x4 (t) , ∀t ≥ 0

▶ state cannot be arbitrarily steered ⇒ uncontrollable

UW Linear Systems (X. Chen, ME547) Controllability and Observability 6 / 53



Controllability definition in discrete time

Definition
A discrete-time linear system x (k + 1) = A(k)x (k) + B(k)u (k) is
called controllable at k = 0 if there exists a finite time k1 such that
for any initial state x (0) and target state x1, there exists a control
sequence {u (k) ; k = 0, 1, . . . , k1} that will transfer the system from
x (0) at k = 0 to x1 at k = k1.
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Controllability of LTI systems

x (k + 1) = Ax (k) + Bu (k) ⇒ x (n) = Anx (0) +
∑n−1

k=0 A
n−1−kBu (k)

⇒ x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]︸ ︷︷ ︸
Pd


u (n − 1)
u (n − 2)

...
u (0)


▶ given any x (n) and x (0) in Rn,

[u (n − 1) , u (n − 2) , . . . , u (0)]T can be solved if the columns
of Pd span Rn

▶ equivalently, system is controllable if Pd has rank n (full row
rank)
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Controllability of LTI systems Cont’d

x (k + 1) = Ax (k) + Bu (k) ⇒

x (n)− Anx (0) =
[
B ,AB ,A2B , . . . ,An−1B

]︸ ︷︷ ︸
Pd


u (n − 1)
u (n − 2)

...
u (0)


▶ also, no need to go beyond n: adding AnB , An+1B , . . . does not

increase the rank of Pd (Cayley Halmilton Theorem):

x(k1)−Ak1x (0) =
[
B AB . . . An−1B . . . Ak1−1B

]︸ ︷︷ ︸
rank=rank(Pd )


u (k1 − 1)
u (k1 − 2)

...
u (0)
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Theorem (Cayley Halmilton Theorem)
Let A ∈ Rn×n. An is linearly dependent with {I , A, A2, · · ·An−1}

Proof.
Consider characteristic polynomial

p (λ) = λn + cn−1λ
n−1 + · · ·+ c1λ+ c0 = det (λI − A)

= (λ− λ1)
m1 . . . (λ− λp)

mp

⇒ p (A) = An + cn−1A
n−1 + · · ·+ c1A+ c0I

= (A− λ1I )
m1 . . . (A− λpI )

mp , m1 +m2 + · · ·+mp = n

Take any eigenvector or generalized eigenvector ti , say, associated to λi :
p (A) ti = (A− λ1I )

m1 . . . (A− λpI )
mp ti =

(A− λ1I )
m1 . . . (A− λpI )

mp−1 (λi ti − λpti ) = (λi − λ1)
m1 . . . (λi − λp)

mp ti = 0

▶ Therefore p (A) [t1, t2, . . . , tn] = 0.

▶ But T = [t1, t2, . . . , tn] is invertible. Hence
p (A) = 0 ⇒ An = −c0I − c1A− · · · − cn−1A

n−1.
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Arthur Cayley: 1821-1895, British mathematician
▶ algebraic theory of curves and surfaces, group theory, linear

algebra, graph theory, invariant theory, ...
▶ extraordinarily prolific career: ~1,000 math papers

William Hamilton: 1805-1865, Irish mathematician
▶ optics and classical mechanics in physics, dynamics, algebra,

quaternions, ...
▶ quaternions: extending complex numbers to higher spatial

dimensions: 4D case

i2 = j2 = k2 = ijk = −1

now used in computer graphics, control theory, orbital
mechanics, e.g., spacecraft attitude-control systems
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Theorem (Controllability Theorem)
The n-dimensional r -input LTI system with
x (k + 1) = Ax (k) + Bu (k), A ∈ Rn×n, B ∈ Rn×r is controllable if
and only if either one of the following is satisfied

1. The n × nr controllability matrix

Pd =
[
B ,AB ,A2B , . . . ,An−1B

]
has rank n. (proved in previous three slides)

2. The controllability gramian

Wcd =
k1∑
k=0

AkBBT
(
AT

)k
is nonsingular for some finite k1.
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Proof: from controllability matrix to gramian

Recall

x (n)− Anx (0) =
[
B,AB,A2B, . . . ,An−1B

]︸ ︷︷ ︸
Pd

[u (n − 1) , u (n − 2) , . . . , u (0)]T

(2)

▶ Pd is full row rank⇒PdP
T
d =

n∑
k=0

AkBBT
(
AT

)k
︸ ︷︷ ︸

Wcd at k1=n

is nonsingular

▶ a solution to (2) is

[u (n − 1) , u (n − 2) , . . . , u (0)]T = PT
d

(
PdP

T
d

)−1
[x (n)− Anx (0)]
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Example

A =

 λ1 0 0
0 λ2 1
0 0 λ2

 , B =

 0
0
1


Pd =

 0 0 0
0 1 λ2 + λ2

1 λ2 λ2
2

 ⇒ rank(Pd) = 2 < 3 ⇒uncontrollable

Intuition: ẋ1 = λ1x1 is not impacted by the control input at all.
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Example

m mu

k k

b b

x1, x2 x3, x4

ẋ1 = x2
ẋ3 = x4

floating force source Matlab commands:
P=ctrb(A,B); rank(P)

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


0.4 0.4 0 0
−0.9 −0.07 0 0

0 0 0.4 0.4
0 0 −0.9 −0.07




x1(k)
x2(k)
x3(k)
x4(k)

+


0.3
0.4
0.3
0.4

 u (k)

rank (Pd) = rank



B︷ ︸︸ ︷
0.3
0.4
0.3
0.4

AB︷ ︸︸ ︷
0.28

−0.298
0.28

−0.298

A2B︷ ︸︸ ︷
−0.0072
−0.2311
−0.0072
−0.2311

A3B︷ ︸︸ ︷
−0.0953
0.0227
−0.0953
0.0227


= 2 ⇒ uncontrollable
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Example

d

dt

 vm
Fk1

Fk2

 =

 −b/m −1/m −1/m
k1 0 0
k2 0 0

 vm
Fk1

Fk2

+

 1/m
0
0

F

P =

 1/m −b/m2 b2/m3 − k1/m
2 − k2/m

2

0 k1/m −bk1/m
2

0 k2/m −bk2/m
2

 ⇒ rank(P) = 2

⇒uncontrollable
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Analysis: controllability and controllable canonical
form

A =

 0 1 0
0 0 1

−a0 −a1 −a2

 , B =

 0
0
1


▶ controllability matrix

Pd =

 0 0 1
0 1 −a2

1 −a2 −a1 + a2
2


has full row rank

▶ system in controllable canonical form is controllable
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Analysis: controllability gramian and Lyapunov Eq.

Wcd =
k1∑
k=0

AkBBT
(
AT

)k
▶ If A is Schur, k1 can be set to ∞

Wcd =
∞∑
k=0

Ak BBT︸︷︷︸
Q

(
AT

)k
which can be solved via the Lyapunov Eq.

AWcdA
T −Wcd = −BBT
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Analysis: controllability and similarity
transformation

{
x (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)

x=Tx∗

=⇒

x∗ (k + 1) =

Ã︷ ︸︸ ︷
T−1AT x∗ (k) +

B̃︷ ︸︸ ︷
T−1B u (k)

y (k) = CTx∗ (k) + Du (k)

▶ controllability matrix

P∗
d =

[
B̃ , ÃB̃ , . . . , Ãn−1B̃

]
=

[
T−1B ,T−1AB , . . . ,T−1An−1B

]
= T−1Pd

hence (A,B) controllable ⇔ (T−1AT ,T−1B) controllable
▶ The controllability property is invariant under any

coordinate transformation.
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* Popov-Belevitch-Hautus (PBH) controllability
test
▶ the full rank condition of the controllability matrix

Pd =
[
B ,AB ,A2B , . . . ,An−1B

]
is equivalent to: the matrix [A− λI , B] having full row rank at
every eigenvalue, λ, of A

▶ to see this: if [A− λI , B] is not full row rank then there exists
nonzero vector (a left eigenvector) such that

vT [A− λI B] = 0

⇔ vTA = λvT

vTB = 0

i.e., the input vector B is orthogonal to a left eigenvector of A.
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Example

A =

 λ1 0 0
0 λ2 1
0 0 λ2

 , B =

 0
0
1


[
A− λ1I , B

]
= 0 0 0 0

0 λ2 − λ1 1 0
0 0 λ2 − λ1 1

 not full row rank ⇒uncontrollable

Intuition: ẋ1 = λ1x1 is not impacted by the control input at all.
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Observability of LTI systems

Definition
A discrete-time linear system

x (k + 1) = A (k) x (k) + B (k) u (k)

y (k) = C (k) x (k) + D (k) u (k)

is called observable at k = 0 if there exists a finite time k1 such that
for any initial state x (0), the knowledge of the input
{u (k) ; k = 0, 1, . . . , k1} and {y (k) ; k = 0, 1, . . . , k1} suffice to
determine the state x (0). Otherwise, the system is said to be
unobservable at time k = 0.
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Observability of LTI systems
let us start with the unforced system

x (k + 1) = Ax (k) , A ∈ Rn

y (k) = Cx (k) , y ∈ Rm

x (k) = Akx (0) and y (k) = Cx (k) give
y (0)
y (1)

...
y (n − 1)


︸ ︷︷ ︸

Y

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Qd :nm×n

x (0)

▶ if the linear matrix equation has a nonzero solution x (0), the
system is observable.
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Observability of LTI systems
generalizing to
x (k + 1) = Ax (k) + Bu (k) , y (k) = Cx (k) + Du (k):

x (k) = Akx (0) +
k−1∑
j=0

Ak−1−jBu (j)

y (k) = CAkx (0)︸ ︷︷ ︸
yfree(k)

+C
k−1∑
j=0

Ak−1−jBu (j) + Du (k)︸ ︷︷ ︸
yforced(k)

y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)


︸ ︷︷ ︸
Y : available from measurements and inputs

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Qd :nm×n

x (0)
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Observability of LTI systems


y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)


︸ ︷︷ ︸

Y

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Qd

x (0)

▶ x (0) can be solved if Qd has rank n (full column rank):
▶ if Qd is square, x (0) = Q−1

d Y
▶ if Qd is a tall matrix, pick n linearly independent rows from Qd

UW Linear Systems (X. Chen, ME547) Controllability and Observability 26 / 53



Observability of LTI systems Cont’d


y (0)− yforced (0)
y (1)− yforced (1)

...
y (n − 1)− yforced (n − 1)


︸ ︷︷ ︸

Y

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Qd

x (0)

▶ also, no need to go beyond n in Qd : adding CAn, CAn+1, . . .
does not increase the column rank of Qd (Cayley Halmilton
Theorem)
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Theorem (Observability Theorem)
System x (k + 1) = Ax (k) + Bu (k) , y (k) = Cx (k) + Du (k),
A ∈ Rn×n, C ∈ Rm×n is observable if and only if either one of the
following is satisfied

1. The observability matrix Qd =


C
CA
...

CAn−1


(mn)×n

has full column rank

2. The observability gramian

Wod =

k1∑
k=0

(
AT

)k
CTCAk is nonsingular for some finite k1

3. * PBF test: The matrix
[
A− λI

C

]
has full column rank at

every eigenvalue, λ, of A.
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Proof: from observability matrix to gramian

Qd =


C
CA
...

CAn−1

 Wod =
k1∑
k=0

(
AT

)k
CTCAk

▶ Qd is full column rank⇒QT
d Qd =

n∑
k=0

(
AT

)k
CTCAk

︸ ︷︷ ︸
Wod at k1=n

is

nonsingular
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Observability check

▶ Analogous to the case in controllability, the observability
property is invariant under any coordinate transformation:

(A,C ) is observable ⇐⇒ (T−1AT ,CT ) is observable

▶ If A is Schur, k1 can be set to ∞ in the observability gramian

Wod =
∞∑
k=0

(
AT

)k
CTCAk

and we can compute by solving the Lyapunov equation

ATWodA−Wod = −CTC

The solution is nonsingular if and only if the system is
observable. In fact, Wod ⪰ 0 by definition ⇒ “nonsingular” can
be replaced with “positive definite”.
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Observability and observable canonical form

A =

 −a2 1 0
−a1 0 1
−a0 0 0

 , C =
[

1 0 0
]

▶ observability matrix

Qd =

 C
CA
CA2

 =

 1 0 0
−a2 1 0

a2
2 − a1 −a2 1


has full column rank

▶ system in observable canonical form is observable
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* PBH test for observability
The matrix

[
A− λI

C

]
has full column rank at every eigenvalue, λ, of A.

▶ if not full rank then there exists a nonzero eigenvector v :

Av = λv

Cv = 0
⇒ CAv = λCv = 0

...

CAn−1v = 0

⇒


C
CA
...

CAn−1

 v = 0 ⇒ unobservable

▶ the reverse direction is analogous
▶ interpretation: some non-zero initial condition x0 = v will

generate zero output, which is not distinguishable from the
origin.
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Theorem (Controllability of continuous-time systems)
The n-dimensional r -input LTI system with ẋ = Ax + Bu, A ∈ Rn×n,
B ∈ Rn×r is controllable if and only if either one of the following is
satisfied

1. The n × nr controllability matrix

P =
[
B ,AB ,A2B , . . . ,An−1B

]
has rank n.

2. The controllability gramian

Wcc =

∫ t

0
eAτBBTeA

T τdτ

is nonsingular for any t > 0.
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Theorem (Observability of continuous-time systems)
System ẋ = Ax + Bu, y = Cx + Du, A ∈ Rn×n, C ∈ Rm×n is
observable if and only if either one of the following is satisfied

1. The (mn)× n observability matrix

Q =


C
CA
...

CAn−1

 has rank n (full column rank)

2. The observability gramian

Woc =

∫ t

0
eA

T τCTCeAτdτ is nonsingular for any t > 0

▶ reading: Linear System Theory and Design by Chen, Chap 6.
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Summary: computing the gramians

Controllability Gramian Observability Gramian

continuous time
∫ t

0 eAτBBT
(
eAτ

)T
dτ

∫ t

0

(
eAτ

)T
CTCeAτdτ

Lyapunov eq.
AWc +WcA

T = −BBT ATWo +WoA = −CTCif t → ∞ &
A is Hurwitz stable

discrete time
∑k1

k=0 A
kBBT

(
AT

)k ∑k1
k=0(A

T )kCTCAk

Lyapunov eq.
AWcdA

T −Wcd = −BBT ATWodA−Wod = −CTCif k1 → ∞ &
A is Schur stable

▶ duality: (A,B) is controllable if and only if
(
A,C

)
=

(
AT ,BT

)
is observable

▶ prove by comparing the gramians
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Exercise

A =

 −2 0 0
1 0 2
0 0 0

 , B =

 1
0
1


C =

[
1 0 1

]
▶ exercise: show that the system is not observable.

▶ in fact, by similarity transform x =

 1 0 0
0 0 1
0 1 0

 x , we get

Ā =

 −2 0 0
0 0 0
1 2 0

 , B̄ =

 1
1
0


C̄ =

[
1 1 0

]
where the third state is not observable.
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The degree of controllability
consider two systems

S1 : x (k + 1) =
[

0 1
0 0

]
x (k) +

[
0
1

]
u (k)

S2 : x (k + 1) =
[

0 0.01
0 1

]
x (k) +

[
0
1

]
u (k)

▶ both systems are controllable:

Pd1 =

[
0 1
1 0

]
, Pd2 =

[
0 0.01
1 1

]
▶ however, Pd2 is nearly singular ⇒ S2 not “easy” to control
▶ e.g., to move from x(0) = [0, 0]T to x(1) = [1, 1]T in two steps:

S1 : {u (0) , u (1)} = {1, 1} S2 : {u (0) , u (1)} = {100,−99}

⇒ more energy for S2!
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The degree of controllability: multi-input case
consider two systems

S1 : x (k + 1) =
[

0 1
0 0

]
x (k) +

[
0 1
1 0

]
u (k)

S2 : x (k + 1) =
[

0 0.01
0 1

]
x (k) +

[
0 1
1 0

]
u (k)

▶ both systems are controllable:

Pd1 =

[
0 1 1 0
1 0 0 0

]
, Pd2 =

[
0 0.01 0.01 0
1 1 1 0

]
▶ degree of controllability reflected in the controllability Gramian:

Wcd1 = Pd1P
T
d1 =

[
2 0
0 1

]
, Wcd2 =

[
2 × 0.012 0.02

0.02 3

]
Wcd2 is almost singular (eigenvalues at 0.0001 and 3.0001)
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The degree of controllability: multi-input case

▶ for general stable and controllable systems Σ = (A,B ,C ,D),
Wcd is computed from the Lyapunov Equation
AWcdA

T −Wcd = −BBT

▶ if Wcd have eigenvalues close to zero, then the system is more
difficult to control in the sense that it requires more energy in
the input to steer the states in the state space
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The degree of observability
consider two systems

S1 :x (k + 1) =
[

0 1
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

S2 :x (k + 1) =
[

1 0.01
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

▶ both systems are observable:

Qd1 =

[
1 0
0 1

]
, Qd2 =

[
1 0
1 0.01

]
▶ however, Qd2 is nearly singular, hinting that S2 is not “easy” to

observe
▶ e.g., to infer x(0) = [2, 1]T , the two measurements y(0) = 2 and

y(1) = CAx (0) = 2.001 are nearly identical in S2!
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The degree of observability: multi-output case

▶ for general stable and controllable systems Σ = (A,B ,C ,D), the
observability matrix Qd is not square

▶ the degree of observability is reflected in the eigenvalues of the
observability Gramian Wod

▶ for stable systems, Wod is computed from the Lyapunov
Equation ATWodA−Wod = −CTC

▶ if Wod have eigenvalues close to zero, then the system is more
difficult to observe
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Balanced state-space realizations

we know now
▶ the controllability and observability Gramians represent the

degrees of controllability and observability
▶ easily controllable systems may not be easily observable
▶ easily observable systems may not be easily controllable

⇒ there exists realizations that balance the two degrees of
controllability and observability
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Balanced state-space realizations

consider a stable system Σ = (A,B ,C ,D) in a minimal1 realization
▶ minimal realization ⇒ Σ is controllable and observable
▶ stable ⇒ can compute the Gramians from Lyapunov Equations
▶ if Wcd and Wod are equal and diagonal, then Σ is called a

balanced realization
▶ i.e., there exists a diagonal matrix M = diag (σ1, σ2, . . . , σn),

σ1 ≥ σ2 ≥ · · · ≥ σn > 0 such that

M = AMAT + BBT

M = ATMA+ CTC

1i.e., dimA is the minimal order of the system
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Transforming single-input controllable system into
ccf

Let x = Mx̃ , where M =

 | | | |
m1 m2 . . . mn

| | | |

, then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AMx̃ +M−1B︸ ︷︷ ︸
B̃

u

If system is controllable, we show how to transform the state
equation into the controllable canonical form.
▶ goal 1: B̃ be in controllable canonical form⇔

M−1B =


0
...
0
1

 ⇒ B = [m1,m2, . . . ,mn]


0
...
0
1

 = mn
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Transforming SI controllable system into ccf

Let x = Mx̃ , where M = [m1,m2, . . . ,mn], then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AM︸ ︷︷ ︸
Ã

x̃ +M−1Bu

▶ goal 2: Ã be in controllable canonical form⇔

A [m1,m2, . . . ,mn] =

[m1,m2, . . . ,mn]


0 1 0 . . . 0
... 0 . . . 0

...
... . . . . . . 1 0
0 . . . 0 0 1

−a0 −a1 . . . . . . −an−1
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Transforming SI controllable system into ccf

Let x = Mx̃ , where M = [m1,m2, . . . ,mn], then

˙̃x = M−1ẋ = M−1 (Ax + Bu) = M−1AMx̃ +M−1Bu

▶ solving goals 1 and 2 yields

mn = B

mn−1 = Amn + an−1mn

mn−2 = Amn−1 + an−2mn

mi−1 = Ami + ai−1mn, i = n, . . . , 2
...

▶ when implementing, obtain a0, a1, . . . , an−1 first by calculating
det (sI − A) = sn + an−1s

n−1 + · · ·+ a1s + a0
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Transforming single-output (SO) observable system
into ocf
Let x = R−1x̃ , where R =

[
rT1 , rT2 , . . . , rTn

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1︸ ︷︷ ︸
Ã

x̃ + RBu

y = Cx = CR−1︸ ︷︷ ︸
C̃

x̃

If system is observable, we show how to transform the state equation
into the observable canonical form.
▶ goal 1: C̃ be in observable canonical form⇔

CR−1 =


1
0
...
0


T

⇒ C = r1
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Transforming SO observable system into ocf
Let x = R−1x̃ , where R =

[
rT1 , rT2 , . . . , rTn

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1︸ ︷︷ ︸
Ã

x̃ + RBu

y = Cx = CR−1︸ ︷︷ ︸
C̃

x̃

▶ goal 2: Ã be in observable canonical form⇔


r1
r2
...
rn

A =


−an−1 1 0 . . . 0

... 0 . . . . . . ...

0 . . . . . . 0

−a1
... . . . . . . 1

−a0 0 . . . 0 0




r1
r2
...
rn
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Transforming SO observable system into ocf
Let x = R−1x̃ , where R =

[
rT1 , rT2 , . . . , rTn

]T (ri is a row vector).

˙̃x = Rẋ = R (Ax + Bu) = RAR−1︸ ︷︷ ︸
Ã

x̃ + RBu

y = Cx = CR−1︸ ︷︷ ︸
C̃

x̃

▶ solving goals 1 and 2 yields

r1 = C

r2 = r1A+ an−1r1

r3 = r2A+ an−2r1

ri+1 = riA+ an−i r1, i = 1, . . . , n − 1
...

▶ when implementing, obtain a0, a1, . . . , an−1 first by calculating
det (sI − A)
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Transforming SO observable system into ocf

Example

x (k + 1) =
[

1 0.01
0 0

]
x (k) y (k) =

[
1 0

]
x (k)

det (A− λI )=λ2 − λ ⇒ a1 = −1, a0 = 0

r1 = C = [1, 0]
r2 = r1C + a1r1 = [1, 0]A+ (−1) [1, 0]

R =

[
1 0
0 0.01

]
,R−1 =

[
1 0
0 100

]
C̃ = CR−1 = [1, 0] ⇐= ocf!

Ã = RAR−1 =

[
1 1
0 0

]
⇐= ocf!
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