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1TB vs 1,300 filing cabinets of paper
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Inherent sampling in practice

At =

(rpm/60) X sector number
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Practical control systems

Measurable

. Unmeasurable
disturbance

disturbance
I A/ID |«
¢ Feedback Control A 0
« Feedforward Controller - utput
e State Estimation | —>» D/A » Controlled Plant
* Noise Filtering
¢ Identification/adaptation
< AD [« sensors
Computer  A/D: analog to digital converter

: works as a sampler
\ D/A: digital to analog converter
works as a data holder

Discrete time domain ; Continuous time domain
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Sampler

@ sampler: converts a time function into a discrete sequence,

(1) YK £ y(t) = y(Atk)

eg.,
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Signal holding

o Zero-order Hold (ZOH): converts a sequence into a “stair-case” time

function, e.g.,

ulK]

o u(t) = ulk| for t € [kAt, (k+ 1)At)

u(t)
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Signal holding

@ more faithful presentation with fast sampling
ulK]
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Problem definition

continuous-time system preceded by a ZOH:

u(t)

®© 6 6 o o

Zero Order Hold

>

dx/dt = Ax+ Bu

u(ty): discrete-time input

x(t): continuous-time output

x(tx): sampled discrete-time output

At: sampling time

goal: to obtain the model between u(tyx) and x(tx)

x(t)
_ x(tk)
At
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Solution

u(te) x(t)
Zero Order Hold —{ dx/dt = Ax + Bu

o starting from ty, the solution of X = Ax+ Bu at time ty,1 is

ti1
X(thrl) = eA(tk+1—tk)X(tk) +/ eA(tk+1_To) BU(To)dTo
ti
At n
tet1

—~ —
= A1 = T (1) + u(ty) / k1 — To) Byr,

ty

7fAteA"Bd( n)= fAteA”Bdn

@ noting — fAteA Bdn = fAt €7 Bdr and denoting t; as k yield

At
X[k + 1] = Agx[K] + Bqulk], Aq= e*2t, By = /O e Bdr
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Mapping of eigenvalues

At
X[k + 1] = Agx[K] + Bqulk], Aq= 2t By = /O e Bdr

o diagonalization / Jordan form: A= T-IAT
o €t has the same eigenvalues as €

o = eigenvalues of Ay = e*2t are e 2t's where )\; is an eigenvalue of A
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Example

x(t) = wx(t) +£1)lu(t)
A B
y() =[5 0]x(1)
s

discretization at a sampling time of At =

_oaar_ |1 At s ks _ATQ
Ag=¢€ —{0 1 , Bg= ; e Bdr = ; 1 dr = A

Ca=C
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Numerical example in Python

import control
import numpy

m=1

dt = 0.1

A = [[o, 1], [0, 0]]

B = [[0], [1]1]

Cc = [[1/m, 01]

D=0

G_s = control.ss(A, B, C, D)

G_z = control.c2d(G_s, dt, 'zoh')
print(G_z.4A)

# eigenvalues of continuous-time system
eigh, eigvecA = numpy.linalg.eig(A)

print (eigh)

# eigenvalues of discretized system
eighd, eigvecAd = numpy.linalg.eig(G_z.A)
print (eigAd)
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Spectral mapping theorem

o eigenvalues of Ay = AT are eMT's where ); is an eigenvalue of A

e more generally: take any X € C"*" and a polynomial function f(-)
(more generally, analytic functions)

°eg.:
X
—~—
99.8 2000 0 1

A= [ 2000 908 ] _99.8I+2000[ e }

@ then
eig (f(X)) = f(eig (X))

0 eg.:

A_[ 99.8 2000

0 1
—2000 998 ] =099.8/+ 2000[ ]

-1 0

0 1

A(A) = 99.8 -+ 2000\ { [ 1o

} } = 99.8 £ 2000/
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Spectral mapping theorem

A— 99.8 2000
~ | —2000 99.8

import numpy
A = [[99.8, 2000], [-2000, 99.8]]

eigh, eigvecA = numpy.linalg.eig(A)
print (eigh)

[99.8+2000.j 99.8-2000.3]
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