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Finite dimensional vector norms

Let v ∈ Rn. A norm is:
▶ a metric in vector space: a function that assigns a real-valued

length to each vector in a vector space

▶ e.g., 2 (Euclidean) norm: ∥v∥2 =
√
vTv =

√
v 2
1 + v 2

2 + · · ·+ v 2
n

default in this set of notes: ∥ · ∥ = ∥ · ∥2
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Equilibrium state

For an n-th order unforced system

ẋ = f (x , t) , x(t0) = x0

an equilibrium state/point xe is one such that

f (xe , t) = 0, ∀t

▶ the condition must be satisfied by all t ≥ 0

▶ if a system starts at equilibrium state, it stays there
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Equilibrium state of a linear system

For a linear system

ẋ(t) = A(t)x(t), x(t0) = x0

▶ origin xe = 0 is always an equilibrium state

▶ when A(t) is singular, multiple equilibrium states exist
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Lyapunov’s definition of stability

▶ The equilibrium state 0 of ẋ = f (x , t) is stable in the sense of
Lyapunov (s.i.L) if for all ϵ > 0, and t0, there exists δ (ϵ, t0) > 0
such that ∥x (t0) ∥2 < δ gives ∥x (t) ∥2 < ϵ for all t ≥ t0

Figure: Stable s.i.L: ∥x (t0) ∥ < δ ⇒ ∥x (t) ∥ < ϵ ∀t ≥ t0.
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Asymptotic stability

The equilibrium state 0 of ẋ = f (x , t) is asymptotically stable if
▶ it is stable in the sense of Lyapunov, and

▶ for all ϵ > 0 and t0, there exists δ (ϵ, t0) > 0 such that
∥x (t0) ∥2 < δ gives x (t) → 0

Figure: Asymptotically stable i.s.L: ∥x (t0) ∥ < δ ⇒ ∥x (t) ∥ → 0.
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Stability of LTI systems: method of
eigenvalue/pole locations

the stability of the equilibrium point 0 for ẋ = Ax or
x(k + 1) = Ax(k) can be concluded immediately based on λ (A):
▶ the response eAtx(t0) involves modes such as eλt , teλt ,

eσt cosωt, eσt sinωt

▶ the response Akx(k0) involves modes such as λk , kλk−1,
r k cos kθ, r k sin kθ

▶ eσt → 0 if σ < 0; eλt → 0 if λ < 0
▶ λk → 0 if |λ| < 1; r k → 0 if |r | =

∣∣√σ2 + ω2
∣∣ = |λ| < 1
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Lyapunov’s approach to stability

The direct method of Lyapunov to stability problems:
▶ no need for explicit solutions to system responses

▶ an “energy” perspective

▶ fit for general dynamic systems (linear/nonlinear,
time-invariant/time-varying)
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Stability from an energy viewpoint: Example
Consider spring-mass-damper systems:

ẋ1 = x2 (x1: position; x2 : velocity)

ẋ2 = − k

m
x1 −

b

m
x2, b > 0 (Newton’s law)

▶ λ (A)’s are in the left-half s-plane⇒ asymptotically stable
▶ total energy

E (t) = potential energy + kinetic energy =
1
2
kx2

1 +
1
2
mx2

2

▶ energy dissipates / is dissipative:

Ė(t) = kx1ẋ1 +mx2ẋ2 = −bx2
2 ≤ 0

▶ Ė = 0 only when x2 = 0. As [x1, x2]
T = 0 is the only equilibrium,

the motion will not stop at x2 = 0, x1 ̸= 0. Thus energy will
keep decreasing toward 0 which is achieved at the origin.
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Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

ẋ(t) = f (x(t), t) , x (t0) = x0

x (k + 1) = f (x(k), k) , x (k0) = x0

▶ assume the origin is an equilibrium state

▶ energy function ⇒ Lyapunov function: a scalar function of x
and t (or x and k)

▶ goal is to relate properties of the state through the Lyapunov
function

▶ main tool: matrix formulation, linear algebra, positive definite
functions
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Relevant tools
Quadratic functions

▶ intrinsic in energy-like analysis, e.g.

1
2
kx2

1 +
1
2
mx2

2 =
1
2

[
x1

x2

]T [
k 0
0 m

] [
x1

x2

]
▶ convenience of matrix formulation:

1
2
kx2

1 +
1
2
mx2

2 + x1x2 =

[
x1

x2

]T [
k
2

1
2

1
2

m
2

] [
x1

x2

]

1
2
kx2

1 +
1
2
mx2

2 + x1x2 + c =

 x1

x2

1

T  k
2

1
2 0

1
2

m
2 0

0 0 c

 x1

x2

1


▶ general quadratic functions in matrix form

Q (x) = xTPx , PT = P
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Relevant tools
Symmetric matrices

▶ recall: a real square matrix A is
▶ symmetric if A = AT

▶ skew-symmetric if A = −AT

▶ examples: [
1 2
2 1

]
,

[
1 2
−2 1

]
,

[
0 2
−2 0

]
▶ Any real square matrix can be decomposed as the sum of a

symmetric matrix and a skew-symmetric matrix:

e.g.
[

1 2
3 4

]
=

[
1 2.5

2.5 4

]
+

[
0 −0.5

0.5 0

]

general case: P =
P + PT

2
+

P − PT

2
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Relevant tools
Symmetric matrices

▶ a real square matrix A ∈ Rn×n is orthogonal if ATA = AAT = I

▶ meaning that the columns of A form a orthonormal basis of Rn

A =

 | | | |
a1 a2 . . . an
| | | |



ATA =


aT1 a1 aT1 a2 . . . aT1 an
aT2 a1 aT2 a2 . . . aT2 an

...
...

...
...

aTn a1 aTn a2 . . . aTn an

 =


1 0 . . . 0

0 1 . . . ...
... . . . . . . 0
0 . . . 0 1


namely, aTj aj = 1 and aTj am = 0 ∀j ̸= m.
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Theorem
The eigenvalues of symmetric matrices are all real.

Proof: ∀ : A ∈ Rn×n with AT = A.
Eigenvalue-eigenvector pair: Au = λu ⇒ uTAu = λuTu, where u is
the complex conjugate of u. uTAu is a real number, as

uTAu = uTAu

= uTAu ∵ A ∈ Rn×n

= uTATu ∵ A = AT

= λuTu ∵ (Au)T = (λu)T

= λuTu ∵ uTu ∈ R
= uTAu ∵ Au = λu

Also, uTu ∈ R. Thus λ = uTAu
uTu

must also be a real number.
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Example

▶
[

0 2
2 0

]
: λ = ±2

▶
[

1 2
2 1

]
=

[
1 0
0 1

]
+

[
0 2
2 0

]
: λ = 1 ± 2

import numpy as np #larger-scale Python example
N = 100
P = np.random.randint(-200,200,size=(N,N))
P_symm = (P + P.T)/2
lambdas, _ = np.linalg.eig(P_symm)
print(lambdas)
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Theorem
The eigenvalues of skew-symmetric matrices are all imaginary or zero.

▶
[

0 2
−2 0

]
: λ = ±2j

import numpy as np
N = 100
P = np.random.randint(-200,200,size=(N,N))
P_symm = (P - P.T)/2
lambdas, _ = np.linalg.eig(P_symm)
print(lambdas)
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Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

▶
[

1 2
−2 1

]
=

[
1 0
0 1

]
+

[
0 2
−2 0

]
: λ = 1 ± 2j

import numpy as np
from scipy.linalg import qr
n = 3
H = np.random.randn(n, n)
Q, _ = qr(H)
print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))
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Important properties of symmetric matrices

Theorem
The eigenvalues of symmetric matrices are all real.

Theorem
The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem
All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure analogy in complex plane
symmetric real line

skew-symmetric imaginary line
orthogonal unit circle
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The spectral theorem for symmetric matrices

When A ∈ Rn×n has n distinct eigenvalues, we can do diagonalization
A = UΛU−1. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

∀ : A ∈ Rn×n, AT = A, there always exist λi ∈ R and ui ∈ Rn, s.t.

A =
n∑

i=1

λiuiu
T
i = UΛUT (1)

▶ λi ’s: eigenvalues of A

▶ ui : eigenvector associated to λi , normalized to have unity norms

▶ U = [u1, u2, · · · , un] is orthogonal: UTU = UUT = I

▶ Λ = diagonal(λ1, λ2, . . . , λn)
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Elements of proof for SED

Theorem
∀ : A ∈ Rn×n with AT = A, then eigenvectors of A, associated with
different eigenvalues, are orthogonal.

Proof.
Let Aui = λiui and Auj = λjuj . Then uT

i Auj = uT
i λjuj = λju

T
i uj .

Also, uT
i Auj = uT

i A
Tuj = (Aui)

T uj = λiu
T
i uj . So λiu

T
i uj = λju

T
i uj .

But λi ̸= λj . It must be that uT
i uj = 0.

SED now follows:
▶ If A has distinct eigenvalues, then U = [u1, u2, · · · , un] is

orthogonal after normalizing all the eigenvectors to unity norm.
▶ If A has r(< n) distinct eigenvalues, we can choose multiple

orthogonal eigenvectors for the eigenvalues with none-unity
multiplicities.
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Rethinking symmetric matrices

With the spectral theorem, next time we see a symmetric matrix A,
we immediately know that
▶ λi is real for all i
▶ associated with λi , we can always find a real eigenvector
▶ ∃ an orthonormal basis {ui}ni=1, which consists of the

eigenvectors
▶ if A ∈ R2×2, then if you compute first λ1, λ2 and u1, you won’t

need to go through the regular math to get u2, but can simply
solve for a u2 that is orthogonal to u1 with ∥u2∥ = 1.
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Example: A =

[
5

√
3√

3 7

]
Computing the eigenvalues gives

det

[
5 − λ

√
3√

3 7 − λ

]
= 35 − 12λ+ λ2 − 3 = (λ− 4) (λ− 8) = 0

⇒λ1 = 4, λ2 = 8

▶ first normalized eigenvector:

(A− λ1I ) t1 = 0 ⇒
[

1
√

3√
3 3

]
t1 = 0 ⇒ t1 =

[
−

√
3

2
1
2

]
▶ A is symmetric ⇒ eigenvectors are orthogonal to each other:

choose t2 =

[ 1
2√
3

2

]
. No need to solve (A− λ2I ) t2 = 0!

UW Linear Systems (X. Chen, ME547) Stability 24 / 67



Theorem (Eigenvalues of symmetric matrices)

If A = AT ∈ Rn×n, then the eigenvalues of A satisfy

λmax = max
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(2)

λmin = min
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(3)

Proof.
Perform SED to get A =

∑n
i=1 λiuiu

T
i where {ui}ni=1 spans Rn. Then

any vector x ∈ Rn can be decomposed as x =
∑n

i=1 αiui . Thus

max
x ̸=0

xTAx

∥x∥2
2
= max

αi

(
∑

i αiui)
T ∑

i λiαiui∑
i α

2
i

= max
αi

∑
i λiα

2
i∑

i α
2
i

= λmax
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Positive definite matrices

▶ eigenvalues of symmetric matrices are real ⇒ we can order the
eigenvalues

▶ a symmetric matrix P is called positive-definite if all its
eigenvalues are positive

▶ equivalently:

Definition (Positive Definite Matrices)
A symmetric matrix P ∈ Rn×n is called positive-definite, written
P ≻ 0, if xTPx > 0 for all x ( ̸= 0) ∈ Rn.
P is called positive-semidefinite, written P ⪰ 0, if xTPx ≥ 0 for
all x ∈ Rn

▶ P ≻ 0 (P ⪰ 0) ⇔ P can be decomposed as P = NTN where N
is nonsingular (singular)
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Negative definite matrices

Definition
A symmetric matrix Q ∈ Rn×n is called negative-definite, written
Q ≺ 0, if −Q ≻ 0, i.e., xTQx < 0 for all x (̸= 0) ∈ Rn.
Q is called negative-semidefinite, written Q ⪯ 0, if xTQx ≤ 0 for
all x ∈ Rn
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Updated matrix analogies

matrix structure eigenvalues analogy in complex plane
symmetric real real axis

skew-symmetric on imaginary axis imaginary axis
orthogonal magnitude 1 unit circle

positive definite positive R+ axis
negative definite negative R− axis
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Caution

▶ positive-definite matrices can have negative entries:

Example

P =

[
2 −1
−1 2

]
is positive-definite, as P = PT and take any

v = [x , y ]T , we have

vTPv =

[
x
y

]T [
2 −1
−1 2

] [
x
y

]
= 2x2 + 2y 2 − 2xy

= x2 + y 2 + (x − y)2 ≥ 0

and the equality sign holds only when x = y = 0.
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Caution

▶ conversely, matrices whose entries are all positive are not
necessarily positive-definite:

Example

A =

[
1 2
2 1

]
is not positive-definite:

[
1
−1

]T [
1 2
2 1

] [
1
−1

]
= −2 < 0
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Positive definite matrices

Theorem
For a symmetric matrix P , P ≻ 0 if and only if all the eigenvalues of
P are positive.

Proof.
Since P is symmetric, we have

λmax (P) = max
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(4)

λmin (P) = min
x∈Rn, x ̸=0

xTAx

∥x∥2
2

(5)

which gives xTAx ∈ [λmin∥x∥2
2, λmax∥x∥2

2]. Thus
xTAx > 0, x ̸= 0 ⇔ λmin > 0.
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Relevant tools
Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to
check positive (semi-)definiteness:
▶ P ≻ 0 (P ⪰ 0) ⇔ the leading principle minors defined below are

positive (nonnegative)

Definition

The leading principle minors of P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 are defined as

p11, det
[
p11 p12

p21 p22

]
, detP .
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Relevant tools
Checking positive definiteness of a matrix.

Example
None of the following matrices are positive definite:[

−1 0
0 1

]
,

[
−1 1
1 2

]
,

[
2 1
1 −1

]
,

[
1 2
2 1

]
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Recap

energyOO

��
quadratic functionOO

��
symmetric matrix
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Recap

energyOO

��

// Lyapunov function

quadratic functionOO

��
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Recap

energyOO

��

// Lyapunov functionOO

��
quadratic functionOO

��

// positive definite function

symmetric matrix
for linear system

positive definite matrix

OO
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Relevant tools

Definition (Positive Definite Functions)
A continuous time function W : Rn → R+, called to be PD,
satisfying
▶ W (x) > 0 for all x ̸= 0
▶ W (0) = 0
▶ W (x) → ∞ as |x | → ∞ uniformly in x

In the 3D space, positive definite functions are “bowl-shaped”, e.g.,
W (x1, x2) = x2

1 + x2
2 .

-4 -3 -2 -1
 0

 1
 2

 3
 4

x1 -4
-3

-2
-1

 0
 1

 2
 3

 4

x2

 0
 5

 10
 15
 20
 25
 30
 35
 40
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Relevant tools

Definition (Locally Positive Definite Functions)
A continuous time function W : Rn → R+, called to be LPD,
satisfying
▶ W (x) > 0 for all x ̸= 0 and |x | < r

▶ W (0) = 0

In the 3D space, locally positive definite functions are “bowl-shaped”
locally, e.g., W (x1, x2) = x2

1 + sin2 x2 for x1 ∈ R and |x2| < π

-4 -3 -2 -1
 0

 1
 2

 3
 4

x1 -3
-2

-1
 0

 1
 2

 3

x2

 0

 1

 2

 3

 4

 5
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Relevant tools

Exercise
Let x = [x1, x2, x3]

T . Check the positive definiteness of the following
functions

1. V (x) = x4
1 + x2

2 + x4
3 (PD)

2. V (x) = x2
1 + x2

2 + 3x2
3 − x4

3 (LPD for |x3| <
√

3)
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Lyapunov stability theorems

▶ recall the spring mass damper example in matrix form

d

dt

[
x1

x2

]
= A

[
x1

x2

]
=

[
0 1

− k
m

− b
m

] [
x1

x2

]

▶ energy function is PD:
E (t) = potential energy + kinetic energy = 1

2kx
2
1 + 1

2mx2
2

and its derivative is NSD:

Ė(t) =
[
∂E
∂x1

,
∂E
∂x2

] [
ẋ1

ẋ2

]
= k1x1ẋ1 +mx2ẋ2 (6)

= k1x1x2 +mx2

(
− k

m
x1 −

b

m
x2

)
=

[
∂E
∂x1

,
∂E
∂x2

]
Ax (7)

= −bx2
2
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Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is stable in
the sense of Lyapunov if there exists a locally positive definite
function V (x , t) such that V̇ (x , t) ≤ 0 for all t ≥ t0 and all x in a
local region x : |x | < r for some r > 0.

▶ such a V (x , t) is called a Lyapunov function
▶ i.e., V (x) is PD and V̇ (x) is negative semidefinite in a local

region |x | < r

Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is locally
asymptotically stable if there exists a Lyapunov function V (x) such
that V̇ (x) is locally negative definite.
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Theorem
The equilibrium point 0 of ẋ(t) = f (x(t), t) , x (t0) = x0 is globally
asymptotically stable if there exists a Lyapunov function V (x) such
that V (x) is positive definite and V̇ (x) is negative definite.
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Lyapunov stability concept for linear systems

▶ for linear system ẋ = Ax , a good Lyapunov candidate is the
quadratic function V (x) = xTPx where P = PT and P ≻ 0

▶ the derivative along the state trajectory is then

V̇ (x) = ẋTPx + xTPẋ

= (Ax)T Px + xTPAx

= xT
(
ATP + PA

)
x

▶ such a V (x) = xTPx is a Lyapunov function for ẋ = Ax when
ATP + PA ⪯ 0

▶ and the origin is stable in the sense of Lyapunov
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Theorem (Lyapunov stability theorem for linear systems)
For ẋ = Ax with A ∈ Rn×n, the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q ≻ 0, the
Lyapunov equation

ATP + PA = −Q

has a unique positive definite solution P ≻ 0, PT = P .
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Essense of the Lyapunov Eq.

Observations:
▶ ATP + PA is a linear operation on P : e.g.,

A =

[
a11 a12

a21 a22

]
, Q =

 | |
q1 q2

| |

 , P =

 | |
p1 p2

| |



AT

 | |
p1 p2

| |

+

 | |
p1 p2

| |

[
a11 a12

a21 a22

]
= −

 | |
q1 q2

| |


ATp1 + a11p1 + a21p2 = −q1

ATp2 + a12p1 + a22p2 = −q2
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Essense of the Lyapunov Eq.

Observations: with now

ATP + PA = Q ⇔

{
ATp1 + a11p1 + a21p2 = −q1

ATp2 + a12p1 + a22p2 = −q2

▶ can stack the columns of ATP + PA and Q to yield[
AT 0
0 AT

] [
p1

p2

]
+

[
a11I a21I
a12I a22I

] [
p1

p2

]
= −

[
q1

q2

]
{[

AT 0
0 AT

]
+

[
a11I a21I
a12I a22I

]}
︸ ︷︷ ︸

LA

[
p1

p2

]
= −

[
q1

q2

]
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The Lyapunov Eq.: Existence of solution

LA (P) = ATP + PA

▶ LA is invertible if and only if λi +λj ̸= 0 for all eigenvalues of A:
▶ let ATui = λiui and ATuj = λjuj
▶ LA

(
uiu

T
j

)
= uiu

T
j A+ ATuiu

T
j = ui (λjuj)

T + λiuiu
T
j =

(λi + λj) uiu
T
j

▶ so λi + λj is an eigenvalue of the operator LA (·)
▶ if λi + λj ̸= 0, the operator is invertible
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The Lyapunov operator: eigenvalues

LA =

[
AT 0
0 AT

]
+

[
a11I a21I
a12I a22I

]
▶ can simply write LA = I ⊗ AT + AT ⊗ I︸ ︷︷ ︸

mirror symmetric

using the Kronecker

product notation B ⊗ C =


b11C b11C . . . b11C
b21C b22C . . . b2nC

...
... . . .

...
bm1C bm2C . . . bmnC
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The Lyapunov operator: eigenvalues

LA =

[
AT 0
0 AT

]
+

[
a11I a21I
a12I a22I

]
▶ e.g., A =

[
−1 1
−1 0

]

LA = I ⊗ AT + AT ⊗ I =

[
AT + a11I a21I

a12I AT + a22I

]

=


−1 − 1 −1 −1 0

1 0 − 1 0 −1
1 0 −1 −1
0 1 1 0

 =


−2 −1 −1 0
1 −1 0 −1
1 0 −1 −1
0 1 1 0
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Example: A =

[
−1 1
−1 0

]
, λ1,2 = −0.5 ± i

√
3/2

LA = I ⊗ AT + AT ⊗ I =


−2 −1 −1 0
1 −1 0 −1
1 0 −1 −1
0 1 1 0


The eigenvalues of LA are −1, −1, −1 −

√
3, −1 +

√
3, which are

precisely λ1 + λ1, λ1 + λ2, λ2 + λ1, λ2 + λ2.
import numpy as np
A = [[-1,1],[-1,0]]; I2=np.eye(2); AT=np.transpose(A)
L_A=np.kron(I2,AT)+np.kron(AT,I2)
eigLA,_=np.linalg.eig(L_A)
eigA,_=np.linalg.eig(A)
print(eigLA)
print(eigA)
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Theorem (Lyapunov stability theorem for linear systems)
For ẋ = Ax with A ∈ Rn×n, the origin is asymptotically stable if and
only if for any symmetric positive definite matrix Q ≻ 0, the
Lyapunov equation

ATP + PA = −Q

has a unique positive definite solution P ≻ 0, PT = P .

Proof.

“⇒”: V̇
V
= − xTQx

xTPx
≤ − (λQ)min

(λP)max︸ ︷︷ ︸
≜α

=⇒ V (t) ≤ e−αtV (0). Q ≻ 0 and

P ≻ 0 ⇒ (λQ)min > 0 and (λP)max > 0. Thus α > 0; V (t) decays
exponentially to zero. V (x) ≻ 0 ⇒V (x) = 0 only at x = 0.
Therefore, x → 0 as t → ∞, regardless of the initial condition.
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Proof.
“⇐”: if 0 of ẋ = Ax is asymptotically stable, then all eigenvalues of
A have negative real parts. For any Q, the Lyapunov equation has a
unique solution P . Note x (t) = eAtx0 → 0 as t → ∞. We have

�������: 0
xT (∞)Px (∞)− xT (0)Px (0) =

∫ ∞

0

d

dt
xT (t)Px (t) dt =

∫ ∞

0
xT (t)

(
ATP + PA

)
x (t) dt

⇒ x (0)T Px (0) =
∫ ∞

0
xT (t)Qx (t) dt =

∫ ∞

0
x (0) eA

T tQeAtx (0) dt

If Q ≻ 0, there exists a nonsingular N matrix: Q = NTN . Thus

x (0)T Px (0) =
∫ ∞

0
∥NeAtx (0) ∥2dt ≥ 0

x (0)T Px (0) = 0 only if x0 = 0

Thus P ≻ 0. Furthermore

P =

∫ ∞

0
eA

T tQeAtdt
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Procedures of Lyapunov’s direct method

1. Given A, select an arbitrary positive-definite symmetric matrix Q
(e.g., I ).

2. Find the solution matrix P to the Lyapunov equation
ATP + PA = −Q.

3. If a solution P cannot be found, the origin is not asymptotically
stable.

4. If a solution is found:
▶ if P is positive-definite, then A is Hurwitz stable and the origin

is asymptotically stable;
▶ if P is not positive-definite, then A has at least one eigenvalue

with a positive real part and the origin is an unstable equilibrium.
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Lyapunov stability theorems

Example

ẋ = Ax , A =

[
−1 1
−1 0

]
. The Lyapunov equation is

[
−1 1
−1 0

]T [
p11 p12
p12 p22

]
︸ ︷︷ ︸

P

+

[
p11 p12
p12 p22

] [
−1 1
−1 0

]
= −

[
1 0
0 1

]
︸ ︷︷ ︸

Q

We need 
−2p11 − 2p12 = −1
−p12 − p22 + p11 = 0 ⇒
2p12 = −1


p11 = 1
p22 = 3/2
p12 = −1/2

Leading principle minors: p11 > 0, p11p22 − p2
12 > 0

⇒ P ≻ 0 ⇒asymptotically stable
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Lyapunov analysis with Matlab

ẋ = Ax , A =

[
−1 1
−1 0

]
.

A = [-1,1;-1,0]
Q = eye(2)
P = lyap(A’,Q)
w = eig(P)
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Lyapunov analysis with Python

ẋ = Ax , A =

[
−1 1
−1 0

]
.

import control as ct
import numpy as np
A = np.array([[-1,1],[-1,0]])
Q = np.identity(2)
P = ct.lyap(A.transpose(),Q)
print(P)
w = np.linalg.eigvals(P)
print(w)
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It suffices to select Q = I

For linear systems we can let Q = I and check whether the resulting
P is positive definite. If it is, then we can assert the asymptotic
stability:
▶ take any Q ≻ 0. there exists Q = NTN , where N is invertible,

yielding

ATP + PA = −I

⇕
NTATN−T︸ ︷︷ ︸

ÃT

NTPN︸ ︷︷ ︸
P̃

+NTPN︸ ︷︷ ︸
P̃

N−1AN︸ ︷︷ ︸
Ã

= −NTN

▶ Ã = N−1AN and A are similar matrices and have the same
eigenvalues.

▶ P̃ = NTPN and P have the same definiteness. If we can find a
positive definite solution P then the P̃ will also be positive
definite. Vise versa.
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Instability theorem

▶ for nonlinear systems, Lyapunov function can be nontrivial to
find

▶ failure to find a Lyapunov function does not imply instability

Theorem
The equilibrium state 0 of ẋ = f (x) is unstable if there exists a
function W (x) such that
▶ Ẇ (x) is PD locally: Ẇ (x) > 0 ∀ |x | < r for some r and

Ẇ (0) = 0
▶ W (0) = 0
▶ there exist states x arbitrarily close to the origin such that

W (x) > 0
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Discrete-time case: key concept of Lyapunov

For the discrete-time system

x (k + 1) = Ax (k)

we consider a quadratic Lyapunov function candidate

V (x) = xTPx , P = PT ≻ 0

and compute ∆V (x) along the trajectory of the state

V (x (k + 1))− V (x (k)) = xT (k)
(
ATPA− P

)︸ ︷︷ ︸
≜−Q

x (k)

Asymptotic stability desires ∆V (x) to be negative.
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DT Lyapunov stability theorem for linear systems

Theorem
For system x (k + 1) = Ax (k) with A ∈ Rn×n, the origin is
asymptotically stable if and only if ∃ Q ≻ 0, such that the
discrete-time Lyapunov equation

ATPA− P = −Q

has a unique positive definite solution P ≻ 0, PT = P .

UW Linear Systems (X. Chen, ME547) Stability 61 / 67



The DT Lyapunov Eq.

ATPA− P = −Q

▶ Solution to the DT Lyapunov equation, when asymptotic
stability holds (A is Schur stable), comes from:

������:0
V (x (∞))− V (x (0)) =

∞∑
k=0

xT (k)
[
ATPA− P

]
x (k)

= −
∞∑
k=0

xT (0)
(
AT

)k
QAkx (0)

⇒ P =
∞∑
k=0

(
AT

)k
QAk

▶ can show that the DT Lyapunov operator LA = ATPA− P is
invertible if and only if ∀i , j (λA)i (λA)j ̸= 1
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DT Lyapunov analysis with MATLAB

Example

x(k + 1) = Ax(k), A =

 0 1 0
0 0 1

0.275 −0.225 −0.1


% MATLAB
A=[ 0 1 0; 0 0 1; 0.275 -0.225 -0.1]
Q = eye(3)
P = dlyap(A’,Q) % check function definition in Matlab help
eig(P)
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DT Lyapunov analysis with Python

Example

x(k + 1) = Ax(k), A =

 0 1 0
0 0 1

0.275 −0.225 −0.1


#Python
import control as ct
import numpy as np
from numpy.linalg import eig
A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]])
Q = np.identity(3)
P = ct.dlyap(A.transpose(),Q)
w,v = eig(P)
print(w)
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Recap

▶ Internal stability
▶ Stability in the sense of Lyapunov: ε, δ conditions
▶ Asymptotic stability

▶ Stability analysis of linear time invariant systems (ẋ = Ax or
x(k + 1) = Ax(k))
▶ Based on the eigenvalues of A

▶ Time response modes
▶ Repeated eigenvalues on the imaginary axis

▶ Routh’s criterion
▶ No need to solve the characteristic equation
▶ Discrete time case: bilinear transform (z = 1+s

1−s )
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Recap
▶ Lyapunov equations

Theorem: All eigenvalues of A have negative real parts iff for
any given Q ≻ 0, the Lyapunov equation

ATP + PA = −Q

has a unique solution P and P ≻ 0.
Given Q, the Lyapunov equation ATP + PA = −Q has a unique
solution when λA,i + λA,j ̸= 0 for all i and j .
Theorem: All eigenvalues of A are inside the unit circle iff for
any given Q ≻ 0, the Lyapunov equation

ATPA− P = −Q

has a unique solution P and P ≻ 0.
Given Q, the Lyapunov equation ATPA− P = −Q has a unique
solution when λA,iλA,j ̸= 1 for all i and j .
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Recap

▶ P is positive definite if and only if any one of the following
conditions holds:

1. All the eigenvalues of P are positive.
2. All the leading principle minors of P are positive.
3. There exists a nonsingular matrix N such that P = NTN.
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