Solution of LTI State-Space Equations

Xu Chen
University of Washington

Population dynamics

prokaryotic fission
$>{ }^{\sim} 1$ hour / division with infinite resource

$$
100 \xrightarrow{1 \mathrm{hr}} 200 \xrightarrow{1 \mathrm{hr}} 400 \xrightarrow{1 \mathrm{hr}} 800 \xrightarrow{1 \mathrm{hr}} \ldots
$$

Population dynamics

Population dynamics

prokaryotic fission
$>{ }^{\sim} 1$ hour / division with infinite resource

$$
100 \xrightarrow{1 \mathrm{hr}} 200 \xrightarrow{1 \mathrm{hr}} 400 \xrightarrow{1 \mathrm{hr}} 800 \xrightarrow{1 \mathrm{hr}} \ldots
$$

$>$ after 1 day:

$$
100 \xrightarrow{\frac{1 \mathrm{hr}}{\frac{\Delta N}{N}=1}} 200 \xrightarrow{1 \mathrm{hr}} 400 \xrightarrow{1 \mathrm{hr}} \ldots \longrightarrow 100 \times 2^{24}=1.7 \mathrm{~B}!
$$

Population dynamics

"Environmental limits to population growth: Figure 1," by OpenStax College, Biology, CC BY 4.0.

The exponential function and population dynamics

Exponential Growth	Logistic Growth

$>$ more general population dynamics (w/ infinite resources)

$$
\frac{d N}{d t}=\overbrace{(\text { birth rate }- \text { death rate })}^{r} N \Rightarrow N(t)=e^{r t} N(0)
$$

- logistic growth (w/ limited resources in reality)

$$
\frac{d N}{d t}=r \frac{K-N}{K} N \Rightarrow N(t)=\frac{K N_{0} e^{r t}}{\left(K-N_{0}\right)+N_{0} e^{r t}}=\frac{K}{1+\frac{K-N_{0}}{N_{0}} e^{-r t}}
$$

The exponential function and the logistic S curve: example

The logistic S curve

$\frac{K}{1+\frac{K-N_{0}}{N_{0}} e^{-r t}}$
can also be written as
$\frac{K}{1+e^{-r\left(t-t_{0}\right)}}$
K : final value
> r : logistic growth rate
$>t_{0}$: midpoint

The logistic S curve

$\frac{K}{1+\frac{K-N_{0}}{N_{0}} e^{-r t}}$
can also be written as
$\frac{K}{1+e^{-r\left(t-t_{0}\right)}}$
K : final value
$>r$: logistic growth rate
$>t_{0}$: midpoint

The logistic S curve

$\frac{K}{1+\frac{K-N_{0}}{N_{0}} e^{-r t}}$
can also be written as
$\frac{K}{1+e^{-r\left(t-t_{0}\right)}}$

- K: final value
$>r$: logistic growth rate
$>t_{0}$: midpoint

The logistic function in deep learning

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

$>$ transforms the input variables into a probability value between 0 and 1
represents the likelihood of the dependent variable being 1 or 0

General LTI continuout-time state equation

$$
\begin{gathered}
\frac{d x}{d t}=A x+B u \\
\Sigma=\left[\begin{array}{c|c}
A_{n \times n} & B_{n \times m} \\
\hline C_{n_{y} \times n} & D_{n_{y} \times m}
\end{array}\right]
\end{gathered}
$$

$>$ to solve the vector equation $\dot{x}=A x+B u$, we start with the scalar case when $x, a, b, u \in \mathbb{R}$.

Introduction

The Solution to $\dot{x}=a x+b u$
fundamental property of exponential functions

$$
\frac{d}{d t} e^{a t}=a e^{a t}, \quad \frac{d}{d t} e^{-a t}=-a e^{-a t}
$$

$>\dot{x}(t)=a x(t)+b u(t), a \neq 0 \stackrel{\because e^{-a t} \neq 0}{\Longrightarrow} e^{-a t} \dot{x}(t)-e^{-a t} a x(t)=$ $e^{-a t} b u(t)$
> namely,

$$
\begin{array}{r}
\frac{d}{d t}\left\{e^{-a t} x(t)\right\}=e^{-a t} b u(t) \Leftrightarrow d\left\{e^{-a t} x(t)\right\}=e^{-a t} b u(t) d t \\
\Longrightarrow e^{-a t} x(t)=e^{-a t_{0}} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-a \tau} b u(\tau) d \tau
\end{array}
$$

The solution to $\dot{x}=a x+b u$

$$
e^{-a t} \times(t)=e^{-s t_{0}} \times\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-a \tau} b u(\tau) d \tau
$$

when $t_{0}=0$, we have

$$
x(t)=\underbrace{e^{a t} x(0)}_{\text {free response }}+\underbrace{\int_{0}^{t} e^{a(t-\tau)} b u(\tau) d \tau}_{\text {forced response }}
$$

About e

$>e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828 \ldots$
$>$ also $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

- Python demonstration:
import math
math.e
for ii in range(10):
print(sum(1/math.factorial(k) for k in range(ii)))
for ii in range(1,30):
$\operatorname{print}((1+1 / \mathrm{ii}) * * \mathrm{ii})$

The solution to $\dot{x}=a x+b u$

 Solution concepts of $e^{a t} x(0)$

$$
\begin{aligned}
& e=\sum_{n=0}^{\infty} \frac{1}{n!}= \\
& 2.71828 \ldots \\
& e^{-1} \approx 37 \% \\
& e^{-2} \approx 14 \% \\
& e^{-3} \approx 5 \% \\
& e^{-4} \approx 2 \%
\end{aligned}
$$

time constant $\tau \triangleq$ $\frac{1}{|a|}$ when $a<0$: after 3τ, $e^{a t} x(0)$, the transient has approximately converged

The solution to $\dot{x}=a x+b u$

Unit step response

When $a<0$ and $u(t)=1(t)$ (the step function), the solution is $x(t)=\frac{b}{|a|}\left(1-e^{a t}\right)$.

* Fundamental Theorem of Differential Equations

 addresses the question of whether a dynamical system has a unique solution or not.
Theorem

Consider $\dot{x}=f(x, t), x\left(t_{0}\right)=x_{0}$, with:

- $f(x, t)$ piecewise continuous in t (continuous except at finite points of discontinuity)
- $f(x, t)$ Lipschitz continuous in x (satisfy the cone constraint: $|f(x, t)-f(y, t)\|\leq k(t) \mid\| x-y \|$ where $k(t)$ is piecewise continuous)
then there exists a unique function of time $\phi(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ which is continuous almost everywhere and satisfies
$\downarrow \phi\left(t_{0}\right)=x_{0}$
$\dot{\phi}(t)=f(\phi(t), t), \forall t \in \mathbb{R}_{+} \backslash D$, where D is the set of discontinuity points for f as a function of t.

The solution to $n^{\text {th }}$-order LTI systems

general state-space equation

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}\right.
$$

solution

$$
x(t)=\underbrace{e^{A\left(t-t_{0}\right)} x_{0}}_{\text {free response }}+\underbrace{\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau}_{\text {forced response }}
$$

$$
y(t)=C e^{A\left(t-t_{0}\right)} x_{0}+C \int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t)
$$

- in both the free and the forced responses, computing $e^{A t}$ is key $e^{A\left(t-t_{0}\right)}$: called the transition matrix

The state transition matrix $e^{A t}$

scalar case with $a \in \mathbb{R}$: Taylor expansion gives

$$
e^{a t}=1+a t+\frac{1}{2}(a t)^{2}+\cdots+\frac{1}{n!}(a t)^{n}+\ldots
$$

the transition scalar $\Phi\left(t, t_{0}\right)=e^{a\left(t-t_{0}\right)}$ satisfies

$$
\begin{aligned}
\Phi(t, t) & =1 \\
\Phi\left(t_{3}, t_{2}\right) \Phi\left(t_{2}, t_{1}\right) & =\Phi\left(t_{3}, t_{1}\right) \\
\Phi\left(t_{2}, t_{1}\right) & =\Phi^{-1}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

(transition to itself)
(consecutive transition)
(reverse transition)

The state transition matrix $e^{A t}$

matrix case with $A \in \mathbb{R}^{n \times n}$:

$$
e^{A t}=I_{n}+A t+\frac{1}{2} A^{2} t^{2}+\cdots+\frac{1}{n!} A^{n} t^{n}+\cdots
$$

$>$ as I_{n} and A^{i} are matrices of dimension $n \times n, e^{A t}$ must $\in \mathbb{R}^{n \times n}$
$>$ the transition matrix $\Phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right)}$ satisfies

$$
\begin{aligned}
e^{A 0} & =I_{n} & \Phi(t, t) & =I_{n} \\
e^{A t_{1}} e^{A t_{2}} & =e^{A\left(t_{1}+t_{2}\right)} & \Phi\left(t_{3}, t_{2}\right) \Phi\left(t_{2}, t_{1}\right) & =\Phi\left(t_{3}, t_{1}\right) \\
e^{-A t} & =\left[e^{A t}\right]^{-1} & \Phi\left(t_{2}, t_{1}\right) & =\Phi^{-1}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

D note, however, that $e^{A t} e^{B t}=e^{(A+B) t}$ if and only if $A B=B A$ (check by using Taylor expansion)

Computing a structured $e^{A t}$ via Taylor expansion

 convenient when A is a diagonal or Jordan matrixthe case with a diagonal matrix $A=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$:
$>A^{2}=\left[\begin{array}{ccc}\lambda_{1}^{2} & 0 & 0 \\ 0 & \lambda_{2}^{2} & 0 \\ 0 & 0 & \lambda_{3}^{2}\end{array}\right], \ldots, A^{n}=\left[\begin{array}{ccc}\lambda_{1}^{n} & 0 & 0 \\ 0 & \lambda_{2}^{n} & 0 \\ 0 & 0 & \lambda_{3}^{n}\end{array}\right]$
> all matrices on the right side of

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\cdots+\frac{1}{n!} A^{n} t^{n}+\cdots
$$

are easy to compute

Computing a structured $e^{A t}$ via Taylor expansion

 convenient when A is a diagonal or Jordan matrixthe case with a diagonal matrix $A=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$:

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\cdots+\frac{1}{n!} A^{n} t^{n}+\cdots
$$

$$
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
\lambda_{1} t & 0 & 0 \\
0 & \lambda_{2} t & 0 \\
0 & 0 & \lambda_{3} t
\end{array}\right]+\left[\begin{array}{ccc}
\frac{1}{2} \lambda_{1}^{2} t^{2} & 0 & 0 \\
0 & \frac{1}{2} \lambda_{2}^{2} t^{2} & 0 \\
0 & 0 & \frac{1}{2} \lambda_{3}^{2} t^{2}
\end{array}\right]+\ldots
$$

$$
=\left[\begin{array}{c}
1+\lambda_{1} t+\frac{1}{2} \lambda_{1}^{2} t^{2}+\ldots \\
0
\end{array}\right.
$$

$$
1+\lambda_{2} t+\frac{1}{2} \lambda_{0}^{2} t_{2}^{2}+\ldots
$$

$$
\left.\begin{array}{c}
0 \\
0 \\
1+\lambda_{3} t+\frac{1}{2} \lambda_{3}^{2} t^{2}+\ldots
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right] .
$$

Computing a structured $e^{A t}$ via Taylor expansion

the case with a Jordan matrix $A=\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$:
∇ decompose $A=\underbrace{\left[\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right]}_{\lambda / 3}+\underbrace{\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]}_{N} \Rightarrow$
$e^{A t}=e^{\left(\lambda \lambda_{3} t+N t\right)}$
$>$ also, $\left(\lambda I_{3} t\right)(N t)=\lambda N t^{2}=(N t)\left(\lambda I_{3} t\right)$ and hence $e^{\left(\lambda \lambda_{3} t+N t\right)}=e^{\lambda / t} e^{N t}$
$>$ thus

$$
e^{A t}=e^{\left(\lambda I_{3} t+N t\right)}=e^{\lambda / t} e^{N t} \because e^{\lambda t t}=e^{\lambda t} I e^{\lambda t} e^{N t}
$$

Computing a structured $e^{A t}$ via Taylor expansion

$$
A=\underbrace{\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]}_{\lambda / 3}+\underbrace{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}_{N} \quad e^{A t}=e^{\lambda t} e^{N t}
$$

$>N$ is nilpotent ${ }^{1}: N^{3}=N^{4}=\cdots=0 I_{3}$, yielding

$$
e^{N t}=I_{3}+N t+\frac{1}{2} N^{2} t^{2}+\frac{1}{3!} N^{3} t^{3}+\ldots 0=\left[\begin{array}{lll}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

$>$ thus

$$
e^{A t}=\left[\begin{array}{ccc}
e^{\lambda t} & t e^{\lambda t} & \frac{t^{2}}{2} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & e^{\lambda t}
\end{array}\right]
$$

1 "nil" \sim zero; "potent" \sim taking powers.

Computing a structured $e^{A t}$ via Taylor expansion

Example (mass moving on a straight line with zero friction and no external force)

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$x(t)=e^{A t} x(0)$ where

$$
e^{A t}=I+\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] t+\frac{1}{2!} \underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} t^{2}+\ldots=\underbrace{\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]} .
$$

Computing low-order $e^{A t}$ via column solutions

an intuition of the matrix entries in $e^{A t}$: consider:

$$
\begin{gather*}
\dot{x}=A x=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] x, \quad x(0)=x_{0} \\
x(t)=e^{A t} x(0)=\left[\begin{array}{c}
\text { 1st column } \\
\overbrace{a_{1}(t)} \\
=a_{1}(t) x_{1}(0)+a_{2}(t) x_{2}(0)
\end{array} \text { 2nd column }\right]\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right] \tag{1}
\end{gather*}
$$

observation

$$
\begin{aligned}
& x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow x(t)=a_{1}(t), \\
& x(0)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow x(t)=a_{2}(t) .
\end{aligned}
$$

Computing low-order $e^{A t}$ via column solutions

$$
\dot{x}=A x=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] x, \quad x(0)=x_{0}
$$

hence, we can obtain $e^{A t}$ from:
∇ write out $\begin{aligned} & \dot{x}_{1}(t)=x_{2}(t) \\ & \dot{x}_{2}(t)=-x_{2}(t)\end{aligned} \Rightarrow \begin{aligned} & x_{1}(t)=e^{0 t} x_{1}(0)+\int_{0}^{t} e^{0(t-\tau)} x_{2}(\tau) d \tau \\ & x_{2}(t)=e^{-t} x_{2}(0)\end{aligned}$
let $x(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $\begin{aligned} & x_{1}(t) \equiv 1 \\ & x_{2}(t) \equiv 0\end{aligned}$, namely $x(t)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
let $x(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then $x_{2}(t)=e^{-t}$ and $x_{1}(t)=1-e^{-t}$, or more compactly, $x(t)=\left[\begin{array}{c}1-e^{-t} \\ e^{-t}\end{array}\right]$
$>$ using (1), write out directly $e^{A t}=\left[\begin{array}{cc}1 & 1-e^{-t} \\ 0 & e^{-t}\end{array}\right]$

Computing low-order $e^{A t}$ via column solutions

Exercise

Compute $e^{A t}$ where

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Recall: population dynamics

prokaryotic fission
$>{ }^{\sim} 1$ hour / division with infinite resource
$>$ after 1 day:
> or: $N(k+1)=2 N(k) \Rightarrow N(k)=2^{k} N(0)$

Discrete-time LTI case

discrete-time system:

$$
x(k+1)=A x(k)+B u(k), x(0)=x_{0},
$$

iteration of the state-space equation gives:

$$
\begin{aligned}
& x(k)=A^{k-k_{0}} x\left(k_{0}\right)+\left[A^{k-k_{0}-1} B, A^{k-k_{0}-2} B, \cdots, B\right]\left[\begin{array}{c}
u\left(k_{0}\right) \\
u\left(k_{0}+1\right) \\
\vdots \\
u(k-1)
\end{array}\right] \\
\Leftrightarrow & x(k)=\underbrace{A^{k-k_{0}} x\left(k_{0}\right)}_{\text {free response }}+\underbrace{\sum_{j=k_{0}}^{k-1} A^{k-1-j} B u(j)}_{\text {forced response }}
\end{aligned}
$$

Discrete-time LTI case

$$
x(k)=\underbrace{A^{k-k_{0}} x\left(k_{0}\right)}_{\text {free response }}+\underbrace{\sum_{j=k_{0}}^{k-1} A^{k-1-j} B u(j)}_{\text {forced response }}
$$

$\Phi(k, j)=A^{k-j}$: the transition matrix:

$$
\begin{aligned}
\Phi(k, k) & =1 \\
\Phi\left(k_{3}, k_{2}\right) \Phi\left(k_{2}, k_{1}\right) & =\Phi\left(k_{3}, k_{1}\right) \\
\Phi\left(k_{2}, k_{1}\right) & =\Phi^{-1}\left(k_{1}, k_{2}\right) \quad \text { if and only if } A \text { is nonsingular }
\end{aligned}
$$

The state transition matrix A^{k}

similar to the continuous-time case, when A is a diagonal or Jordan matrix, A^{k} is easy
$>$ diagonal matrix $A=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]: A^{k}=\left[\begin{array}{ccc}\lambda_{1}^{k} & 0 & 0 \\ 0 & \lambda_{2}^{k} & 0 \\ 0 & 0 & \lambda_{3}^{k}\end{array}\right]$

Computing a structured A^{k} via Taylor expansion

- Jordan canonical form

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]}_{\lambda / 3}+\underbrace{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}_{N}:
$$

$$
\begin{aligned}
A^{k} & =\left(\lambda I_{3}+N\right)^{k} \\
& =\left(\lambda I_{3}\right)^{k}+k\left(\lambda I_{3}\right)^{k-1} N+\underbrace{\binom{k}{2}}_{2 \text { combination }}\left(\lambda I_{3}\right)^{k-2} N^{2}+\underbrace{\binom{k}{3}\left(\lambda I_{3}\right)^{k-3} N^{3}+\ldots}_{N^{3}=N^{4}=\cdots=0 / 3} \\
& =\left[\begin{array}{ccc}
\lambda^{k} & 0 & 0 \\
0 & \lambda^{k} & 0 \\
0 & 0 & \lambda^{k}
\end{array}\right]+k \lambda^{k-1}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]+\frac{k(k-1)}{2} \lambda^{k-2}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\lambda^{k} & k \lambda^{k-1} & \frac{1}{2!} k(k-1) \lambda^{k-2} \\
0 & \lambda^{k} & k \lambda^{k-1} \\
0 & 0 & \lambda^{k}
\end{array}\right]
\end{aligned}
$$

Computing a structured A^{k} via Taylor expansion

Exercise

Recall that $\binom{k}{3}=\frac{1}{3!} k(k-1)(k-2)$. Show

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] \\
\Rightarrow A^{k} & =\left[\begin{array}{cccc}
\lambda^{k} & k \lambda^{k-1} & \frac{1}{2!} k(k-1) \lambda^{k-2} & \frac{1}{3!} k(k-1)(k-2) \lambda^{k-3} \\
0 & \lambda^{k} & k \lambda^{k-1} & \frac{1}{2!} k(k-1) \lambda^{k-2} \\
0 & 0 & \lambda^{k} & k \lambda^{k-1} \\
0 & 0 & 0 & \lambda^{k}
\end{array}\right]
\end{aligned}
$$

2. State-space solution formula

Continuous-time case
The solution to $\dot{x}=a x+b u$
The solution to $n^{\text {th }}$-order LTI systems
The state transition matrix $e^{A t}$
Computing $e^{A t}$ when A is diagonal or in Jordan form
Discrete-time LTI case
The state transition matrix A^{k}
Computing A^{k} when A is diagonal or in Jordan form
3. Explicit computation of the state transition matrix $e^{A t}$
4. Explicit Computation of the State Transition Matrix A^{k}
5. Transition Matrix via Inverse Transformation

Explicit computation of a general $e^{A t}$

why another method: general matrices may not be diagonal or Jordan
> approach: transform a general matrix to a diagonal or Jordan form, via similarity transformation

Computing $e^{A t}$ via similarity transformation

principle concept:

- given

$$
\dot{x}(t)=A x(t)+B u(t), x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}
$$

- find a nonsingular $T \in \mathbb{R}^{n \times n}$ such that a coordinate transformation defined by $x(t)=T x^{*}(t)$ yields

$$
\begin{aligned}
\frac{d}{d t}\left(T x^{*}(t)\right) & =A T x^{*}(t)+B u(t) \\
\frac{d}{d t} x^{*}(t)= & \underbrace{T^{-1} A T}_{\hat{\triangleq} \Lambda \text { : dizgonal or Jordan }} x^{*}(t)+\underbrace{T^{-1} B}_{B^{*}} u(t) \\
& x^{*}(0)=T^{-1} x_{0}
\end{aligned}
$$

Computing $e^{A t}$ via similarity transformation

$>$ when $u(t)=0$

$$
\dot{x}(t)=A x(t) \stackrel{x=T x^{*}}{\Longrightarrow} \frac{d}{d t} x^{*}(t)=\underbrace{T^{-1} A T}_{\triangleq \Lambda: \text { diagonal or Jordan }} x^{*}(t)
$$

- now $x^{*}(t)$ can be solved easily: e.g., if $\Lambda=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$, then

$$
x^{*}(t)=e^{\wedge t} x^{*}(0)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{*}(0) \\
x_{2}^{*}(0)
\end{array}\right]=\left[\begin{array}{c}
e^{\lambda_{1} t} x_{1}^{*}(0) \\
e^{\lambda_{2} t} x_{2}^{*}(0)
\end{array}\right] .
$$

- $x(t)=T x^{*}(t)$ then yields

$$
x(t)=T e^{\wedge t} x^{*}(0)=T e^{\wedge t} T^{-1} x_{0}
$$

> on the other hand, $x(t)=e^{A t} x_{0} \Rightarrow$

$$
e^{A t}=T e^{\wedge t} T^{-1}
$$

Similarity transformation

- existence of solutions: T comes from the theory of eigenvalues and eigenvectors in linear algebra
- if A and $B \in \mathbb{C}^{n \times n}$ are similar: $A=T B T^{-1}, T \in \mathbb{C}^{n \times n}$, then
- their A^{n} and B^{n} are also similar: e.g.,

$$
A^{2}=T B T^{-1} T B T^{-1}=T B^{2} T^{-1}
$$

- their exponential matrices are also similar

$$
e^{A t}=T e^{B t} T^{-1}
$$

as

$$
\begin{aligned}
T e^{B t} T^{-1} & =T\left(I_{n}+B t+\frac{1}{2} B^{2} t^{2}+\ldots\right) T^{-1} \\
& =T I_{n} T^{-1}+T B t T^{-1}+\frac{1}{2} T B^{2} t^{2} T^{-1}+\cdots \\
& =I+A t+\frac{1}{2} A^{2} t^{2}+\cdots=e^{A t}
\end{aligned}
$$

Similarity transformation

- for $A \in \mathbb{R}^{n \times n}$, an eigenvalue $\lambda \in \mathcal{C}$ of A is the solution to the characteristic equation

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

- the corresponding eigenvectors are the nonzero solutions to

$$
\begin{equation*}
A t=\lambda t \Leftrightarrow(A-\lambda /) t=0 \tag{4}
\end{equation*}
$$

Similarity transformation

The case with distinct eigenvalues (diagonalization)
recall: when $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues such that

$$
\begin{gathered}
A x_{1}=\lambda_{1} x_{1} \\
\vdots \\
A x_{n}=\lambda_{n} x_{n}
\end{gathered}
$$

or equivalently

$$
A \underbrace{A\left[x_{1}, x_{2}, \ldots, x_{n}\right]}_{\triangleq T}=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \underbrace{\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]}_{\wedge}
$$

$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is square and invertible. Hence

$$
A=T \wedge T^{-1}, \Lambda=T^{-1} A T
$$

Example (Mechanical system with strong damping)

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- find eigenvalues: $\operatorname{det}(A-\lambda /)=\operatorname{det}\left[\begin{array}{cc}-\lambda & 1 \\ -2 & -\lambda-3\end{array}\right]=$

$$
(\lambda+2)(\lambda+1) \Rightarrow \lambda_{1}=-2, \lambda_{2}=-1
$$

- find associate eigenvectors:

$$
\begin{aligned}
& >\lambda_{1}=-2:\left(A-\lambda_{1} /\right) t_{1}=0 \Rightarrow t_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& >\lambda_{1}=-1:\left(A-\lambda_{2} /\right) t_{2}=0 \Rightarrow t_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

- define T and $\Lambda: T=\left[\begin{array}{ll}t_{1} & t_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]$,

Example (Mechanical system with strong damping)

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$\boldsymbol{\nabla}=\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right], \Lambda=\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right]$

- compute $T^{-1}=\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]^{-1}=\left[\begin{array}{cc}-1 & -1 \\ 2 & 1\end{array}\right]$
- compute $e^{A t}=T e^{\wedge t} T^{-1}=T\left[\begin{array}{cc}e^{-2 t} & 0 \\ 0 & e^{-1 t}\end{array}\right] T^{-1}=$

$$
\left[\begin{array}{cc}
-e^{-2 t}+2 e^{-t} & -e^{-2 t}+e^{-t} \\
2 e^{-2 t}-2 e^{-t} & 2 e^{-2 t}-e^{-t}
\end{array}\right]
$$

Similarity transform: diagonalization

Physical interpretations

- diagonalized system:

$$
x^{*}(t)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{*}(0) \\
x_{2}^{*}(0)
\end{array}\right]=\left[\begin{array}{c}
e^{\lambda_{1} t} x_{1}^{*}(0) \\
e^{\lambda_{2} t} x_{2}^{*}(0)
\end{array}\right]
$$

$x(t)=T x^{*}(t)=e^{\lambda_{1} t} x_{1}^{*}(0) t_{1}+e^{\lambda_{2} t} x_{2}^{*}(0) t_{2}$ then decomposes the state trajectory into two modes parallel to the two eigenvectors.

Similarity transform: diagonalization

Physical interpretations

- if $x(0)$ is aligned with one eigenvector, say, t_{1}, then $x_{2}^{*}(0)=0$ and $x(t)=e^{\lambda_{1} t} x_{1}^{*}(0) t_{1}+e^{\lambda_{2} t} x_{2}^{*}(0) t_{2}$ dictates that $x(t)$ will stay in the direction of t_{1}
$>$ i.e., if the state initiates along the direction of one eigenvector, then the free response will stay in that direction without "making turns"
$>$ if $\lambda_{1}<0$, then $x(t)$ will move towards the origin of the state space; if $\lambda_{1}=0, x(t)$ will stay at the initial point; and if positive, $x(t)$ will move away from the origin along t_{1}
- furthermore, the magnitude of λ_{1} determines the speed of response

Similarity transform: diagonalization

Physical interpretations: example

Similarity transformation

The case with complex eigenvalues

consider the undamped spring-mass system

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \operatorname{det}(A-\lambda I)=\lambda^{2}+1=0 \Rightarrow \lambda_{1,2,}= \pm j
$$

the eigenvectors are

$$
\begin{gathered}
\lambda_{1}=j:(A-j l) t_{1}=0 \Rightarrow t_{1}=\left[\begin{array}{l}
1 \\
j
\end{array}\right] \\
\lambda_{2}=-j:(A+j l) t_{2}=0 \Rightarrow t_{2}=\left[\begin{array}{c}
1 \\
-j
\end{array}\right] \quad\left(\text { complex conjugate of } t_{1}\right) .
\end{gathered}
$$

hence

$$
T=\left[\begin{array}{cc}
1 & 1 \\
j & -j
\end{array}\right], T^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -j \\
1 & j
\end{array}\right]
$$

Similarity transformation

The case with complex eigenvalues

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$>\lambda_{1,2,}= \pm j$
$>T=\left[\begin{array}{cc}1 & 1 \\ j & -j\end{array}\right], T^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & -j \\ 1 & j\end{array}\right]$
$>$ we have

$$
e^{A t}=T e^{\wedge t} T^{-1}=T\left[\begin{array}{cc}
e^{j t} & 0 \\
0 & e^{-j t}
\end{array}\right] T^{-1}=\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

Similarity transformation

The case with complex eigenvalues

for a general $A \in \mathbb{R}^{2 \times 2}$ with complex eigenvalues $\sigma \pm j \omega$, by using $T=\left[t_{R}, t_{l}\right]$, where t_{R} and t_{l} are the real and the imaginary parts of t_{1}, an eigenvector associated with $\lambda_{1}=\sigma+j \omega, x=T x^{*}$ transforms $\dot{x}=A x$ to

$$
\dot{x}^{*}(t)=\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right] x^{*}(t)
$$

and

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors
consider $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$: two repeated eigenvalues $\lambda(A)=1$, and

$$
(A-\lambda /) t_{1}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] t_{1}=0 \Rightarrow t_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$>$ No other linearly independent eigenvectors exist. What next?
$\rightarrow A$ is already very similar to the Jordan form. Try instead

$$
A\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]=\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]
$$

which requires $A t_{2}=t_{1}+\lambda t_{2}$, i.e.,

$$
(A-\lambda I) t_{2}=t_{1} \Leftrightarrow\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] t_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow t_{2}=\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]
$$

t_{2} is linearly independent from $t_{1} \Rightarrow t_{1}$ and t_{2} span \mathbb{R}^{2}. (t_{2} is called a generalized eigenvector.)

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors
for general 3×3 matrices with $\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{m}\right)^{3}$, i.e., $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{m}$, we look for T such that

$$
A=T J T^{-1}
$$

where J has three canonical forms:

$$
\begin{aligned}
& \text { i), }\left[\begin{array}{ccc}
\lambda_{m} & 0 & 0 \\
0 & \lambda_{m} & 0 \\
0 & 0 & \lambda_{m}
\end{array}\right] \text {, iif), }\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 1 \\
0 & 0 & \lambda_{m}
\end{array}\right] \\
& \text { ii), }\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 0 \\
0 & 0 & \lambda_{m}
\end{array}\right] \text { or }\left[\begin{array}{ccc}
\lambda_{m} & 0 & 0 \\
0 & \lambda_{m} & 1 \\
0 & 0 & \lambda_{m}
\end{array}\right]
\end{aligned}
$$

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

$$
\text { i), } A=T J T^{-1}, \quad J=\left[\begin{array}{ccc}
\lambda_{m} & 0 & 0 \\
0 & \lambda_{m} & 0 \\
0 & 0 & \lambda_{m}
\end{array}\right]
$$

this happens
$>$ when A has three linearly independent eigenvectors, i.e., $\left(A-\lambda_{m} /\right) t=0$ yields t_{1}, t_{2}, and t_{3} that span \mathbb{R}^{3}.
$>$ mathematically: when nullity $\left(A-\lambda_{m} I\right)=3$, namely, $\operatorname{rank}\left(A-\lambda_{m} I\right)=3-\operatorname{nullity}\left(A-\lambda_{m} I\right)=0$.

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

$$
\text { ii), } A=T J T^{-1}, J=\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 0 \\
0 & 0 & \lambda_{m}
\end{array}\right] \text { or }\left[\begin{array}{ccc}
\lambda_{m} & 0 & 0 \\
0 & \lambda_{m} & 1 \\
0 & 0 & \lambda_{m}
\end{array}\right]
$$

> this happens when $\left(A-\lambda_{m} I\right) t=0$ yields two linearly independent solutions, i.e., when nullity $\left(A-\lambda_{m} I\right)=2$

- we then have, e.g.,

$$
\begin{align*}
& \text { then have, e.g., } \\
& \qquad A\left[t_{1}, t_{2}, t_{3}\right]=\left[t_{1}, t_{2}, t_{3}\right]\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 0 \\
0 & 0 & \lambda_{m}
\end{array}\right] \tag{5}\\
& \Leftrightarrow\left[\lambda_{m} t_{1}, t_{1}+\lambda_{m} t_{2}, \lambda_{m} t_{3}\right]=\left[A t_{1}, A t_{2}, A t_{3}\right]
\end{align*}
$$

t_{1} and t_{3} are the directly computed eigenvectors.
$>$ For t_{2}, the second column of (5) gives

$$
\left(A-\lambda_{m} I\right) t_{2}=t_{1}
$$

Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

$$
\text { iii), } A=T J T^{-1}, J=\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 1 \\
0 & 0 & \lambda_{m}
\end{array}\right]
$$

- this is for the case when $\left(A-\lambda_{m} I\right) t=0$ yields only one linearly independent solution, i.e., when nullity $\left(A-\lambda_{m} I\right)=1$
- We then have

$$
A\left[t_{1}, t_{2}, t_{3}\right]=\left[t_{1}, t_{2}, t_{3}\right]\left[\begin{array}{ccc}
\lambda_{m} & 1 & 0 \\
0 & \lambda_{m} & 1 \\
0 & 0 & \lambda_{m}
\end{array}\right]
$$

$$
\Leftrightarrow\left[\lambda_{m} t_{1}, t_{1}+\lambda_{m} t_{2}, t_{2}+\lambda_{m} t_{3}\right]=\left[A t_{1}, A t_{2}, A t_{3}\right]
$$

yielding $\left(A-\lambda_{m} I\right) t_{1}=0$

$$
\begin{aligned}
& \left(A-\lambda_{m} I\right) t_{2}=t_{1},\left(t_{2}: \text { generalized eigenvector }\right) \\
& \left(A-\lambda_{m} I\right) t_{3}=t_{2},\left(t_{3}: \text { generalized eigenvector }\right)
\end{aligned}
$$

Example
$A=\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right], \operatorname{det}(A-\lambda I)=\lambda^{2} \Rightarrow \lambda_{1}=\lambda_{2}=0, J=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$

- two repeated eigenvalues with $\operatorname{rank}(A-0 I)=1 \Rightarrow$ only one linearly independent eigenvector: $(A-0 I) t_{1}=0 \Rightarrow t_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$>$ generalized eigenvector: $(A-0 /) t_{2}=t_{1} \Rightarrow t_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- coordinate transform matrix:

$$
\begin{aligned}
& T=\left[t_{1}, t_{2}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], T^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \\
& e^{A t}=T e^{J t} T^{-1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{0 t} & t e^{0 t} \\
0 & e^{0 t}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1-t & t \\
-t & 1+t
\end{array}\right]
\end{aligned}
$$

Example
$A=\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right], \operatorname{det}(A-\lambda I)=\lambda^{2} \Rightarrow \lambda_{1}=\lambda_{2}=0$.
observation:

- $\lambda_{1}=0, t_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ implies that if $x_{1}(0)=x_{2}(0)$ then the response is characterized by $e^{0 t}=1$
\downarrow i.e., $x_{1}(t)=x_{1}(0)=x_{2}(0)=x_{2}(t)$. This makes sense because $\dot{x}_{1}=-x_{1}+x_{2}$ from the state equation.

Example (Multiple eigenvectors)
Obtain the eigenvectors of

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right] \quad\left(\lambda_{1}=5, \lambda_{2}=\lambda_{3}=-3\right) .
$$

Generalized eigenvectors

Physical interpretation.

when $\dot{x}=A x, A=T J T^{-1}$ with $J=\left[\begin{array}{ccc}\lambda_{m} & 1 & 0 \\ 0 & \lambda_{m} & 0 \\ 0 & 0 & \lambda_{m}\end{array}\right]$, we have

$$
\begin{aligned}
x(t) & =e^{A t} x(0)=T\left[\begin{array}{ccc}
e^{\lambda_{m} t} & t e^{\lambda_{m} t} & 0 \\
0 & e^{\lambda_{m} t} & 0 \\
0 & 0 & e^{\lambda_{m} t}
\end{array}\right] T^{-1} x(0) \\
& =T\left[\begin{array}{ccc}
e^{\lambda_{m} t} & t e^{\lambda_{m} t} & 0 \\
0 & e^{\lambda_{m} t} & 0 \\
0 & 0 & e^{\lambda_{m} t}
\end{array}\right] T^{-1} T^{l} x^{*}(0)
\end{aligned}
$$

$>$ if the initial condition is in the direction of t_{1}, i.e., $x^{*}(0)=\left[x_{1}^{*}(0), 0,0\right]^{T}$ and $x_{1}^{*}(0) \neq 0$, the above equation yields $x(t)=x_{1}^{*}(0) t_{1} e^{\lambda_{m} t}$

Generalized eigenvectors

Physical interpretation Cont'd.

when $\dot{x}=A x, A=T J T^{-1}$ with $J=\left[\begin{array}{ccc}\lambda_{m} & 1 & 0 \\ 0 & \lambda_{m} & 0 \\ 0 & 0 & \lambda_{m}\end{array}\right]$, we have

$$
\begin{aligned}
x(t) & =e^{A t} x(0)=T\left[\begin{array}{ccc}
e^{\lambda_{m} t} & t e^{\lambda_{m} t} & 0 \\
0 & e^{\lambda_{m} t} & 0 \\
0 & 0 & e^{\lambda_{m} t}
\end{array}\right] T^{-1} x(0) \\
& =T\left[\begin{array}{ccc}
e^{\lambda_{m} t} & t e^{\lambda_{m} t} & 0 \\
0 & e^{\lambda_{m} t} & 0 \\
0 & 0 & e^{\lambda_{m} t}
\end{array}\right] T^{-1} T^{l} x^{*}(0)
\end{aligned}
$$

$>$ if $x(0)$ starts in the direction of t_{2}, i.e., $x^{*}(0)=\left[0, x_{2}^{*}(0), 0\right]^{T}$, then $x(t)=x_{2}^{*}(0)\left(t_{1} t e^{\lambda_{m} t}+t_{2} e^{\lambda_{m} t}\right)$. In this case, the response does not remain in the direction of t_{2} but is confined in the subspace spanned by t_{1} and t_{2}

Example
Obtain eigenvalues of J and $e^{J t}$ by inspection:

$$
J=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
0 & -1 & -2 & 0 & 0 \\
0 & 0 & 0 & -3 & 1 \\
0 & 0 & 0 & 0 & -3
\end{array}\right] .
$$

Explicit computation of A^{k}

everything in getting the similarity transform applies to the DT case:

$A^{k}=T \Lambda^{k} T^{-1}$ or $A^{k}=T J^{k} T^{-1}$.	
J	J^{k}
$\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$	$\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]$
$\left[\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$	$\left[\begin{array}{ccc}\lambda^{k} & k \lambda^{k-1} & \frac{1}{2!} k(k-1) \lambda^{k-2} \\ 0 & \lambda^{k} & k \lambda^{k-1} \\ 0 & 0 & \lambda^{k}\end{array}\right]$
$\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$	$\left[\begin{array}{ccc}\lambda^{k} & k \lambda^{k-1} & 0 \\ 0 & \lambda^{k} & 0 \\ 0 & 0 & \lambda_{3}^{k}\end{array}\right]$
$\left[\begin{array}{cc}\sigma & \omega \\ -\omega & \sigma\end{array}\right]$	$\begin{gathered} r^{k}\left[\begin{array}{cc} \cos k \theta & \sin k \theta \\ -\sin k \theta & \cos k \theta \end{array}\right] \\ r=\sqrt{\sigma^{2}+\omega^{2}} \\ \theta=\tan ^{-1} \frac{\omega}{\sigma} \\ \hline \end{gathered}$

Example

Write down J^{k} for $J=\left[\begin{array}{cccc}-1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1\end{array}\right]$ and
$J=\left[\begin{array}{ccccc}-10 & 1 & 0 & 0 & 0 \\ 0 & -10 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -100 & 1 \\ 0 & 0 & 0 & -1 & -100\end{array}\right]$.
2. State-space solution formula

Continuous-time case
The solution to $\dot{x}=a x+b u$
The solution to $n^{\text {th }}$-order LTI systems
The state transition matrix $e^{A t}$
Computing $e^{A t}$ when A is diagonal or in Jordan form
Discrete-time LTI case
The state transition matrix A^{k}
Computing A^{k} when A is diagonal or in Jordan form
3. Explicit computation of the state transition matrix $e^{A t}$
4. Explicit Computation of the State Transition Matrix A^{k}
5. Transition Matrix via Inverse Transformation

Transition matrix via inverse transformation

Continuous-time system
state eq.

$$
\dot{x}(t)=A x(t)+B u(t), x(0)=x_{0}
$$

solution

$$
x(t)=\underbrace{e^{A t} x(0)}_{\text {free response }}+\underbrace{\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau}_{\text {forced response }}
$$ transition matrix

On the other hand, from Laplace transform:

$$
\dot{x}(t)=A x(t)+B u(t) \Rightarrow X(s)=\underbrace{(s l-A)^{-1} x(0)}_{\text {free response }}+\underbrace{(s l-A)^{-1} B U(s)}_{\text {forced response }}
$$

Comparing $x(t)$ and $X(s)$ gives

$$
\begin{equation*}
e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\} \tag{6}
\end{equation*}
$$

Example

Example

$$
A=\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right]
$$

$$
\begin{aligned}
e^{A t} & =\mathcal{L}^{-1}\left[\begin{array}{cc}
s-\sigma & -\omega \\
\omega & s-\sigma
\end{array}\right]^{-1} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{(s-\sigma)^{2}+\omega^{2}}\left[\begin{array}{cc}
s-\sigma & \omega \\
-\omega & s-\sigma
\end{array}\right]\right\} \\
& =e^{\sigma t}\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]
\end{aligned}
$$

Transition matrix via inverse transformation (DT

 case)

On the other hand, from Z transform:

$$
X(z)=(z I-A)^{-1} z x(0)+(z I-A)^{-1} B U(s)
$$

Hence

$$
\begin{equation*}
A^{k}=\mathcal{Z}^{-1}\left\{(z I-A)^{-1} z\right\} \tag{7}
\end{equation*}
$$

Example

Example

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right] \\
& \begin{aligned}
A^{k}= & \mathcal{Z}^{-1}\left\{z\left[\begin{array}{cc}
z-\sigma & -\omega \\
\omega & z-\sigma
\end{array}\right]^{-1}\right\} \\
= & \mathcal{Z}^{-1}\left\{\frac{z}{(z-\sigma)^{2}+\omega^{2}}\left[\begin{array}{cc}
z-\sigma & \omega \\
-\omega & z-\sigma
\end{array}\right]\right\} \\
= & \mathcal{Z}^{-1}\left\{\frac{z}{z^{2}-2 r \cos \theta z+r^{2}}\left[\begin{array}{cc}
z-r \cos \theta & r \sin \theta \\
-r \sin \theta & z-r \cos \theta
\end{array}\right]\right\} \\
& , r=\sqrt{\sigma^{2}+\omega^{2}, \theta=\tan ^{-1} \frac{\omega}{\sigma}} \\
= & r^{k}\left[\begin{array}{cc}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right]
\end{aligned} .
\end{aligned}
$$

Example

Consider $A=\left[\begin{array}{ll}0.7 & 0.3 \\ 0.1 & 0.5\end{array}\right]$. We have

$$
\begin{aligned}
& (z l-A)^{-1} z \\
= & {\left[\begin{array}{ll}
\frac{z(z-0.5)}{(z-0.8)(z-0.4)} & \frac{0.3 z}{(z-0.8)(z-0.4)} \\
\frac{(z-0.12 z}{(z-0.8)(z-0.4)} & \frac{z(z-0.7)}{(z-0.8)(z-0.4)}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
\frac{0.75 z}{z-0.8}+\frac{0.25 z}{z-0.4} & \frac{0.75 z}{z-0.8}-\frac{0.75 z}{z-0.4} \\
\frac{0.537}{z-0.8}-\frac{0.255 z}{z-0.4} & \frac{0.25 z}{z-0.8}+\frac{0.75 z}{z-0.4}
\end{array}\right] } \\
\Rightarrow A^{k}= & {\left[\begin{array}{ll}
0.75(0.8)^{k}+0.25(0.4)^{k} & 0.75(0.8)^{k}-0.75(0.4)^{k} \\
0.25(0.8)^{k}-0.25(0.4)^{k} & 0.25(0.8)^{k}+0.75(0.4)^{k}
\end{array}\right] }
\end{aligned}
$$

