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1 Solution of Time-Invariant State-Space Equations

1.1 Continuous-Time State-Space Solutions
1.1.1 The Solution to ẋ = ax+ bu

To solve the vector equation ẋ = Ax + Bu, we start with the scalar case when x, a, b, u ∈ R. The solution can be
easily derived using one fundamental property of exponential functions, that

d

dt
eat = aeat,

and
d

dt
e−at = −ae−at.

Consider the ODE
ẋ(t) = ax(t) + bu(t), a ̸= 0.

Since e−at ̸= 0, the above is equivalent to

e−atẋ (t)− e−atax (t) = e−atbu (t) ,

namely,

d

dt

{
e−atx (t)

}
= e−atbu (t) ,

⇔ d
{
e−atx (t)

}
= e−atbu (t) dt.

Integrating both sides from t0 to t1 gives

e−at1x (t1) = e−at0x (t0) +

∫ t1

t0

e−atbu (t) dt.

It does not matter whether we use t or τ in the integration
∫ t1
t0

e−atbu (t) dt. Hence we can change notations and
get

e−atx (t) = e−at0x (t0) +

∫ t

t0

e−aτ bu (τ) dτ,

⇔ x (t) = ea(t−to)x (t0) +

∫ t

t0

ea(t−τ)bu (τ) dτ.

Taking t0 = 0 gives

x (t) = eatx (0)︸ ︷︷ ︸
free response

+

∫ t

0

ea(t−τ)bu (τ) dτ︸ ︷︷ ︸
forced response

(1)

where the free response is the part of the solution due only to initial conditions when no input is applied, and the
forced response is the part due to the input alone.

Solution Concepts.

Time Constant. When a < 0, eat is a decaying function. For the free response eatx (0), the exponential
function satisfies e−1 ≈ 37%, e−2 ≈ 14%, e−3 ≈ 5%, and e−4 ≈ 2%. The time constant is defined as

T =
1

|a| .

After three time constants, the free response reduces to 5% of its initial value. Roughly, we say the free response
has died down.

Graphically, the exponential function looks like:
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Unit Step Response. When a < 0 and u(t) = 1(t) (the step function), the solution is

x(t) =
b

|a| (1− eat).
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1.1.2 * Fundamental Theorem of Differential Equations

The following theorem addresses the question of whether a dynamical system has a unique solution or not.

Theorem 1. Consider ẋ = f (x, t), x (t0) = x0, with:

• f (x, t) piecewise continuous in t

• f (x, t) Lipschitz continuous in x

then there exists a unique function of time ϕ (·) : R+ → Rn which is continuous almost everywhere and satisfies

• ϕ (t0) = x0

• ϕ̇ (t) = f (ϕ (t) , t), ∀t ∈ R+\D , where D is the set of discontinuity points for f as a function of t.

Remark 1. Piecewise continuous functions are continuous except at finite points of discontinuity.

• example 1: f (t) = |t|
• example 2:

f (x, t) =

{
A1x, t ≤ t1

A2x, t > t1

2
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Lipschitz continuous functions are those that satisfy the cone constraint:

∥f (x, t)− f (y, t) ∥ ≤ k (t) ∥x− y∥

where k (t) is piecewise continuous.

• example: f (x) = Ax+B

• a graphical representation of a Lipschitz function is that it must stay within a cone in the space of (x, f (x))

• a function is Lipschitz continuous if it is continuously differentiable with its derivative bounded everywhere.
This is a sufficient condition. Functions can be Lipschitz continuous but not differentiable: e.g., the saturation
function and f (x) = |x|.

• A continuous function is not necessarily Lipschitz continuous at all: e.g., a function whose derivative at x = 0
is infinity.

1.1.3 The Solution to nth-order LTI System

Consider the general state-space equation

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

x(t0) = x0 ∈ Rn, A ∈ Rn×n

Only the first equation here is a differential equation. Once we solve this equation for x(t), we can find y(t) very
easily using the second equation. Also, f (x, t) = Ax + Bu satisfies the conditions in Fundamental Theorem for
Differential Equations. A unique solution thus exists. The solution of the state-space equations is given in closed
form by

x(t) = eA(t−t0)x0︸ ︷︷ ︸
free response

+

∫ t

t0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
forced response

(2)

Derivation of the general state-space solution. Since e−At ̸= 0, ẋ(t) = Ax(t) + Bu(t) is equivalent
to

e−Atẋ (t)− e−AtAx (t) = e−AtBu (t)

namely

d

dt

(
e−Atx (t)

)
= e−AtBu (t)

⇔ d
(
e−Atx (t)

)
= e−AtBu (t) dt

Integrating both sides from t0 to t1 gives

e−At1x (t1) = e−At0x (t0) +

∫ t1

t0

e−AtBu (t) dt

Changing notations from t to τ in the integral yields

e−Atx (t) = e−At0x (t0) +

∫ t

t0

e−AτBu (τ) dτ

⇔ x (t) = eA(t−to)x (t0) +

∫ t

t0

eA(t−τ)Bu (τ) dτ

In both the free and the forced responses, computing the matrix eAt is key. eA(t−t0) is called the transition
matrix, and can be computed using a few handy results in linear algebra.
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1.1.4 The State Transition Matrix eAt

For the scalar case with a ∈ R, Tylor expansion gives

eat = 1 + at+
1

2
(at)2 + · · ·+ 1

n!
(at)n + . . . (3)

The transition scalar Φ(t, t0) = ea(t−t0) satisfies

Φ(t, t) = 1 (transition to itself)
Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1) (consecutive transition)

Φ(t2, t1) = Φ−1(t1, t2) (reverse transition)

For the matrix case with A ∈ Rn×n

eAt = I +At+
1

2
A2t2 + · · ·+ 1

n!
Antn + . . . (4)

As I and Ai are matrices of dimension n× n, we confirm that eAt ∈ Rn×n.
The state transition matrix Φ(t, t0) = eA(t−t0) satisfies

eA0 = In

eAt1eAt2 = eA(t1+t2)

e−At =
[
eAt

]−1
.

Similar to the scalar case, it can be shown that

Φ(t, t) = I

Φ(t3, t2)Φ(t2, t1) = Φ(t3, t1)

Φ(t2, t1) = Φ−1(t1, t2).

Note, however, that eAteBt = e(A+B)t if and only if AB = BA. (Check by using Tylor expansion.)
When A is a diagonal or Jordan matrix, the Tylor expansion formula readily generates eAt:

Diagonal matrix A =

 λ1 0 0
0 λ2 0
0 0 λ3

 . In this case An =

 λn
1 0 0
0 λn

2 0
0 0 λn

3

 is also diagonal and hence

eAt = I +At+
1

2
A2t2 + · · ·+ 1

n!
Antn + . . . (5)

=

 1 0 0
0 1 0
0 0 1

+

 λ1t 0 0
0 λ2t 0
0 0 λ3t

+

 1
2λ

2
1t

2 0 0
0 1

2λ
2
2t

2 0
0 0 1

2λ
2
3t

2

+ . . . (6)

=

 1 + λ1t+
1
2λ

2
1t

2 + . . . 0 0
0 1 + λ2t+

1
2λ

2
2t

2 + . . . 0
0 0 1 + λ3t+

1
2λ

2
3t

2 + . . .

 (7)

=

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

. (8)

Jordan canonical form A =

 λ 1 0
0 λ 1
0 0 λ

. Decompose

A =

 λ 0 0
0 λ 0
0 0 λ


︸ ︷︷ ︸

λI3

+

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

N

.
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Then
eAt = e(λI3t+Nt).

As (λIt) (Nt) = λNt2 = (Nt) (λIt), we have eAt = eλIteNt = eλteNt. Also, N has the special property of
N3 = N4 = · · · = 0I3, yielding

eNt = I +Nt+
1

2
N2t2 =

 1 t t2

2
0 1 t
0 0 1

 .

Thus

eAt =

 eλt teλt t2

2 e
λt

0 eλt teλt

0 0 eλt

. (9)

Remark 2 (Nilpotent matrices). The matrix

N =

 0 1 0
0 0 1
0 0 0


is a nilpotent matrix that equals to zero when raised to a positive integral power. (“nil” ∼ zero; “potent” ∼ taking
powers.) When taking powers of N , the off-diagonal 1 elements march to the top right corner and finally vanish.

Example. Consider a mass moving on a straight line with zero friction and no external force. Let x1 and x2 be
be the position and the velocity of the mass, respectively. The state-space description of the system is

d

dt

[
x1

x2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
.

Then x(t) = eAtx(0) and

eAt = I +

[
0 1
0 0

]
t+

1

2!

[
0 1
0 0

] [
0 1
0 0

]
︸ ︷︷ ︸

=

 0 0
0 0


t2 + . . .=

[
1 t
0 1

]
.

Columns of the state-transition matrix. We discuss an intuition of the matrix entries in the eAt matrix.
Consider the system equation

ẋ = Ax =

[
0 1
0 −1

]
x, x(0) = x0,

with the solution

x(t) = eAtx(0) =

 | |
a1(t) a2(t)
| |

[
x1(0)
x2(0)

]
= a1(t)x1(0) + a2(t)x2(0), (10)

where a1(t) and a2(t) are columns of eAt. They satisfy

x(0) =

[
1
0

]
⇒ x(t) = a1(t),

x(0) =

[
0
1

]
⇒ x(t) = a2(t).

Hence, we can obtain eAt from the following, without using explicitly the Tylor expansion,

1. write out
ẋ1(t) =x2(t)

ẋ2(t) =− x2(t)
⇒ x1(t) =e0tx1(0) +

∫ t

0

e0(t−τ)x2(τ)dτ = e0tx1(0) +

∫ t

0

e−τx2(0)dτ

x2(t) =e−tx2(0)

5
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2. let x(0) =

[
1
0

]
, then

x1(t) ≡ 1

x2(t) ≡ 0
, namely x(t) =

[
1
0

]

3. let x(0) =

[
0
1

]
, then x2(t) = e−t and x1(t) = 1− e−t, or more compactly, x(t) =

[
1− e−t

e−t

]
4. using the property of (10), write out directly

eAt =

[
1 1− e−t

0 e−t

]

Exercise. Use the above method to compute eAt where

A =

 λ 1 0
0 λ 1
0 0 λ

 .

1.2 Discrete-Time LTI State-Space Solutions
For the discrete-time system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

iteration of the state-space equation gives

x (k + 1) = Ax (k) +Bu (k) (11)

⇒x (k) = Ak−k0x (ko) +
[
Ak−k0−1B Ak−k0−2B · · · B

]


u (k0)
u (k0 + 1)

...
u (k − 1)

 (12)

⇔ x (k) = Ak−k0x (ko)︸ ︷︷ ︸
free response

+

k−1∑
j=k0

Ak−1−jBu (j)︸ ︷︷ ︸
forced response

(13)

where the transition matrix is defined by Φ(k, j) = Ak−j and satisfies

Φ(k, k) = 1

Φ(k3, k2)Φ(k2, k1) = Φ(k3, k1) k3 ≥ k2 ≥ k1

Φ(k2, k1) = Φ−1(t1, t2) if and only if A is nonsingular

1.2.1 The State Transition Matrix Ak

Similar to the continuous-time case, when A is a diagonal or Jordan matrix, the Tylor expansion formula readily
generates Ak. We have

• Diagonal matrix A =

 λ1 0 0
0 λ2 0
0 0 λ3

: Ak =

 λk
1 0 0
0 λk

2 0
0 0 λk

3



• Jordan canonical form A =

 λ 1 0
0 λ 1
0 0 λ

 =

 λ 0 0
0 λ 0
0 0 λ


︸ ︷︷ ︸

λI3

+

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

N

: With the nilpotent N and the

6
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commutative property (λI3)N = N (λI3), we have

Ak = (λI3 +N)k = (λI3)
k
+ k (λI3)

k−1
N +

(
k
2

)
︸ ︷︷ ︸

2 combination

(λI3)
k−2

N2 +

(
k
3

)
(λI3)

k−3
N3 + . . .︸ ︷︷ ︸

N3=N4=···=0I3

=

 λk 0 0
0 λk 0
0 0 λk

+ kλk−1

 0 1 0
0 0 1
0 0 0

+
k(k − 1)

2
λk−2

 0 0 1
0 0 0
0 0 0


=

 λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk


Exercise. Show that

A =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 ⇒ Ak =


λk kλk−1 1

2!k (k − 1)λk−2 1
3!k (k − 1) (k − 2)λk−3

0 λk kλk−1 1
2!k (k − 1)λk−2

0 0 λk kλk−1

0 0 0 λk


1.3 Explicit Computation of the State Transition Matrix eAt

General matrices may have structures other than the diagonal and Jordan canonical forms. However, via similar
transformation, we can readily transform a general matrix to a diagonal or Jordan form under a different choice of
state vectors.

Principle Concept.

1. Given
ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 ∈ Rn, A ∈ Rn×n

we will find a nonsingular matrix T ∈ Rn×n such that a coordinate transformation defined by x(t) = Tx∗(t)
yields

d

dt
(Tx∗(t)) = ATx∗(t) +Bu(t)

d

dt
x∗(t) = T−1AT︸ ︷︷ ︸

≜Λ

x∗(t) + T−1B︸ ︷︷ ︸
B∗

u(t), x∗(0) = T−1x0

where Λ is diagonal or in Jordan form.

2. Now x∗(t) can be solved easily, and the free response is x∗(t) = eΛtx∗(0). For example, when Λ =

[
λ1 0
0 λ2

]
,

we would readily obtain x∗(t) =

[
eλ1t 0
0 eλ2t

] [
x∗
1(0)

x∗
2(0)

]
=

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
.

3. As x(t) = Tx∗(t), the above implies
x(t) = TeΛtT−1x0

4. From the original state-space description, x(t) = eAtx0. Hence

eAt = TeΛtT−1

Existence of Solutions. The solution of T comes from the theory of eigenvalues and eigenvectors in linear
algebra.

7
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More generally If two matrices A, B ∈ Cn×n are similar: A = TBT−1, T ∈ Cn×n, then

• their An and Bn are also similar: e.g., AA = TBT−1TBT−1 = TB2T−1

• their exponential matrices are also similar
eAt = TeBtT−1

as

TeBtT−1 = T (I +Bt+
1

2
B2t2 + . . . )T−1 = TIT−1 + TBtT−1 +

1

2
TB2t2T−1 + . . .

= I +At+
1

2
A2t2 + · · · = eAt

Eigenvalues and Eigenvectors. The principle concept of computing eAt in this section relies on the similarity
transform Λ = T−1AT , where Λ is structurally simple: i.e., in diagonal or Jordan form. We already observed

the resulting convenience in computing x∗(t) = eΛtx∗(0)
e.g.
=

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
. Under the coordinate transformation

defined by x(t) = Tx∗(t), we then have

x(t) = TeΛtx∗(0)
e.g.
= [t1, t2]︸ ︷︷ ︸

T

[
eλ1tx∗

1(0)
eλ2tx∗

2(0)

]
= eλ1tx∗

1(0)t1 + eλ2tx∗
2(0)t2

in other words, the state trajectory is conveniently decomposed into two modes along the directions defined by t1
and t2, the column vectors of T .

In practice, Λ and T are obtained using the tools of eigenvalues and eigenvectors.
For A ∈ Rn×n, an eigenvalue λ ∈ C of A is the solution to the characteristic equation

det (A− λI) = 0 (14)

The corresponding eigenvectors are the nonzero solutions to

At = λt ⇔ (A− λI) t = 0 (15)

The case with distinct eigenvalues (diagonalization). When A ∈ Rn×n has n distinct eigenvalues such
that

Ax1 = λ1x1

Ax2 = λ2x2

...
Axn = λnxn

we can write the above as

A [x1, x2, . . . , xn]︸ ︷︷ ︸
≜T

= [λ1x1, λ2x2, . . . , λnxn] = [x1, x2, . . . , xn]


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn


︸ ︷︷ ︸

Λ

The matrix [x1, x2, . . . , xn] is square. From linear algebra, the eigenvectors are linearly independent and [x1, x2, . . . , xn]
is invertible. Hence

A = TΛT−1, Λ = T−1AT

Example 1. Mechanical system with strong damping
Consider a spring-mass-damper system with m = 1, k = 2, b = 3. Let x1 and x2 be the position and velocity of

the mass, respectively. We have{
ẋ1 = x2

ẋ2 + 2x1 + 3x2 = 0
=⇒ d

dt

[
x1

x2

]
=

[
0 1
−2 −3

]
︸ ︷︷ ︸

A

[
x1

x2

]

8
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• Find eigenvalues: det(A− λI) = det

[
−λ 1
−2 −λ− 3

]
= (λ+ 2) (λ+ 1) ⇒ λ1 = −2, λ2 = −1

• Find associate eigenvectors:

– λ1 = −2: (A− λ1I) t1 = 0 ⇒ t1 =

[
1
−2

]
– λ1 = −1: (A− λ2I) t2 = 0 ⇒ t2 =

[
1
−1

]

• Define T and Λ: T =
[
t1 t2

]
=

[
1 1
−2 −1

]
, Λ =

[
λ1 0
0 λ2

]
=

[
−2 0
0 −1

]

• Compute T−1 =

[
1 1
−2 −1

]−1

=

[
−1 −1
2 1

]

• Compute eAt = TeΛtT−1 = T

[
e−2t 0
0 e−1t

]
T−1 =

[
−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t

]
Physical interpretations Let us revisit the intuition at the beginning of this subsection:

• x(t) = eλ1tx∗
1(0)t1 + eλ2tx∗

2(0)t2 decomposes the state trajectory into two modes along the direction of the
two eigenvectors t1 and t2.

• The two modes are scaled by x∗
1(0) and x∗

2(0) defined from x(0) = Tx∗(0), or more explicitly, x(0) =
[t1, t2][x

∗
1(0), x

∗
2(0)]

T = x∗
1(0)t1 + x∗

2(0)t2. This is nothing but decomposing x(0) into the sum of two vec-
tors along the directions of the eigenvectors; and x∗

1(0) and x∗
2(0) are the coefficients of the decomposition!

x

x 2

1

x(0)

-tea2 t2

-2tea1 t1

t 1

t 2

• If the initial condition x(0) is aligned with one eigenvector, say, t1, then x∗
2(0) = 0. The decomposition

x(t) = eλ1tx∗
1(0)t1 + eλ2tx∗

2(0)t2 then dictates that x(t) will stay in the direction of t1. In other words, if the
state initiates along the direction of one eigenvector, then the free response will stay in that direction without
“making turns”. If λ1 < 0, then x(t) will move towards the origin of the state space; if λ1 = 0, x(t) will stay
at the initial point; and if positive, x(t) will move away from the origin along t1. Furthermore, the magnitude
of λ1 determines the speed of response.

9
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The case with complex eigenvalues Consider the undamped spring-mass system

d

dt

[
x1

x2

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
, det(A− λI) = λ2 + 1 = 0 ⇒ λ1,2, = ±j.

The eigenvectors are

λ1 = j : (A− jI)t1 = 0 ⇒ t1 =

[
1
j

]
λ2 = −j : (A+ jI)t2 = 0 ⇒ t2 =

[
1
−j

]
(complex conjugate of t1).

Hence

T =

[
1 1
j −j

]
, T−1 =

1

2

[
1 −j
1 j

]
, eAt = TeΛtT−1 = T

[
ejt 0
0 e−jt

]
T−1 =

[
cos t sin t
− sin t cos t

]
.

As an exercise, for a general A ∈ R2×2 with complex eigenvalues σ± jω, you can show that by using T = [tR, tI ]
where tR and tI are the real and the imaginary parts of t1, an eigenvector associated with λ1 = σ + jω , x = Tx∗

transforms ẋ = Ax to
ẋ∗(t) =

[
σ ω
−ω σ

]
x∗(t)

and

e

 σ ω
−ω σ

t

=

[
eσt cosωt eσt sinωt
−eσt sinωt eσt cosωt

]
.

10
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⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>⇥

<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

⇥
<latexit sha1_base64="2Qi5nftDUoHdih6d4NFBOHKETzY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKez6QI9BLx4jmAckS5idzCZjZmeWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uMBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLR7dRvPTFtuJIPOE5YEJOB5BGnBK3U7CKPmemVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSR2SZDNrp24J1bpu5HStiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOitF1kHGZpMgknS+KUuGicqevu32uGUUxtoRQze2tLh0STSjagEo2BH/x5WXSPKv659XL+4tK7SaPowhHcAyn4MMV1OAO6tAACo/wDK/w5ijnxXl3PuatBSefOYQ/cD5/ALhvjzs=</latexit>

Re(�)

<latexit sha1_base64="M5ShOjjM2ucYhVVi0X4YMoI4e/M=">AAAB+3icbVDJSgNBFOxxjXGL8eilMQjxEmY0oMeAF49RzCKZIfR0XpImPQvdbyRhmF/x4kERr/6IN//GznLQxIKGouoV73X5sRQabfvbWlvf2Nzazu3kd/f2Dw4LR8WmjhLFocEjGam2zzRIEUIDBUpoxwpY4Eto+aObqd96AqVFFD7gJAYvYINQ9AVnaKRuoegijDG9h6zsShPrsfNuoWRX7BnoKnEWpEQWqHcLX24v4kkAIXLJtO44doxeyhQKLiHLu4mGmPERG0DH0JAFoL10dntGz4zSo/1ImRcinam/EykLtJ4EvpkMGA71sjcV//M6CfavvVSEcYIQ8vmifiIpRnRaBO0JBRzlxBDGlTC3Uj5kinE0deVNCc7yl1dJ86LiVCuXd9VS7XFRR46ckFNSJg65IjVyS+qkQTgZk2fySt6szHqx3q2P+eiatcgckz+wPn8AzEmUWg==</latexit>

Im(�)

<latexit sha1_base64="AA5V6o9DqBAFFyBBv/T/o3xoi/M=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAh1UxIt6LLgRncV7EOaUCaTSTt0MgkzN9IS8ituXCji1h9x5984bbPQ1gMDh3Pu4d45fsKZAtv+NtbWNza3tks75d29/YND86jSUXEqCW2TmMey52NFORO0DQw47SWS4sjntOuPb2Z+94lKxWLxANOEehEeChYygkFLA7PiAp1AdhflNZfrWIDPB2bVrttzWKvEKUgVFWgNzC83iEkaUQGEY6X6jp2Al2EJjHCal91U0QSTMR7SvqYCR1R52fz23DrTSmCFsdRPgDVXfycyHCk1jXw9GWEYqWVvJv7n9VMIr72MiSQFKshiUZhyC2JrVoQVMEkJ8KkmmEimb7XICEtMQNdV1iU4y19eJZ2LutOoX943qs3Hoo4SOkGnqIYcdIWa6Ba1UBsRNEHP6BW9GbnxYrwbH4vRNaPIHKM/MD5/AMqylFk=</latexit>

The case with repeated eigenvalues, via generalized eigenvectors. Consider A =

[
1 2
0 1

]
, which has

two repeated eigenvalues λ (A) = 2 and

(A− λI) t1 = 0 ⇒ t1 =

[
1
0

]
.

No other linearly independent eigenvectors exist. How do we go further? As A is already very similar to the Jordan
form, we try instead

A
[
t1 t2

]
=

[
t1 t2

] [ λ 1
0 λ

]
,

which requires At2 = t1 + λt2, i.e.,

(A− λI) t2 = t1 ⇔
[

0 2
0 0

]
t2 =

[
1
0

]
⇒t2 =

[
0
0.5

]
t2 is linearly independent from t1. Together, t1 and t2 span the 2-dimensional vector space. As such, t2 is called a
generalized eigenvector.

For general 3× 3 matrices with det(λI −A) = (λ− λm)3, i.e., λ1 = λ2 = λ3 = λm, we look for T such that

A = TJT−1

11
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where J has three canonical forms:

i),

 λm 0 0
0 λm 0
0 0 λm

 , ii),

 λm 1 0
0 λm 0
0 0 λm

 or

 λm 0 0
0 λm 1
0 0 λm

 , iii),

 λm 1 0
0 λm 1
0 0 λm

 .

• Case i): this happens when A has three linearly independent eigenvectors, i.e., (A − λmI)t = 0 yields t1, t2,
and t3 that span the 3-d vector space. This happens when nullity (A− λmI) = 3, namely, rank(A− λmI) =
3− nullity (A− λmI) = 0.

• Case ii): this happens when (A−λmI)t = 0 yields two linearly independent solutions, i.e., when nullity (A− λmI) =
2. We then have, e.g.,

A[t1, t2, t3] = [t1, t2, t3]

 λm 1 0
0 λm 0
0 0 λm

 ⇔ [λmt1, t1 + λmt2, λmt3] = [At1, At2, At3]

t1 and t3 are the directly computed eigenvectors. For the generalized eigenvector t2, the second column of the
equality gives

(A− λmI) t2 = t1

• Case iii): this is for the case when (A − λmI)t = 0 yields only one linearly independent solution, i.e., when
nullity(A− λmI) = 1. We then have,

A[t1, t2, t3] = [t1, t2, t3]

 λm 1 0
0 λm 1
0 0 λm

 ⇔ [λmt1, t1 + λmt2, t2 + λmt3] = [At1, At2, At3]

yielding

(A− λmI) t1 = 0

(A− λmI) t2 = t1

(A− λmI) t3 = t2

where t2 and t3 are the generalized eigenvectors.

Example 2. Consider

A =

[
−1 1
−1 1

]
, det (A− λI) = (λ+ 1) (λ− 1)− 1 = λ2 ⇒ λ1 = λ2 = 0.

Two repeated eigenvalues with rank(A− 0I) = 1 ⇒only one linearly independent eigenvector:

(A− 0I) t1 = 0 ⇒ t1 =

[
1
1

]
.

Generalized eigenvector:

(A− 0I) t2 = t1 ⇒ t2 =

[
0
1

]
.

Coordinate transform matrix:
T = [t1, t2] =

[
1 0
1 1

]
, T−1 =

[
1 0
−1 1

]
,

J = T−1AT =

[
0 1
0 0

]
, eAt = TeJtT−1 =

[
1 0
1 1

] [
1 t
0 1

] [
1 0
−1 1

]
=

[
1− t t
−t 1 + t

]
.

The first eigenvector implies that if x1(0) = x2(0) then the response is characterized by e0t = 1, i.e., x1(t) = x1(0) =
x2(0) = x2(t). This makes sense because ẋ1 = −x1 + x2 from the state equation.

12
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Example 3 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

A =

 −2 2 −3
2 1 −6
−1 −2 0

 .

Analogous procedures give that
λ1 = 5, λ2 = λ3 = −3.

So there are repeated eigenvalues. For λ1 = 5, (A− 5I)t1 = 0 gives −7 2 −3
2 −4 −6
−1 −2 −5

 t1 = 0 ⇒

 1 0 1
0 1 2
1 0 1

 t1 = 0 ⇒ t1 =

 1
2
−1

 .

For λ2 = λ3 = −3, the characteristic matrix is

A+ 3I =

 1 2 −3
2 4 −6
−1 −2 3

 .

The second row is the first row multiplied by 2. The third row is the negative of the first row. So the characteristic
matrix has only rank 1. The characteristic equation

(A− λ2I) t = 0

has two linearly independent solutions  −2
1
0

 ,

 3
0
1

 .

Then

T =

 1 −2 3
2 1 0
−1 0 1

 , J =

 5 0 0
0 −3 0
0 0 −3

 .

Physical interpretation. When ẋ = Ax, A = TJT−1 with J =

 λm 1 0
0 λm 0
0 0 λm

, we have

x(t) = eAtx(0) = T

 eλmt teλmt 0
0 eλmt 0
0 0 eλmt

T−1x(0) = T

 eλmt teλmt 0
0 eλmt 0
0 0 eλmt

����:I
T−1Tx∗(0)

If the initial condition is in the direction of t1, i.e., x∗(0) = [x∗
1(0), 0, 0]

T and x∗
1(0) ̸= 0, the above equation yields

x(t) = x∗
1(0)t1e

λmt. If x(0) starts in the direction of t2, i.e., x∗(0) = [0, x∗
2(0), 0]

T , then x(t) = x∗
2(0)(t1te

λmt +
t2e

λmt). In this case, the response does not remain in the direction of t2 but is confined in the subspace spanned
by t1 and t2.

Exercise 1. Obtain eigenvalues of J and eJt by inspection:

J =


−1 0 0 0 0
0 −2 1 0 0
0 −1 −2 0 0
0 0 0 −3 1
0 0 0 0 −3

 .

13
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1.4 Explicit Computation of the State Transition Matrix Ak

Everything in computing the similarity transform A = TΛT−1 or A = TJT−1 applies to the discrete-time case.
The state transition matrix in this case is

Ak = TΛkT−1 or Ak = TJkT−1.

You should be able to derive these results:

J Jk[
λ1 0
0 λ2

] [
λk
1 0
0 λk

2

]
[

λ 1
0 λ

] [
λk kλk−1

0 λk

]
 λ 1 0

0 λ 1
0 0 λ

  λk kλk−1 1
2!k (k − 1)λk−2

0 λk kλk−1

0 0 λk


 λ 1 0

0 λ 0
0 0 λ3

  λk kλk−1 0
0 λk 0
0 0 λk

3

[
σ ω
−ω σ

]
rk

[
cos kθ sin kθ
− sin kθ cos kθ

]
, r =

√
σ2 + ω2, θ = tan−1 ω

σ

Exercise 2. Write down Jk for J =

 −1 0 0
0 −1 1
0 0 −1

 and J =


−10 1 0 0 0
0 −10 0 0 0
0 0 −2 0 0
0 0 0 −100 1
0 0 0 −1 −100

.

Exercise 3. Show that

J =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 ⇒ Jk =


λk kλk−1 1

2!k (k − 1)λk−2 1
3!k (k − 1) (k − 2)λk−3

0 λk kλk−1 1
2!k (k − 1)λk−2

0 0 λk kλk−1

0 0 0 λk

 .

1.5 Transition Matrix via Inverse Transformation
We have now

Continuous-time system Discrete-time system
state equation ẋ(t) = Ax(t) +Bu(t), x(0) = x0 x(k + 1) = Ax(k) +Bu(k), x(0) = x0

solution x(t) = eAtx(0)︸ ︷︷ ︸
free response

+

∫ t

0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
forced response

x(k) = Akx(0)︸ ︷︷ ︸
free response

+

(k−1)∑
j=0

A(k−1−j)Bu(j)︸ ︷︷ ︸
forced response

transition matrix eAt Ak

We also know from Laplace transform, that

ẋ(t) = Ax(t) +Bu(t)

X(s) = (sI −A)
−1

x(0)︸ ︷︷ ︸
free response

+(sI −A)
−1

BU(s)︸ ︷︷ ︸
free response

Comparing x(t) and X(s) gives

eAt = L−1
{
(sI −A)−1

}
(16)
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Example 4. Consider A =

[
σ ω
−ω σ

]
. We have

eAt = L−1

[
s− σ −ω
ω s− σ

]−1

= L−1

{
1

(s− σ)
2
+ ω2

[
s− σ ω
−ω s− σ

]}

= eσt
[

cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

]
Similarly, for the discrete time case, we have X(z) = (zI −A)

−1
zx(0) + (zI −A)

−1
BU(s) and

Ak = Z−1
{
(zI −A)−1z

}
(17)

Example 5. Consider A =

[
σ ω
−ω σ

]
. We have

Ak = Z−1

{
z

[
z − σ −ω
ω z − σ

]−1
}

= Z−1

{
z

(z − σ)
2
+ ω2

[
z − σ ω
−ω z − σ

]}

= Z−1

{
z

z2 − 2r cos θz + r2

[
z − r cos θ r sin θ
−r sin θ z − r cos θ

]}
, r =

√
σ2 + ω2, θ = tan−1 ω

σ

= rk
[

cos kθ sin kθ
− sin kθ cos kθ

]

Example 6. Consider A =

[
0.7 0.3
0.1 0.5

]
. We have

(zI −A)
−1

z =

[
z(z−0.5)

(z−0.8)(z−0.4)
0.3z

(z−0.8)(z−0.4)
0.1z

(z−0.8)(z−0.4)
z(z−0.7)

(z−0.8)(z−0.4)

]
=

[ 0.75z
z−0.8 + 0.25z

z−0.4
0.75z
z−0.8 − 0.75z

z−0.4
0.25z
z−0.8 − 0.25z

z−0.4
0.25z
z−0.8 + 0.75z

z−0.4

]

⇒ Ak =

[
0.75 (0.8)

k
+ 0.25 (0.4)

k
0.75 (0.8)

k − 0.75 (0.4)
k

0.25 (0.8)
k − 0.25 (0.4)

k
0.25 (0.8)

k
+ 0.75 (0.4)

k

]
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