Linear Systems: Stability

1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

Let $v \in \mathbb{R}^n$. A norm is:

a metric in vector space: a function that assigns a real-valued length to each vector in a vector space

• e.g., 2 (Euclidean) norm: $||v||_2 = \sqrt{v^T v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$ default in this set of notes: $||\cdot|| = ||\cdot||_2$ For an *n*-th order unforced system

$$\dot{x}=f\left(x,t\right),\ x(t_{0})=x_{0}$$

an equilibrium state/point x_e is one such that

$$f(x_e,t)=0, \ \forall t$$

- the condition must be satisfied by all $t \ge 0$
- ▶ if a system starts at equilibrium state, it stays there

For a linear system

$$\dot{x}(t) = A(t)x(t), \ x(t_0) = x_0$$

- origin $x_e = 0$ is always an equilibrium state
- when A(t) is singular, multiple equilibrium states exist

Lyapunov's definition of stability

The equilibrium state 0 of ẋ = f(x, t) is stable in the sense of Lyapunov (s.i.L) if for all ε > 0, and t₀, there exists δ(ε, t₀) > 0 such that ||x(t₀) ||₂ < δ gives ||x(t) ||₂ < ε for all t ≥ t₀</p>

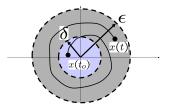


Figure: Stable s.i.L: $||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon \ \forall t \ge t_0$.

Asymptotic stability

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

- it is stable in the sense of Lyapunov, and
- ▶ for all $\epsilon > 0$ and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $||x(t_0)||_2 < \delta$ gives $x(t) \rightarrow 0$

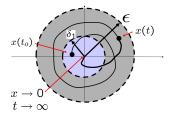


Figure: Asymptotically stable i.s.L: $||x(t_0)|| < \delta \Rightarrow ||x(t)|| \rightarrow 0$.

1. Definitions in Lyapunov stability analysis

2. Stability of LTI systems: method of eigenvalue/pole locations

Stability of LTI systems: method of eigenvalue/pole locations

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on $\lambda(A)$:

- ► the response $e^{At}x(t_0)$ involves modes such as $e^{\lambda t}$, $te^{\lambda t}$, $e^{\sigma t} \cos \omega t$, $e^{\sigma t} \sin \omega t$
- ► the response $A^k x(k_0)$ involves modes such as λ^k , $k \lambda^{k-1}$, $r^k \cos k\theta$, $r^k \sin k\theta$

$$\begin{array}{l} \bullet \ e^{\sigma t} \to 0 \ \text{if} \ \sigma < 0; \ e^{\lambda t} \to 0 \ \text{if} \ \lambda < 0 \\ \\ \bullet \ \lambda^k \to 0 \ \text{if} \ |\lambda| < 1; \ r^k \to 0 \ \text{if} \ |r| = \left|\sqrt{\sigma^2 + \omega^2}\right| = |\lambda| < 1 \end{array}$$

Stability of the origin for $\dot{x} = Ax$

stability	$\lambda_i(A)$
at O	
unstable	Re $\{\lambda_i\} > 0$ for some λ_i or Re $\{\lambda_i\} \leq 0$ for all λ_i 's but
	for a repeated λ_m on the imaginary axis with
	multiplicity m , nullity $(A - \lambda_m I) < m$ (Jordan form)
stable	Re $\{\lambda_i\} \leq 0$ for all λ_i 's and \forall repeated λ_m on the
i.s.L	imaginary axis with multiplicity <i>m</i> ,
	nullity $(A - \lambda_m I) = m$ (diagonal form)
asymptotically Re $\{\lambda_i\} < 0 \ \forall \lambda_i$ (A is then called Hurwitz stable)	
stable	

Example (Unstable moving mass)

$$\dot{x} = Ax, \ A = \left[egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}
ight]$$

$$\lambda_1 = \lambda_2 = 0, \ m = 2,$$
nullity $(A - \lambda_i I) =$ nullity $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 1 < m$

▶ i.e., two repeated eigenvalues but needs a generalized eigenvector ⇒ Jordan form after similarity transform

• verify by checking
$$e^{At} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$
: *t* grows unbounded

Example (Stable in the sense of Lyapunov)

$$\dot{x} = Ax, \ A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

Routh-Hurwitz criterion

the Routh Test (by E.J. Routh, in 1877): a simple algebraic procedure to determine how many roots a given polynomial

$$A(s)=a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0$$

has in the closed right-half complex plane, without the need to explicitly solve for the roots

- German mathematician Adolf Hurwitz independently proposed in 1895 to approach the problem from a matrix perspective
- popular if stability is the only concern and no details on eigenvalues (e.g., speed of response) are needed

- ► the asymptotic stability of the equilibrium point 0 for $\dot{x} = Ax$ can also be concluded based on the Routh-Hurwitz criterion
- simply apply the Routh Test to $A(s) = \det(sI A)$
- ► recap: the poles of transfer function G(s) = C (sI A)⁻¹ B + D come from det (sI A) in computing the inverse (sI A)⁻¹

The Routh Array

for
$$A(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$
, construct

$$\begin{vmatrix} s^n \\ s^{n-1} \\ s^{n-2} \\ s^{n-2} \\ s^{n-3} \end{vmatrix} \begin{vmatrix} a_n & a_{n-2} & a_{n-4} & a_{n-6} & \dots \\ a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \dots \\ q_{n-2} & q_{n-4} & q_{n-6} & \dots \\ q_{n-3} & q_{n-5} & q_{n-7} & \dots \\ \vdots & \vdots & \vdots \\ s^1 \\ s^0 \\ s^0 \end{vmatrix}$$

- first two rows contain the coefficients of A(s)
- third row constructed from the previous two rows via

The Routh Array

for $A(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0$, construct

All roots of A(s) are on the left half s-plane if and only if all elements of the first column of the Routh array are positive.

The Routh Array

Example
$$(A(s) = 2s^4 + s^3 + 3s^2 + 5s + 10)$$

 $\begin{vmatrix} s^4 \\ s^3 \\ s^2 \\ s^1 \\ s^0 \end{vmatrix} \begin{vmatrix} 2 & 3 & 10 \\ 1 & 5 & 0 \\ 3 - \frac{2 \times 5}{1} = -7 & 10 & 0 \\ 5 - \frac{1 \times 10}{-7} & 0 & 0 \\ 10 & 0 & 0 \end{vmatrix}$

two sign changes in the first column

unstable and two roots in the right half side of s-plane

special cases:

- If the 1st element in any one row of Routh's array is zero, one can replace the zero with a small number ϵ and proceed further.
- There are other possible complications, which we will not pursue further. See, e.g. "Automatic Control Systems", by Kuo, 7th ed., pp. 339-340.

Stability of the origin for x(k+1) = f(x(k), k)

stability analysis follows analogously for nonlinear time-varying discrete-time systems of the form

$$x(k+1) = f(x(k), k), x(k_0) = x_0$$

$$f(x_e,k) = x_e, \ \forall k$$

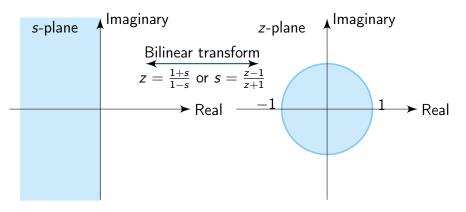
without loss of generality, 0 is assumed an equilibrium point

Stability of the origin for x(k+1) = Ax(k)

stability	$\lambda_i(A)$
at 0	
unstable	$ \lambda_i >1$ for some λ_i or $ \lambda_i \leq 1$ for all λ_i 's but for a
	repeated λ_m on the unit circle with multiplicity <i>m</i> ,
	$nullity\left(A - \lambda_m I ight) < m ext{ (Jordan form)}$
stable	$ \lambda_i \leq 1$ for all λ_i 's but for any repeated λ_m on the unit
i.s.L	circle with multiplicity m , nullity $(A - \lambda_m I) = m$
	(diagonal form)
asymptotically $ \lambda_i < 1 \ \forall \lambda_i$ (such a matrix is called Schur stable)	
stable	

Routh-Hurwitz criterion for DT LTI systems

- the stability domain $|\lambda_i| < 1$ is a unit disk
- Routh array validates stability in the left-half plane
- bilinear transformation maps the closed left half s-plane to the closed unit disk in z-plane



Routh-Hurwitz criterion for DT LTI systems

• Given $A(z) = z^n + a_1 z^{n-1} + \cdots + a_n$, procedures of Routh-Hurwitz test:

Routh-Hurwitz criterion for DT LTI systems

Example
$$(A(z) = z^3 + 0.8z^2 + 0.6z + 0.5)$$

•
$$A^*(s) = A(z)|_{z=\frac{1+s}{1-s}} (1-s)^3 = (1+s)^3 + 0.8 (1+s)^2 (1-s) + 0.6 (1+s) (1-s)^2 + 0.5 (1-s)^3 = 0.3s^3 + 3.1s^2 + 1.7s + 2.9$$

Routh array

$$\begin{array}{c|c|c} s^3 & 0.3 & 1.7 \\ s^2 & 3.1 & 2.9 \\ s & 1.7 - \frac{0.3 \times 2.9}{3.1} = 1.42 & 0 \\ s^0 & 2.9 & 0 \end{array}$$

► all elements in first column are positive ⇒ roots of A(z) are all in the unit circle