Lyapunov Stability
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1. Definitions in Lyapunov stability analysis

Relevant tools

Lyapunov stability theorems
Instability theorem
Discrete-time case
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Finite dimensional vector norms

Let v € R". A norm is:

> a metric in vector space: a function that assigns a real-valued
length to each vector in a vector space

> e.g., 2 (Euclidean) norm: ||v|lz = VvTv = \/VZ + V3 + - + V2

default in this set of notes: || - || = | - |2
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Equilibrium state

For an n-th order unforced system
x=f(x,t), x(to) =X

an equilibrium state/point x, is one such that

f(xe,t) =0, Vt

» the condition must be satisfied by all t > 0

» if a system starts at equilibrium state, it stays there
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Equilibrium state of a linear system

For a linear system
x(t) = A(t)x(t), x(to) = xo

» origin x. = 0 is always an equilibrium state

» when A(t) is singular, multiple equilibrium states exist
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Lyapunov's definition of stability

» The equilibrium state 0 of x = f(x, t) is stable in the sense of

Lyapunov (s.i.L) if for all € > 0, and ty, there exists J (¢, to) > 0

such that ||x (%) |2 < 0 gives ||x (t) |2 < € for all t > tg

Figure: Stable s.i.L: ||x (to) || < 0 = [|x (t) || < € ¥Vt > to.
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Asymptotic stability

The equilibrium state 0 of x = f(x, t) is asymptotically stable if

» it is stable in the sense of Lyapunov, and

» for all € > 0 and ty, there exists § (¢, to) > 0 such that
||x (to) |l2 < & gives x(t) — 0

¥
\
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Figure: Asymptotically stable i.s.L: ||x (to) || < 0 = ||x(¢t) || — O.
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2. Lyapunov's approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case
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Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for x = Ax or
x(k + 1) = Ax(k) can be concluded immediately based on A (A):

> the response ex(ty) involves modes such as ef, te*t,
et coswt, e’tsinwt

> the response A¥x(kp) involves modes such as A%, kA*~1,
rk cos k@, r*sin k6

> et 5 0ifo<0eM—=0ifA<0
> NS 0if A <1 rk = 0if |r] = [Vo2+w?| =) < 1
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Lyapunov's approach to stability

The direct method of Lyapunov to stability problems:
» no need for explicit solutions to system responses

> an “energy’ perspective

> fit for general dynamic systems (linear/nonlinear,
time-invariant/time-varying)
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Stability from an energy viewpoint: Example

Consider spring-mass-damper systems:

X1 = Xo (xq: position; x, : velocity)
k

Xp = ——Xx| — —X, b>0 (Newton's law)
m m

> X\ (A)'s are in the left-half s-plane= asymptotically stable
> total energy

. N 1 1
& (t) = potential energy + kinetic energy = §kx12 + mezz

> energy dissipates / is dissipative:
g(t) = le).(l + mx2)'<2 = —bX22 S 0
> £=0 only when xo = 0. As [x1, x] " = 0 is the only equilibrium,

the motion will not stop at x, = 0, x; # 0. Thus energy will

keep decreasing toward 0 which is achieved at the origin.
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Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

x(t) = £ (x(t), 1), x (o) =
x (k+1) = f (x(k), k), x(ko) = x0

» assume the origin is an equilibrium state

» energy function = Lyapunov function: a scalar function of x
and t (or x and k)

» goal is to relate properties of the state through the Lyapunov
function

» main tool: matrix formulation, linear algebra, positive definite
functions
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Relevant tools

Quadratic functions

» intrinsic in energy-like analysis, e.g.
1, 1 , 1[x]'[k O
§kX1 + me = 5 |: X :| 0 m

» convenience of matrix formulation:

1 1 X1 4 k

§kx12 + meg + X1 X0 = [ % } [ %
Trk 1
Lo, 1 5 H iz
Ekx1 +§mx2 +x1x+c=| x 5 5
1 00

» general quadratic functions in matrix form

Q(x)=x"Px, PT =P

|

ISIELNIE

Il

0
0
c

X1
X2

|

X1
X2

|

X1
X2

1
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Relevant tools

Symmetric matrices

> recall: a real square matrix A is
» symmetricif A= AT
> skew-symmetric if A= —AT

> examples:
1 2 1 2 0 2
2 1 (7| -2 1|"|-220

» Any real square matrix can be decomposed as the sum of a
symmetric matrix and a skew-symmetric matrix:

. 12]_[1 25] [0 05
€ 13 4| |25 4 05 0
P+PT+P—PT
2 2

general case: P =
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Relevant tools

Symmetric matrices
> a real square matrix A € R™" is orthogonal if ATA = AAT = |

» meaning that the columns of A form a orthonormal basis of R”

A=1| a a . an

ala; ajax ... aja, 10 0
T T T

ala; aja, ... aja

2d1 dya 2 dn 0 1

ATA = . . . . =

: : : : : 0
T T T

ala, ala, ... ala, o ... 0 1

T, _ T 0\
namely, a'a; =1 and a/ a, =0 V) # m.
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Theorem
The eigenvalues of symmetric matrices are all real.

Proof: V: A € R™" with AT = A.
Eigenvalue-eigenvector pair: Au= A\u = 1" Au = A\’ u, where T is
the complex conjugate of u. T” Au is a real number, as

m =u'Au
=u'Au - AER™"
=u'ATu A=AT
= 'T o (An)T = ()"
=Xo'u cu'TeR
=T Au . Au=)u

— 77— ]
Also, t"u e R. Thus \ = % must also be a real number. ]
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Example

0 2
2 0

1 2 10 0 2
121 =]0 1]+ o] -1

import numpy as np #larger-scale Python example
N = 100

P = np.random.randint(-200,200,size=(N,N))
P_symm = (P + P.T)/2

lambdas, = np.linalg.eig(P__symm)
print(lambdas)

>

]: A =42
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Theorem
The eigenvalues of skew-symmetric matrices are all imaginary or zero.

0 2 )
> . =

9 0 ] A==£2
import numpy as np
N = 100

P = np.random.randint(-200,200,size=(N,N))
P_symm = (P-P.T)/2

lambdas, = np.linalg.eig(P__symm)
print(lambdas)
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Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

1 2 10 0o 21 . .. ..
g —21}_{01}+[—2 o}“‘lizf

import numpy as np
from scipy.linalg import qr

n=3
H = np.random.randn(n, n)
Q, _ =qr(H)

print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))
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Important properties of symmetric matrices
Theorem
The eigenvalues of symmetric matrices are all real.

Theorem

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem

All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure analogy in complex plane
symmetric real line

skew-symmetric imaginary line
orthogonal unit circle
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The spectral theorem for symmetric matrices

When A € R"™*" has n distinct eigenvalues, we can do diagonalization
A = UAU~L. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

V:AeR™ AT = A, there always exist \; € R and u; € R", s.t.
A= Nuu] = UNUT (1)
-1

> \;'s: eigenvalues of A

> u;: eigenvector associated to A;, normalized to have unity norms
» U = [uy, tp, - ,u,] is orthogonal: UTU = UUT = I

» A = diagonal(A1, A2, ..., An)
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Elements of proof for SED

Theorem

V: A€ R™ with AT = A, then eigenvectors of A, associated with
different eigenvalues, are orthogonal.

Proof.

_ _ TAy — T — .7
Let Au; = A\ju; and Auj = \ju;. 7:I'hen u Auj = ui \ju; = A\ju) ;.
Also, u Auj = ul ATuj = (Au;) " uj = Nul uj. So Nuup = Nju u;.
But \; # A;. It must be that v/ u; = 0. O

SED now follows:
» If A has distinct eigenvalues, then U = [uy, tp, - -+ , up] is
orthogonal after normalizing all the eigenvectors to unity norm.
> If A has r(< n) distinct eigenvalues, we can choose multiple
orthogonal eigenvectors for the eigenvalues with none-unity
multiplicities.
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Rethinking symmetric matrices

With the spectral theorem, next time we see a symmetric matrix A,
we immediately know that

> \;is real for all i

> associated with \;, we can always find a real eigenvector

n

» 3 an orthonormal basis {v;}._;, which consists of the
eigenvectors

» if A€ R2%?, then if you compute first A;, A\» and vy, you won't
need to go through the regular math to get u,, but can simply
solve for a u, that is orthogonal to u; with ||us|| = 1.
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Example: A= [ v \@]

V3 7

Computing the eigenvalues gives

det{5\;§)\ 7@A} =35-12A4+ X -3=(A—4)(A-8)=0

:>)\1:4, A =8

» first normalized eigenvector:

(A—)\ll)t1:O:>{\}§ \f]tlzoznlz{ ;75]

> A is symmetric = eigenvectors are orthogonal to each other:
1

choose t, = [ \% } . No need to solve (A — A1) t, = 0!
2
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Theorem (Eigenvalues of symmetric matrices)

If A= AT € R™", then the eigenvalues of A satisfy

xT Ax
= — 2
Amae = 3 TR @)
xT Ax

/\min - (3)

cein %0 [x|3

Proof.

Perform SED to get A=Y, \ju;u where {u;};_, spans R". Then
any vector x € R” can be decomposed as x = >_" , a;u;. Thus

7—AX (ZI-CY,'U,')TZ,-)\,'O[,'U,' Z )\ a

max = max = = Amax

P > a2 Yt
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Positive definite matrices

> eigenvalues of symmetric matrices are real = we can order the
eigenvalues

» a symmetric matrix P is called positive-definite if all its
eigenvalues are positive

> equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix P € R"*" is called positive-definite, written
P =0, if x"Px > 0 for all x(#£0) € R".

P is called positive-semidefinite, written P > 0, if x” Px > 0 for
all x e R”

» P >0 (P =0)< P can be decomposed as P = NTN where N
is nonsingular (singular)
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Negative definite matrices

Definition

A symmetric matrix Q € R"*" is called negative-definite, written
Q=<0,if —Q@=0,ie, x"Qx <0 for all x(+# 0) € R".

Q is called negative-semidefinite, written Q < 0, if x” Qx < 0 for
all x e R”
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Updated matrix analogies

matrix structure eigenvalues analogy in complex plane
symmetric real real axis
skew-symmetric  on imaginary axis imaginary axis
orthogonal magnitude 1 unit circle
positive definite positive R, axis
negative definite negative R_ axis
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Caution

> positive-definite matrices can have negative entries:

Example

p—= { _21 _21 ] is positive-definite, as P = P and take any

v=[x,y]", we have

x1T[ 2 -1 X
vTPv:ly} [_1 ) ][y]:2x2+2y2—2xy

=x2+y +(x—y)? >0

and the equality sign holds only when x = y = 0.
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Caution

» conversely, matrices whose entries are all positive are not
necessarily positive-definite:

Example

A= [ ; i } is not positive-definite:

B EHIFEER
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Positive definite matrices

Theorem

For a symmetric matrix P, P > 0 if and only if all the eigenvalues of
P are positive.

Proof.

Since P is symmetric, we have

xT Ax
Amax (P) = max —— 4
( ) x€R", x#£0 ||X||% ( )

xT Ax
Amin (P) = min  —— 5
(P) xER”]x#O lIxII3 (%)

which gives xT Ax € [Aminl|x||3, Amax||X||3]. Thus

xTAx >0, x # 0 < A\in > 0. O
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Relevant tools

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to
check positive (semi-)definiteness:

» P >0 (P = 0) < the leading principle minors defined below are
positive (nonnegative)

Definition
P11 P12 P13

The leading principle minors of P = | po1 px  po3 | are defined as
P31 P32 P33

P11 P12
, det , det P.
Pu [ P21 p22 }
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Relevant tools

Checking positive definiteness of a matrix.

Example

None of the following matrices are positive definite:

ERIR EE R
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Recap

energy

!

quadratic function

|

symmetric matrix
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Recap

energy Lyapunov function

|

quadratic function

|

symmetric matrix
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Recap

energy Lyapunov function
quadratic function positive definite function

|

. . positive definite matrix
symmetric matrix

for linear system
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Relevant tools

Definition (Positive Definite Functions)
A continuous time function W : R” — R, , called to be PD,
satisfying
» W(x) >0 forall x #0
» W(0)=0
» W(x) — oo as |x| — oo uniformly in x
In the 3D space, positive definite functions are “bowl-shaped”, e.g.,

W (x1, x2) = X12 —i—x22 )
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Relevant tools

Definition (Locally Positive Definite Functions)

A continuous time function W : R” — R, called to be LPD,
satisfying

» W(x) >0forall x#0and |x| <r

» W(0)=0

In the 3D space, locally positive definite functions are “bowl-shaped”
locally, e.g., W (x1,x) = x2 4+ sin®x, for x; € R and |x| < 7
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Relevant tools

Exercise

Let x = [x1, x0, x3] 7. Check the positive definiteness of the following
functions

1. V(x)=x+x3 + x5 (PD)
2. V(x) = x2 + x2 +3x2 — x4 (LPD for |x3| < v/3)
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2. Lyapunov's approach to stability
Relevant tools
Lyapunov stability theorems
Instability theorem
Discrete-time case
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Lyapunov stability theorems

» recall the spring mass damper example in matrix form
d X1 X1 0 1 X1
2 X2 m m X2

» energy function is PD:
& (t) = potential energy + kinetic energy = Tkx? + 2mx3
and its derivative is NSD:

L [0E 0€ [x
E(t) B |:8X1’8X21 |:

. = klxl).(l + mx2>'<2
X2

k b o0& o
= k1X1X2 +mx | ——x3 — —Xx | = Ax
m m

Ox’ 0x

_ 2
= —bx;
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Theorem
The equilibrium point 0 of x(t) = f (x(t),t), x(to) = xo is stable in
the sense of Lyapunov if there exists a locally positive definite

function V/(x, t) such that V (x,t) <0 for all t >ty and all x in a
local region x : |x| < r for some r > 0.

» such a V(x,t) is called a Lyapunov function

> ie., V(x)is PD and V/(x) is negative semidefinite in a local
region |x| < r

Theorem

The equilibrium point 0 of x(t) = f (x(t),t), x (t) = xo is locally
asymp_totica//y stable if there exists a Lyapunov function V(x) such
that V (x) is locally negative definite.
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Theorem

The equilibrium point 0 of x(t) = f (x(t),t), x (t) = xo is globally
asymptotically stable if there exists a Lyapunov function V(x) such
that V/(x) is positive definite and V/(x) is negative definite.
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Lyapunov stability concept for linear systems

» for linear system x = Ax, a good Lyapunov candidate is the
quadratic function V (x) = x” Px where P = PT and P - 0

> the derivative along the state trajectory is then
V(x) = x"Px +x"Px
= (Ax)" Px + xT PAx
=x" (ATP+ PA) x

» such a V (x) = x” Px is a Lyapunov function for x = Ax when
ATP+PA=0

» and the origin is stable in the sense of Lyapunov
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Theorem (Lyapunov stability theorem for linear systems)

For x = Ax with A € R™", the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q > 0, the
Lyapunov equation

ATP+PA=-Q

has a unique positive definite solution P = 0, PT = P.
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Essense of the Lyapunov Eq.

Observations:
» ATP 4 PA'is a linear operation on P: e.g.,

a;; a
A= 21 Q=g @ |,P=|pn p

do1 a22_ | | | |
N I N . ]
A pr P2 |+ p1 P2 = g g2

| oL |

ATPl + a11p1 + anpr = —q1
ATPz 4+ a1op1 + axnpr = —qo
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Essense of the Lyapunov Eq.

Observations: with now

ATpi+ anpr + aups = —q

ATP+PA=Q&{
A'py 4+ apppr +anp, = —q

> can stack the columns of ATP + PA and Q to yield
[ AT 0 1 [ p1 1 i { annl anl P _ _ | ¢
0 AT P2 appl  axl P2 o))
{|: AT 0 :| i |: 311/ agll P1 _ a1
Lo AT al  axl P2 92

-

La
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The Lyapunov Eq.: Existence of solution

La(P)=ATP+ PA

» Ly is invertible if and only if A; 4+ A; # 0 for all eigenvalues of A:
> et ATU,' = \;ju; and ATUJ' = )\J'Uj
> [ (u,-uJ-T> = u,-uJ-TA + ATu,-uJ-T = y; (/\juj)T + )\,-u,-ujT =
(A + )\j) u,-uJ-T
» so Aj + A is an eigenvalue of the operator L4 (+)
> if \j + Aj # 0, the operator is invertible
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The Lyapunov operator: eigenvalues

. AT 0 311/ 321/
LA o |: 0 AT :| + [ a12I 322I

» can simply write Ly = /| ® A" + AT ® | using the Kronecker

mirror symmetric

bi1C bnC ... b;C

by1C  bpC ... by,C
product notation B® C = 2,1 2.2 2.

bmC bmC ... bmC
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The Lyapunov operator: eigenvalues

o AT 0 3111 321/
LA - |: 0 AT } + [ 312/ 822/
-1 1
>e.g.,A—{_1 O]

T
LA:/®AT—|—AT®/:|:A +311/ 821/ :|

aro/ AT + axl

~1-1 -1 [-1 0 2 ~1|-1 0

| 1 o-1]0 1| |1 -1]0 -1
1 0 -1 —1| |1 0]-1 -1
0 1 |1 0 0 1|1 0
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Example: A = { j é ] A2 = —05+iv/3/2
-2 -1|-1 0
T AT, |1 1[0 -1
La=loA"+A @l = |T—F 17 3
0 1|1 0

The eigenvalues of Ly are —1, —1, —1 — V3, =1 + /3, which are
precisely )\1 + )\1, )\1 + /\2, /\2 + /\1, /\2 + /\2.

import numpy as np

A = [[-1,1],[-1,0]]; 12=np.eye(2); AT=np.transpose(A)
L A=np.kron(I2,AT)+np.kron(AT,12)

eigLA, =np.linalg.eig(L_A)

eigA, =np.linalg.eig(A)

print(eigLA)

print(eigA)
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Theorem (Lyapunov stability theorem for linear systems)

For x = Ax with A € R™ ", the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q > 0, the
Lyapunov equation

ATP+PA=-Q

has a unique positive definite solution P = 0, PT = P.

Proof.

wne Vo xTQx o —(AQ)”“”:> V(t) <eV(0). Q>0 and
i B XTPX N (AP)maX N .

P>0= (\g),;, >0 andi()\p)max > 0. Thus a > 0; V/ (t) decays

exponentially to zero. V(x) > 0 =V(x) = 0 only at x = 0.
Therefore, x — 0 as t — oo, regardless of the initial condition. ]
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Proof.

‘<"1 if 0 of x = Ax is asymptotically stable, then all eigenvalues of
A have negative real parts. For any Q, the Lyapunov equation has a
unique solution P. Note x (t) = etxgp — 0 as t — oco. We have

T (s} P5(50) — x7 (0) Px(O):/Ooo %XT(t) Px(t)dt:/oooxT(t) (ATP + PA) x (1) d
= X7 (0) Px(O):/O T (£) Qx (1) dt:/o T (0) ATt Qe (0) dt
If Q@ = 0, there exists a nonsingular N matrix: @ = N"N. Thus
«T (0) Px (0) = /OO INe™tx (0) [ Pdt > 0
xT(0) Px (0) = Ooonly if xo =0
Thus P > 0. Furthermore
P = /oo et Qe dt
0
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Procedures of Lyapunov's direct method

1. Given A, select an arbitrary positive-definite symmetric matrix Q@
(e.g., 1)

2. Find the solution matrix P to the Lyapunov equation
ATP+ PA=—-Q.

3. If a solution P cannot be found, the origin is not asymptotically
stable.

4. If a solution is found:

> if P is positive-definite, then A is Hurwitz stable and the origin
is asymptotically stable;

> if P is not positive-definite, then A has at least one eigenvalue
with a positive real part and the origin is an unstable equilibrium.
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Lyapunov stability theorems

Example
) -1 1 .
x=Ax, A= 10l The Lyapunov equation is
T
[1 1] |:P11 P12]+[P11 P12][1 1]:_[1 0]
-10 p12 P22 P12 P22 -1 0 01
~——_———— ——
P Q
We need
—2p11 — 2p12 = —1 pi1 =1
—p12—p2+pu1=0 =< pn=3/2
2p12 = -1 pr2 = —1/2

Leading principle minors: py; > 0, pi1po2 — p2, > 0
= P > 0 =-asymptotically stable

55 /67



Lyapunov analysis with Matlab

k:Ax,A:{_l 11.

-1 0
A= [-1,1-1,0]
Q = eye(2)
P = lyap(A'.Q)
w = eig(P)
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Lyapunov analysis with Python

-1 0

import control as ct

import numpy as np

A = np.array([[-1,1],[-1,0]])

Q = np.identity(2)

P = ct.lyap(A.transpose(),Q)
print(P)

w = np.linalg.eigvals(P)
print(f’'eigenvalues of P: {w}')

X:AX,A:[_I 1].
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It suffices to select @ =/

For linear systems we can let @ = I and check whether the resulting
P is positive definite. If it is, then we can assert the asymptotic
stability:
» take any Q@ > 0. there exists @ = N™ N, where N is invertible,
yielding

ATP 4+ PA=—|

)
NTATN-TNTPN+NTPNNTAN = —N"N

AT P P A

» A= N"1AN and A are similar matrices and have the same
eigenvalues.

» P = NTPN and P have the same definiteness. If we can find a
positive definite solution P then the P will also be positive
definite. Vise versa.
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Instability theorem

» for nonlinear systems, Lyapunov function can be nontrivial to
find

» failure to find a Lyapunov function does not imply instability

Theorem

The equilibrium state 0 of x = f (x) is unstable if there exists a
function W (x) such that

> W(x) is PD locally: W(x) > 0V |x| < r for some r and
W(0)=0

» W(0)=0

> there exist states x arbitrarily close to the origin such that
W(x)>0
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Discrete-time case: key concept of Lyapunov

For the discrete-time system
x(k+1) = Ax (k)
we consider a quadratic Lyapunov function candidate
V(x)=x"Px, P=PT =0
and compute AV (x) along the trajectory of the state

V (x (k+1)) = V (x(k)) = xT (k) (ATPA— P) x (k)
£-Q

Asymptotic stability desires AV (x) to be negative.
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DT Lyapunov stability theorem for linear systems

Theorem

For system x (k + 1) = Ax (k) with A € R" ", the origin is
asymptotically stable if and only if 3 Q > 0, such that the
discrete-time Lyapunov equation

ATPA—-P=-Q

has a unique positive definite solution P = 0, PT = P.
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The DT Lyapunov Eq.

ATPA—P=-Q

» Solution to the DT Lyapunov equation, when asymptotic
stability holds (A is Schur stable), comes from:

V)2V (x (0)) = ST [ATPA Pl x(4)

:—Zx )" QA (0)

=P = Z )" QA

» can show that the DT Lyapunov operator Ly = ATPA— P is
invertible if and only if Vi, j (Aa); (Aa); # 1

62 /67



DT Lyapunov analysis with MATLAB

Example
0 1 0
x(k+1) = Ax(k), A= 0 0 1
0.275 —-0.225 —-0.1
% MATLAB
A=[010; 00 1; 0.275 -0.225 -0.1]
Q = eye(3)

P = dlyap(A’,Q) % check function definition in Matlab help
eig(P)
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DT Lyapunov analysis with Python

Example
0 1 0
x(k+1) = Ax(k), A= 0 0 1
0.275 —-0.225 —-0.1
#Python

import control as ct

import numpy as np

from numpy.linalg import eig

A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]])
Q = np.identity(3)

P = ct.dlyap(A.transpose(),Q)

w,v = eig(P)

print(w)
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Recap

» Internal stability
> Stability in the sense of Lyapunov: ¢, § conditions
> Asymptotic stability
» Stability analysis of linear time invariant systems (x = Ax or
x(k 4+ 1) = Ax(k))
> Based on the eigenvalues of A
» Time response modes
> Repeated eigenvalues on the imaginary axis
> Routh's criterion

» No need to solve the characteristic equation

> Discrete time case: bilinear transform (z = 1)
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Recap

» Lyapunov equations
Theorem: All eigenvalues of A have negative real parts iff for
any given @ > 0, the Lyapunov equation

ATP+PA=-Q

has a unique solution P and P = 0.

Given Q, the Lyapunov equation AT P 4+ PA = —Q has a unique
solution when Aa; + Aaj # 0 for all i and j.

Theorem: All eigenvalues of A are inside the unit circle iff for
any given @ > 0, the Lyapunov equation

ATPA—P=-Q

has a unique solution P and P > 0.
Given Q, the Lyapunov equation ATPA — P = —Q has a unique
solution when AajAa; # 1 for all i and j.
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Recap

» P is positive definite if and only if any one of the following
conditions holds:
1. All the eigenvalues of P are positive.
2. All the leading principle minors of P are positive.
3. There exists a nonsingular matrix N such that P = N7 N.
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