Lyapunov Stability

Xu Chen

University of Washington

1. Definitions in Lyapunov stability analysis

 Lyapunov's approach to stability Relevant tools Lyapunov stability theorems Instability theorem Discrete-time case

3. Recap

Let $v \in \mathbb{R}^n$. A norm is:

a metric in vector space: a function that assigns a real-valued length to each vector in a vector space

• e.g., 2 (Euclidean) norm: $||v||_2 = \sqrt{v^T v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$ default in this set of notes: $||\cdot|| = ||\cdot||_2$ For an *n*-th order unforced system

$$\dot{x}=f\left(x,t\right),\ x(t_{0})=x_{0}$$

an equilibrium state/point x_e is one such that

$$f(x_e,t)=0, \ \forall t$$

- the condition must be satisfied by all $t \ge 0$
- ▶ if a system starts at equilibrium state, it stays there

For a linear system

$$\dot{x}(t) = A(t)x(t), \ x(t_0) = x_0$$

- origin $x_e = 0$ is always an equilibrium state
- when A(t) is singular, multiple equilibrium states exist

Lyapunov's definition of stability

The equilibrium state 0 of x = f(x, t) is stable in the sense of Lyapunov (s.i.L) if for all € > 0, and t₀, there exists δ (€, t₀) > 0 such that ||x(t₀) ||₂ < δ gives ||x(t) ||₂ < € for all t ≥ t₀

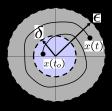


Figure: Stable s.i.L: $||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon \ \forall t \ge t_0$.

Asymptotic stability

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

- ▶ it is stable in the sense of Lyapunov, and
- ▶ for all $\epsilon > 0$ and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $||x(t_0)||_2 < \delta$ gives $x(t) \rightarrow 0$

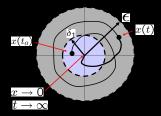


Figure: Asymptotically stable i.s.L: $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| \to 0$.

1. Definitions in Lyapunov stability analysis

2. Lyapunov's approach to stability Relevant tools Lyapunov stability theorems Instability theorem Discrete-time case

3. Recap

Stability of LTI systems: method of eigenvalue/pole locations

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on $\lambda(A)$:

- ► the response $e^{At}x(t_0)$ involves modes such as $e^{\lambda t}$, $te^{\lambda t}$, $e^{\sigma t} \cos \omega t$, $e^{\sigma t} \sin \omega t$
- ► the response $A^k x(k_0)$ involves modes such as λ^k , $k \lambda^{k-1}$, $r^k \cos k\theta$, $r^k \sin k\theta$

$$\begin{array}{l} \bullet \ e^{\sigma t} \to 0 \ \text{if} \ \sigma < 0; \ e^{\lambda t} \to 0 \ \text{if} \ \lambda < 0 \\ \\ \bullet \ \lambda^k \to 0 \ \text{if} \ |\lambda| < 1; \ r^k \to 0 \ \text{if} \ |r| = \left|\sqrt{\sigma^2 + \omega^2}\right| = |\lambda| < 1 \end{array}$$

The direct method of Lyapunov to stability problems:

- no need for explicit solutions to system responses
- ► an "energy" perspective
- fit for general dynamic systems (linear/nonlinear, time-invariant/time-varying)

Stability from an energy viewpoint: Example

Consider spring-mass-damper systems:

$$\dot{x}_1 = x_2$$
 (x₁: position; x₂: velocity)
 $\dot{x}_2 = -\frac{k}{m}x_1 - \frac{b}{m}x_2, \ b > 0$ (Newton's law)

λ (A)'s are in the left-half s-plane⇒ asymptotically stable
 total energy

 $\mathcal{E}(t) = ext{potential energy} + ext{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

• $\dot{\mathcal{E}} = 0$ only when $x_2 = 0$. As $[x_1, x_2]^T = 0$ is the only equilibrium, the motion will not stop at $x_2 = 0$, $x_1 \neq 0$. Thus energy will keep decreasing toward 0 which is achieved at the origin.

Stability from an energy viewpoint: Generalization

Consider unforced, time-varying, nonlinear systems

$$\dot{x}(t) = f(x(t), t), \; x(t_0) = x_0 \ x(k+1) = f(x(k), k), \; x(k_0) = x_0$$

- assume the origin is an equilibrium state
- ► energy function ⇒ Lyapunov function: a scalar function of x and t (or x and k)
- goal is to relate properties of the state through the Lyapunov function
- main tool: matrix formulation, linear algebra, positive definite functions

Relevant tools Quadratic functions

intrinsic in energy-like analysis, e.g.

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 = \frac{1}{2}\begin{bmatrix}x_1\\x_2\end{bmatrix}^T\begin{bmatrix}k&0\\0&m\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}$$

convenience of matrix formulation:

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{m}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 + c = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{m}{2} & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

general quadratic functions in matrix form

$$Q(x) = x^T P x, P^T = P$$

Relevant tools Symmetric matrices

▶ recall: a real square matrix A is

- symmetric if $A = A^T$
- skew-symmetric if $A = -A^T$

examples:

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

Any real square matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix:

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

general case: $P = \frac{P + P^T}{2} + \frac{P - P^T}{2}$

Relevant tools Symmetric matrices

- ▶ a real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I$
- meaning that the columns of A form a orthonormal basis of \mathbb{R}^n

$$A = \left[\begin{array}{cccccc} | & | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | & | \end{array} \right]$$

$$A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \dots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \dots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \dots & a_{n}^{T}a_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

namely, $a_j^T a_j = 1$ and $a_j^T a_m = 0 \ \forall j \neq m$.

Theorem

The eigenvalues of symmetric matrices are all real.

Proof: $\forall : A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

11

Eigenvalue-eigenvector pair: $Au = \lambda u \Rightarrow \overline{u}^T Au = \lambda \overline{u}^T u$, where \overline{u} is the complex conjugate of u. $\overline{u}^T Au$ is a real number, as

$$\overline{{}^{T}Au} = u^{T}\overline{A}\overline{u}$$

$$= u^{T}A\overline{u} \quad \because A \in \mathbb{R}^{n \times n}$$

$$= u^{T}A^{T}\overline{u} \quad \because A = A^{T}$$

$$= \lambda u^{T}\overline{u} \quad \because (Au)^{T} = (\lambda u)^{T}$$

$$= \lambda \overline{u}^{T}u \quad \because u^{T}\overline{u} \in \mathbb{R}$$

$$= \overline{u}^{T}Au \quad \because Au = \lambda u$$

Also, $\overline{u}^T u \in \mathbb{R}$. Thus $\lambda = \frac{\overline{u}^T A u}{\overline{u}^T u}$ must also be a real number.

Example

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}: \lambda = \pm 2$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}: \lambda = 1 \pm 2$$

$$= 1 \pm 2$$

$$= 1 \pm 2$$

$$= 1 \pm 2$$

Theorem

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

$$\blacktriangleright \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} : \lambda = \pm 2j$$

```
import numpy as np
N = 100
P = np.random.randint(-200,200,size=(N,N))
P_symm = (P - P.T)/2
lambdas, _ = np.linalg.eig(P_symm)
print(lambdas)
```

Theorem

All eigenvalues of an orthogonal matrix have a magnitude of 1.

$$\blacktriangleright \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} : \lambda = 1 \pm 2j$$

import numpy as np
from scipy.linalg import qr
n = 3
H = np.random.randn(n, n)
Q, _ = qr(H)
print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))

Important properties of symmetric matrices

Theorem The eigenvalues of symmetric matrices are all real.

Theorem The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem

All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure	analogy in complex plane
symmetric	real line
skew-symmetric	imaginary line
orthogonal	unit circle

The spectral theorem for symmetric matrices

When $A \in \mathbb{R}^{n \times n}$ has *n* distinct eigenvalues, we can do diagonalization $A = U \wedge U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

 $\forall : A \in \mathbb{R}^{n \times n}, \ A^T = A$, there always exist $\lambda_i \in \mathbb{R}$ and $u_i \in \mathbb{R}^n$, s.t.

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^T = U \Lambda U^T$$
(1)

- \blacktriangleright λ_i 's: eigenvalues of A
- ▶ u_i : eigenvector associated to λ_i , normalized to have unity norms
- $U = [u_1, u_2, \cdots, u_n]$ is orthogonal: $U^T U = UU^T = I$

•
$$\Lambda = diagonal(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Elements of proof for SED

Theorem

 $\forall : A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let $Au_i = \lambda_i u_i$ and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$. Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$. But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

SED now follows:

- ► If A has distinct eigenvalues, then U = [u₁, u₂, ···, u_n] is orthogonal after normalizing all the eigenvectors to unity norm.
- If A has r(< n) distinct eigenvalues, we can choose multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

UW Linear Systems (X. Chen, ME547)

With the spectral theorem, next time we see a symmetric matrix A, we immediately know that

- λ_i is real for all *i*
- ▶ associated with λ_i , we can always find a real eigenvector
- ▶ \exists an orthonormal basis $\{u_i\}_{i=1}^n$, which consists of the eigenvectors
- ▶ if $A \in \mathbb{R}^{2 \times 2}$, then if you compute first λ_1 , λ_2 and u_1 , you won't need to go through the regular math to get u_2 , but can simply solve for a u_2 that is orthogonal to u_1 with $||u_2|| = 1$.

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

Computing the eigenvalues gives

$$det \begin{bmatrix} 5-\lambda & \sqrt{3} \\ \sqrt{3} & 7-\lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4) (\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

first normalized eigenvector:

$$(A - \lambda_1 I) t_1 = 0 \Rightarrow \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix} t_1 = 0 \Rightarrow t_1 = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

• A is symmetric \Rightarrow eigenvectors are orthogonal to each other: choose $t_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$. No need to solve $(A - \lambda_2 I) t_2 = 0!$

UW Linear Systems (X. Chen, ME547)

Theorem (Eigenvalues of symmetric matrices) If $A = A^{T} \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
(2)
$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
(3)

Proof.

Perform SED to get $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^{n}$ spans \mathbb{R}^n . Then any vector $x \in \mathbb{R}^n$ can be decomposed as $x = \sum_{i=1}^{n} \alpha_i u_i$. Thus

$$\max_{x \neq 0} \frac{x^{T} A x}{\|x\|_{2}^{2}} = \max_{\alpha_{i}} \frac{\left(\sum_{i} \alpha_{i} u_{i}\right)^{T} \sum_{i} \lambda_{i} \alpha_{i} u_{i}}{\sum_{i} \alpha_{i}^{2}} = \max_{\alpha_{i}} \frac{\sum_{i} \lambda_{i} \alpha_{i}^{2}}{\sum_{i} \alpha_{i}^{2}} = \lambda_{\max}$$

Positive definite matrices

- ▶ eigenvalues of symmetric matrices are real ⇒ we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive
- equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is called **positive-definite**, written $P \succ 0$, if $x^T P x > 0$ for all $x (\neq 0) \in \mathbb{R}^n$. P is called **positive-semidefinite**, written $P \succ 0$, if $x^T P x > 0$ for

P is called **positive-semidefinite**, written $P \succeq 0$, if $x' Px \ge 0$ for all $x \in \mathbb{R}^n$

▶ $P \succ 0$ ($P \succeq 0$) $\Leftrightarrow P$ can be decomposed as $P = N^T N$ where N is nonsingular (singular)

Definition

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called **negative-definite**, written $Q \prec 0$, if $-Q \succ 0$, i.e., $x^T Q x < 0$ for all $x (\neq 0) \in \mathbb{R}^n$. *Q* is called **negative-semidefinite**, written $Q \preceq 0$, if $x^T Q x \leq 0$ for all $x \in \mathbb{R}^n$

matrix structure	eigenvalues	analogy in complex plane
symmetric	real	real axis
skew-symmetric	on imaginary axis	imaginary axis
orthogonal	magnitude 1	unit circle
positive definite	positive	\mathbb{R}_+ axis
negative definite	negative	\mathbb{R} axis

positive-definite matrices can have negative entries:
 Example

 $P = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ is positive-definite, as $P = P^{T}$ and take any $v = [x, y]^{T}$, we have

$$v^{T} P v = \begin{bmatrix} x \\ y \end{bmatrix}^{T} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2x^{2} + 2y^{2} - 2xy$$
$$= x^{2} + y^{2} + (x - y)^{2} \ge 0$$

and the equality sign holds only when x = y = 0.

conversely, matrices whose entries are all positive are not necessarily positive-definite:

Example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 is not positive-definite:

$$\left[\begin{array}{c}1\\-1\end{array}\right]^{T}\left[\begin{array}{c}1&2\\2&1\end{array}\right]\left[\begin{array}{c}1\\-1\end{array}\right]=-2<0$$

Positive definite matrices

Theorem

For a symmetric matrix P, $P \succ 0$ if and only if all the eigenvalues of P are positive.

Proof. Since *P* is symmetric, we have

$$\lambda_{\max}(P) = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$

$$\lambda_{\min}(P) = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
(5)

which gives $x^T A x \in [\lambda_{\min} ||x||_2^2, |\lambda_{\max} ||x||_2^2]$. Thus $x^T A x > 0, x \neq 0 \Leftrightarrow \lambda_{\min} > 0$.

We often use the following necessary and sufficient conditions to check positive (semi-)definiteness:

P ≻ 0 (P ≥ 0) ⇔ the leading principle minors defined below are positive (nonnegative)

Definition

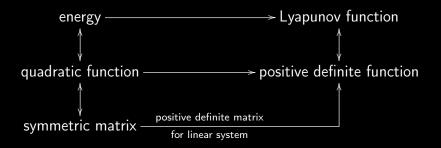
The leading principle minors of
$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$
 are defined as p_{11} , det $\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$, det P .

Relevant tools Checking positive definiteness of a matrix.

Example None of the following matrices are positive definite: $\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

energy duadratic function symmetric matrix



Relevant tools

Definition (Positive Definite Functions)

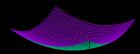
A continuous time function $W: \mathbb{R}^n \to \mathbb{R}_+$, called to be PD, satisfying

• W(x) > 0 for all $x \neq 0$

$$\blacktriangleright W(0) = 0$$

•
$$W(x) \to \infty$$
 as $|x| \to \infty$ uniformly in x

In the 3D space, positive definite functions are "bowl-shaped", e.g., $W\left(x_1,x_2
ight)=x_1^2+x_2^2$.

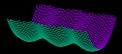


Definition (Locally Positive Definite Functions) A continuous time function $W : \mathbb{R}^n \to \mathbb{R}_+$, called to be LPD, satisfying

• W(x) > 0 for all $x \neq 0$ and |x| < r

•
$$W(0) = 0$$

In the 3D space, locally positive definite functions are "bowl-shaped" locally, e.g., $W(x_1, x_2) = x_1^2 + \sin^2 x_2$ for $x_1 \in \mathbb{R}$ and $|x_2| < \pi$



Exercise

Let $x = [x_1, x_2, x_3]^T$. Check the positive definiteness of the following functions

1.
$$V(x) = x_1^4 + x_2^2 + x_3^4$$
 (PD)
2. $V(x) = x_1^2 + x_2^2 + 3x_3^2 - x_3^4$ (LPD for $|x_3| < \sqrt{3}$)

1. Definitions in Lyapunov stability analysis

2. Lyapunov's approach to stability Relevant tools Lyapunov stability theorems Instability theorem Discrete-time case

3. Recap

Lyapunov stability theorems

recall the spring mass damper example in matrix form

$$\frac{d}{dt} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = A \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

$$\dot{\mathcal{E}}(t) = \begin{bmatrix} \frac{\partial \mathcal{E}}{\partial x_1}, \frac{\partial \mathcal{E}}{\partial x_2} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = k_1 x_1 \dot{x}_1 + m x_2 \dot{x}_2$$

$$= k_1 x_1 x_2 + m x_2 \left(-\frac{k}{m} x_1 - \frac{b}{m} x_2 \right) = \begin{bmatrix} \frac{\partial \mathcal{E}}{\partial x_1}, \frac{\partial \mathcal{E}}{\partial x_2} \end{bmatrix} Ax$$

$$= -b x_2^2$$
(6)

Theorem

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> <u>the sense of Lyapunov</u> if there exists a locally positive definite function V(x, t) such that $\dot{V}(x, t) \leq 0$ for all $t \geq t_0$ and all x in a local region x : |x| < r for some r > 0.

- such a V(x, t) is called a Lyapunov function
- ▶ i.e., V(x) is PD and $\dot{V}(x)$ is negative semidefinite in a local region |x| < r

Theorem

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>locally</u> <u>asymptotically stable</u> if there exists a Lyapunov function V(x) such that $\dot{V}(x)$ is locally negative definite.

Theorem

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>globally</u> <u>asymptotically stable</u> if there exists a Lyapunov function V(x) such that V(x) is positive definite and $\dot{V}(x)$ is negative definite.

Lyapunov stability concept for linear systems

- ▶ for linear system $\dot{x} = Ax$, a good Lyapunov candidate is the quadratic function $V(x) = x^T P x$ where $P = P^T$ and $P \succ 0$
- ▶ the derivative along the state trajectory is then

$$\dot{\lambda}(x) = \dot{x}^T P x + x^T P \dot{x}$$

= $(Ax)^T P x + x^T P A x$
= $x^T (A^T P + P A) x$

- ▶ such a $V(x) = x^T P x$ is a Lyapunov function for $\dot{x} = A x$ when $A^T P + P A \leq 0$
- and the origin is stable in the sense of Lyapunov

Theorem (Lyapunov stability theorem for linear systems) For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, <u>the</u> Lyapunov equation

$$A^T P + P A = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Essense of the Lyapunov Eq.

Observations:

► $A^T P + PA$ is a linear operation on P: e.g.,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \ Q = \begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix}, \ P = \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix}$$
$$A^{T} \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix} + \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = -\begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix}$$

$$A' p_1 + a_{11}p_1 + a_{21}p_2 = -q_1$$

 $A^T p_2 + a_{12}p_1 + a_{22}p_2 = -q_2$

Stability

Essense of the Lyapunov Eq.

Observations: with now

$$A^{T}P + PA = Q \Leftrightarrow egin{cases} A^{T}p_{1} + a_{11}p_{1} + a_{21}p_{2} &= -q_{1} \ A^{T}p_{2} + a_{12}p_{1} + a_{22}p_{2} &= -q_{2} \end{cases}$$

• can stack the columns of $A^T P + PA$ and Q to yield

$$\begin{bmatrix} A^{T} & 0 \\ 0 & A^{T} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} = -\begin{bmatrix} q_{1} \\ q_{2} \end{bmatrix}$$
$$\underbrace{\left\{ \begin{bmatrix} A^{T} & 0 \\ 0 & A^{T} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \right\}}_{L_{A}} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} = -\begin{bmatrix} q_{1} \\ q_{2} \end{bmatrix}$$

$$L_A(P) = A^T P + P A$$

L_A is invertible if and only if λ_i + λ_j ≠ 0 for all eigenvalues of A:
let A^Tu_i = λ_iu_i and A^Tu_j = λ_ju_j
L_A (u_iu_j^T) = u_iu_j^TA + A^Tu_iu_j^T = u_i (λ_ju_j)^T + λ_iu_iu_j^T = (λ_i + λ_j) u_iu_j^T
so λ_i + λ_j is an eigenvalue of the operator L_A(·)
if λ_i + λ_j ≠ 0, the operator is invertible

The Lyapunov operator: eigenvalues

$$L_{A} = \begin{bmatrix} A^{T} & 0\\ 0 & A^{T} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I\\ a_{12}I & a_{22}I \end{bmatrix}$$

can simply write $L_{A} = \underbrace{I \otimes A^{T} + A^{T} \otimes I}_{\text{mirror symmetric}}$ using the Kronecker
product notation $B \otimes C = \begin{bmatrix} b_{11}C & b_{11}C & \dots & b_{11}C\\ b_{21}C & b_{22}C & \dots & b_{2n}C\\ \vdots & \vdots & \dots & \vdots\\ b_{m1}C & b_{m2}C & \dots & b_{mn}C \end{bmatrix}$

The Lyapunov operator: eigenvalues

$$L_{A} = \begin{bmatrix} A^{T} & 0\\ 0 & A^{T} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I\\ a_{12}I & a_{22}I \end{bmatrix}$$

$$\blacktriangleright \text{ e.g., } A = \begin{bmatrix} -1 & 1\\ -1 & 0 \end{bmatrix}$$

$$L_{A} = I \otimes A^{T} + A^{T} \otimes I = \begin{bmatrix} A^{T} + a_{11}I & a_{21}I \\ a_{12}I & A^{T} + a_{22}I \end{bmatrix}$$
$$= \begin{bmatrix} -1 - 1 & -1 & | & -1 & 0 \\ 1 & 0 - 1 & 0 & -1 \\ \hline 1 & 0 & | & -1 & -1 \\ 0 & 1 & | & 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 & | & -1 & 0 \\ 1 & -1 & 0 & -1 \\ \hline 1 & 0 & | & -1 & -1 \\ 0 & 1 & | & 1 & 0 \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$
, $\lambda_{1,2} = -0.5 \pm i\sqrt{3}/2$
 $L_A = I \otimes A^T + A^T \otimes I = \begin{bmatrix} -2 & -1 & | & -1 & 0 \\ 1 & -1 & 0 & -1 \\ \hline 1 & 0 & | & -1 & -1 \\ 0 & 1 & | & 1 & 0 \end{bmatrix}$
The eigenvalues of L_A are -1 , -1 , $-1 - \sqrt{3}$, $-1 + \sqrt{3}$, which are precisely $\lambda_1 + \lambda_1$, $\lambda_1 + \lambda_2$, $\lambda_2 + \lambda_1$, $\lambda_2 + \lambda_2$.
import numpy as np
 $A = [[-1,1], [-1,0]]; \ |2 = np.eye(2); \ AT = np.transpose(A)$

Theorem (Lyapunov stability theorem for linear systems) For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, <u>the</u> Lyapunov equation

$$A^T P + P A = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Proof.

"
$$\stackrel{"}{\Rightarrow} \stackrel{"}{:} \frac{\dot{V}}{V} = -\frac{x^{T}Q_{X}}{x^{T}P_{X}} \leq -\underbrace{\frac{(\lambda_{Q})_{\min}}{(\lambda_{P})_{\max}}}_{\triangleq \alpha} \implies V(t) \leq e^{-\alpha t}V(0). \quad Q \succ 0 \text{ and}$$

$$\stackrel{P \succ 0 \Rightarrow (\lambda_{Q})_{\min} > 0 \text{ and } (\lambda_{P})_{\max} > 0. \text{ Thus } \alpha > 0; \quad V(t) \text{ decays}$$
exponentially to zero.
$$V(x) \succ 0 \Rightarrow V(x) = 0 \text{ only at } x = 0.$$
Therefore, $x \to 0$ as $t \to \infty$, regardless of the initial condition.

Proof.

" \Leftarrow ": if 0 of $\dot{x} = Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P. Note $x(t) = e^{At}x_0 \to 0$ as $t \to \infty$. We have

$$x^{T}(\infty) \xrightarrow{P} (\infty) - x^{T}(0) Px(0) = \int_{0}^{\infty} \frac{d}{dt} x^{T}(t) Px(t) dt = \int_{0}^{\infty} x^{T}(t) \left(A^{T}P + PA\right) x(t) dt$$
$$\Rightarrow x(0)^{T} Px(0) = \int_{0}^{\infty} x^{T}(t) Qx(t) dt = \int_{0}^{\infty} x(0) e^{A^{T}t} Q e^{At} x(0) dt$$

If $Q \succ 0$, there exists a nonsingular N matrix: $Q = N^T N$. Thus $x(0)^T Px(0) = \int_0^\infty ||Ne^{At}x(0)||^2 dt \ge 0$ $x(0)^T Px(0) = 0$ only if $x_0 = 0$

Thus $P \succ 0$. Furthermore

$$P=\int_0^\infty e^{A^T t} Q e^{At} dt$$

Procedures of Lyapunov's direct method

- 1. Given A, select an arbitrary positive-definite symmetric matrix Q (e.g., I).
- 2. Find the solution matrix P to the Lyapunov equation $A^T P + PA = -Q$.
- 3. If a solution P cannot be found, the origin is not asymptotically stable.
- 4. If a solution is found:
 - if P is positive-definite, then A is Hurwitz stable and the origin is asymptotically stable;
 - if P is not positive-definite, then A has at least one eigenvalue with a positive real part and the origin is an unstable equilibrium.

Example

$$\dot{x} = Ax, \ A = \begin{bmatrix} -1 & 1\\ -1 & 0 \end{bmatrix}. \ \text{The Lyapunov equation is}$$
$$\begin{bmatrix} -1 & 1\\ -1 & 0 \end{bmatrix}^{T} \underbrace{\begin{bmatrix} p_{11} & p_{12}\\ p_{12} & p_{22} \end{bmatrix}}_{P} + \begin{bmatrix} p_{11} & p_{12}\\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 1\\ -1 & 0 \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}}_{Q}$$

We need

$$\begin{cases} -2p_{11} - 2p_{12} = -1 \\ -p_{12} - p_{22} + p_{11} = 0 \\ 2p_{12} = -1 \end{cases} \Rightarrow \begin{cases} p_{11} = 1 \\ p_{22} = 3/2 \\ p_{12} = -1/2 \end{cases}$$

Leading principle minors: $p_{11} > 0$, $p_{11}p_{22} - p_{12}^2 > 0$ $\Rightarrow P \succ 0 \Rightarrow$ asymptotically stable

UW Linear Systems (X. Chen, ME547)

Lyapunov analysis with Matlab

$$\dot{x} = Ax, A = \begin{bmatrix} -1 & 1\\ -1 & 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} -1,1;-1,0 \end{bmatrix}$$

$$Q = eye(2)$$

$$P = lyap(A',Q)$$

$$w = eig(P)$$

Lyapunov analysis with Python

$$\dot{x} = Ax, A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

import control as ct
import numpy as np
A = np.array([[-1,1],[-1,0]])
Q = np.identity(2)
P = ct.lyap(A.transpose(),Q
print(P)
w = np.linalg.eigvals(P)
print(w)

It suffices to select Q = I

For linear systems we can let Q = I and check whether the resulting P is positive definite. If it is, then we can assert the asymptotic stability:

▶ take any $Q \succ 0$. there exists $Q = N^T N$, where N is invertible, yielding

$$A^{T}P + PA = -I$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

- $\tilde{A} = N^{-1}AN$ and A are similar matrices and have the same eigenvalues.
- ▶ $\tilde{P} = N^T P N$ and P have the same definiteness. If we can find a positive definite solution P then the \tilde{P} will also be positive definite. Vise versa.

UW Linear Systems (X. Chen, ME547)

- for nonlinear systems, Lyapunov function can be nontrivial to find
- ▶ failure to find a Lyapunov function does not imply instability

Theorem

The equilibrium state 0 of $\dot{x} = f(x)$ is unstable if there exists a function W(x) such that

- $\dot{W}(x)$ is PD locally: $\dot{W}(x) > 0 \forall |x| < r$ for some r and $\dot{W}(0) = 0$
- W(0) = 0
- there exist states x arbitrarily close to the origin such that W(x) > 0

Discrete-time case: key concept of Lyapunov

For the discrete-time system

$$x(k+1) = Ax(k)$$

we consider a quadratic Lyapunov function candidate

$$V(x) = x^T P x, \ P = P^T \succ 0$$

and compute $\Delta V(x)$ along the trajectory of the state

$$V(x(k+1)) - V(x(k)) = x^{T}(k) \underbrace{\left(A^{T}PA - P\right)}_{\triangleq -Q} x(k)$$

Asymptotic stability desires $\Delta V(x)$ to be negative.

Theorem

For system x (k + 1) = Ax (k) with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if $\exists Q \succ 0$, such that <u>the</u> discrete-time Lyapunov equation

$$A^T P A - P = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

The DT Lyapunov Eq.

$$A^T P A - P = -Q$$

Solution to the DT Lyapunov equation, when asymptotic stability holds (A is Schur stable), comes from:

$$V(x(\infty))^{-0} V(x(0)) = \sum_{k=0}^{\infty} x^{T}(k) [A^{T}PA - P] x(k)$$
$$= -\sum_{k=0}^{\infty} x^{T}(0) (A^{T})^{k} QA^{k} x(0)$$
$$\Rightarrow P = \sum_{k=0}^{\infty} (A^{T})^{k} QA^{k}$$

► can show that the DT Lyapunov operator $L_A = A^T P A - P$ is invertible if and only if $\forall i, j \ (\lambda_A)_i \ (\lambda_A)_i \neq 1$

DT Lyapunov analysis with MATLAB

Example

$$x(k+1) = Ax(k), \ A = \left[egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 0.275 & -0.225 & -0.1 \end{array}
ight]$$

DT Lyapunov analysis with Python

Example

$$x(k+1) = Ax(k), \ A = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 0.275 & -0.225 & -0.1 \end{array}
ight]$$

#Python import control as ct import numpy as np from numpy.linalg import eig A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]]) Q = np.identity(3) P = ct.dlyap(A.transpose(),Q) w,v = eig(P) print(w)

Recap

- Internal stability
 - Stability in the sense of Lyapunov: ε , δ conditions
 - Asymptotic stability
- - \blacktriangleright Based on the eigenvalues of A
 - Time response modes
 - Repeated eigenvalues on the imaginary axis
 - Routh's criterion
 - No need to solve the characteristic equation
 - Discrete time case: bilinear transform $(z = \frac{1+s}{1-s})$

Recap

Lyapunov equations

Theorem: All eigenvalues of A have negative real parts iff for any given $Q \succ 0$, the Lyapunov equation

$$A^T P + P A = -Q$$

has a unique solution P and $P \succ 0$.

Given Q, the Lyapunov equation $A^T P + PA = -Q$ has a unique solution when $\lambda_{A,i} + \lambda_{A,j} \neq 0$ for all i and j.

Theorem: All eigenvalues of A are inside the unit circle iff for any given $Q \succ 0$, the Lyapunov equation

$$A^T P A - P = -Q$$

has a unique solution P and $P \succ 0$. Given Q, the Lyapunov equation $A^T P A - P = -Q$ has a unique solution when $\lambda_{A,i}\lambda_{A,j} \neq 1$ for all i and j.

- P is positive definite if and only if any one of the following conditions holds:
 - 1. All the eigenvalues of P are positive.
 - 2. All the leading principle minors of P are positive.
 - 3. There exists a nonsingular matrix N such that $P = N^T N$.