1 From Transfer Function to State Space: State-Space Canonical Forms

It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization theory.

A single transfer function has infinite amount of state-space representations. Consider, for example, the two models

$$
\left\{\begin{array}{ll}
\dot{x} & =A x+B u \\
y & =C x
\end{array}, \quad \begin{cases}\dot{x} & =A x+\frac{1}{2} B u \\
y & =2 C x\end{cases}\right.
$$

which share the same transfer function $C(s I-A)^{-1} B$.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan form, using the following unit problem:

$$
\begin{equation*}
G(s)=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{1}
\end{equation*}
$$

1.1 Controllable Canonical Form.

Consider first:

$$
\begin{equation*}
Y(s)=\frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} U(s) \tag{2}
\end{equation*}
$$

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

$$
\begin{equation*}
x_{1}=y, x_{2}=\dot{x}_{1}=\dot{y}, x_{3}=\dot{x}_{2}=\ddot{y} \tag{3}
\end{equation*}
$$

which gives

$$
\begin{align*}
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \tag{4}\\
y & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{align*}
$$

For the general case in (1), i.e., $\dddot{y}+a_{2} \ddot{y}+a_{1} \dot{y}+a_{0} y=b_{2} \ddot{u}+b_{1} \dot{u}+b_{0} u$, there are terms with respect to the derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose (1) as

$$
\begin{equation*}
u \longrightarrow \frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \longrightarrow b_{2} s^{2}+b_{1} s+b_{0} \longrightarrow y \tag{5}
\end{equation*}
$$

The first part of the connection

$$
\begin{equation*}
u \longrightarrow \sqrt{\frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}} \longrightarrow \tilde{y} \tag{6}
\end{equation*}
$$

looks exactly like what we had in (2). Denote the output here as \tilde{y}. Then we have

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u
$$

where

$$
\begin{equation*}
x_{1}=\tilde{y}, x_{2}=\dot{x}_{1}, x_{3}=\dot{x}_{2} \tag{7}
\end{equation*}
$$

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the second part of (5) is nothing but

$$
x_{1} \longrightarrow b_{2} s^{2}+b_{1} s+b_{0} \longrightarrow y
$$

So

$$
y=b_{2} \ddot{x}_{1}+b_{1} \dot{x}_{1}+b_{0} x_{1}=b_{2} x_{3}+b_{1} x_{2}+b_{0} x_{1}=\left[\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

The above procedure constructs the controllable canonical form of the third-order transfer function (1):

$$
\begin{align*}
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(t) \tag{8}\\
y(t) & =\left[\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
\end{align*}
$$

In a block diagram, the state-space system looks like

Example 1. Obtain the controllable canonical forms of the following systems

- $G(s)=\frac{s^{2}+1}{s^{3}+2 s+10}$
- $G(s)=\frac{b_{0} s^{2}+b_{1} s+b_{2}}{s^{3}+a_{0} s^{2}+a_{1} s+a_{2}}$

General Case.

For a single-input single-output transfer function

$$
G(s)=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}+d,
$$

we can verify that

$$
\Sigma_{c}=\left[\begin{array}{l|l}
A_{c} & B_{c} \tag{9}\\
\hline C_{c} & D_{c}
\end{array}\right]=\left[\begin{array}{ccccc|c}
0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0 \\
-a_{0} & -a_{1} & \cdots & -a_{n-2} & -a_{n-1} & 1 \\
\hline b_{0} & b_{1} & \cdots & b_{n-2} & b_{n-1} & d
\end{array}\right]
$$

realizes $G(s)$. This realization is called the controllable canonical form.

1.2 Observable Canonical Form.

Consider again

$$
Y(s)=G(s) U(s)=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} U(s)
$$

Expanding and dividing by s^{3} yield

$$
\left(1+a_{2} \frac{1}{s}+a_{1} \frac{1}{s^{2}}+a_{0} \frac{1}{s^{3}}\right) Y(s)=\left(b_{2} \frac{1}{s}+b_{1} \frac{1}{s^{2}}+b_{0} \frac{1}{s^{3}}\right) U(s)
$$

and therefore

$$
\begin{aligned}
Y(s) & =-a_{2} \frac{1}{s} Y(s)-a_{1} \frac{1}{s^{2}} Y(s)-a_{0} \frac{1}{s^{3}} Y(s) \\
& +b_{2} \frac{1}{s} U(s)+b_{1} \frac{1}{s^{2}} U(s)+b_{0} \frac{1}{s^{3}} U(s) .
\end{aligned}
$$

In a block diagram, the above looks like

or more specifically,

Here, the states are connected by

$$
\begin{aligned}
Y(s) & =X_{1}(s) \\
s X_{1}(s) & =-a_{2} X_{1}(s)+X_{2}(s)+b_{2} U(s) \\
s X_{2}(s) & =-a_{1} X_{1}(s)+X_{3}(s)+b_{1} U(s) \\
s X_{3}(s) & =-a_{0} X_{1}(s)+b_{0} U(s)
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =x_{1}(t) \\
\Rightarrow \quad \dot{x}_{1}(t) & =-a_{2} x_{1}(t)+x_{2}(t)+b_{2} u(t) \\
\dot{x}_{2}(t) & =-a_{1} x_{1}(t)+x_{3}(t)+b_{1} u(t) \\
\dot{x}_{3}(t) & =-a_{0} x_{1}(t)+b_{0} u(t)
\end{aligned}
$$

or in matrix form:

$$
\begin{align*}
& \dot{x}(t)=\underbrace{\left[\begin{array}{lll}
-a_{2} & 1 & 0 \\
-a_{1} & 0 & 1 \\
-a_{0} & 0 & 0
\end{array}\right]}_{A_{o}} x(t)+\underbrace{\left[\begin{array}{c}
b_{2} \\
b_{1} \\
b_{0}
\end{array}\right]}_{B_{o}} u(t) \tag{10}\\
& y(t)=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]}_{C_{o}} x(t)
\end{align*}
$$

The above is called the observable canonical form realization of $G(s)$.
Exercise 1. Verify that $C_{o}\left(s I-A_{o}\right)^{-1} B_{o}=G(s)$.

General Case.

In the general case, the observable canonical form of the transfer function

$$
G(s)=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}+d
$$

is

$$
\Sigma_{o}=\left[\begin{array}{c|c}
A_{o} & B_{o} \tag{11}\\
\hline C_{o} & D_{o}
\end{array}\right]=\left[\begin{array}{ccccc|c}
-a_{n-1} & 1 & \cdots & 0 & 0 & b_{n-1} \\
-a_{n-2} & 0 & \cdots & 0 & 0 & b_{n-2} 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
-a_{1} & 0 & \cdots & 0 & 1 & b_{1} \\
-a_{0} & & \cdots & & 0 & b_{0} \\
\hline 1 & & \cdots & & d
\end{array}\right]
$$

Exercise 2. Obtain the controllable and observable canonical forms of

$$
G(s)=\frac{k_{1}}{s-p_{1}} .
$$

1.3 Diagonal and Jordan canonical forms.

1.3.1 Diagonal form.

When

$$
G(s)=\frac{B(s)}{A(s)}=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

and the poles of the transfer function $p_{1} \neq p_{2} \neq p_{3}$, we can write, using partial fractional expansion,

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{s-p_{2}}+\frac{k_{3}}{s-p_{3}}, k_{i}=\lim _{p \rightarrow p_{i}}\left(s-p_{i}\right) \frac{B(s)}{A(s)},
$$

namely

The state-space realization of the above is

$$
A=\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{2} & 0 \\
0 & 0 & p_{3}
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0
$$

1.3.2 Jordan form.

If poles repeat, say,

$$
G(s)=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{\left(s-p_{1}\right)\left(s-p_{m}\right)^{2}}, p_{1} \neq p_{m} \in \mathbb{R}
$$

then partial fraction expansion gives

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{\left(s-p_{m}\right)^{2}}+\frac{k_{3}}{s-p_{m}}
$$

where

$$
\begin{aligned}
k_{1} & =\lim _{s \rightarrow p_{1}} G(s)\left(s-p_{1}\right) \\
k_{2} & =\lim _{s \rightarrow p_{m}} G(s)\left(s-p_{m}\right)^{2} \\
k_{3} & =\lim _{s \rightarrow p_{m}} \frac{d}{d s}\left\{G(s)\left(s-p_{m}\right)^{2}\right\}
\end{aligned}
$$

In state space, we have

The state-space realization of the above, called the Jordan canonical form, ${ }^{1}$ is

$$
A=\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{m} & 1 \\
0 & 0 & p_{m}
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0
$$

1.4 Modified canonical form.

If the system has complex poles, say,

$$
G(s)=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{\left(s-p_{1}\right)\left[(s-\sigma)^{2}+\omega^{2}\right]}
$$

then partial fraction expansion gives

$$
G(s)=\frac{k_{1}}{s-p_{1}}+\frac{\alpha s+\beta}{(s-\sigma)^{2}+\omega^{2}}
$$

which has the graphical representation as below:

[^0]

Here $k_{2}=(\beta+\alpha \sigma) / \omega$ and $k_{3}=\alpha$.
You should be able to check that the block diagram matches with the transfer function realization. The above can be realized by the modified Jordan form in state space:

$$
A=\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & \sigma & \omega \\
0 & -\omega & \sigma
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right], D=0 .
$$

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms

The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only difference is that we use

$$
\mathcal{Z}\{x(k+n)\}=z^{n} X(z),
$$

instead of

$$
\mathcal{L}\left\{\frac{d^{n}}{d t^{n}} x(t)\right\}=s^{n} X(s)
$$

assuming zero state initial conditions.
We have the fundamental relationships:

$$
\begin{aligned}
x(k) & \longrightarrow z^{-1} \\
x(z) & \longrightarrow z^{-1}(k-1) \\
x(k+n) & \longrightarrow z^{-1} X(z) \\
z^{-1} & \longrightarrow x(k+n-1)
\end{aligned}
$$

The discrete-time state-space description of a general transfer function $G(z)$ is

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

and satisfies $G(z)=C(z I-A)^{-1} B+D$.
Take again a third-order system as the example:

$$
G(z)=\frac{b_{2} z^{2}+b_{1} z+b_{0}}{z^{3}+a_{2} z^{2}+a_{1} z+a_{0}}=\frac{b_{2} z^{-1}+b_{1} z^{-2}+b_{0} z^{-3}}{1+a_{2} z^{-1}+a_{1} z^{-2}+a_{0} z^{-3}} .
$$

The A, B, C, D matrices of the canonical forms are exactly the same as those in continuous-time cases.

Controllable canonical form:

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
\end{aligned}
$$

Observable canonical form:

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right] } & =\left[\begin{array}{lll}
-a_{2} & 1 & 0 \\
-a_{1} & 0 & 1 \\
-a_{0} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
b_{2} \\
b_{1} \\
b_{0}
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
\end{aligned}
$$

Diagonal form (distinct poles):

$$
\begin{gathered}
G(z)=\frac{k_{1}}{z-p_{1}}+\frac{k_{2}}{z-p_{2}}+\frac{k_{3}}{z-p_{3}} \\
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{2} & 0 \\
0 & 0 & p_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] u(k)} \\
y(k)=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
\end{gathered}
$$

Jordan form (2 repeated poles):

$$
\begin{aligned}
G(z) & =\frac{k_{1}}{z-p_{1}}+\frac{k_{2}}{\left(z-p_{m}\right)^{2}}+\frac{k_{3}}{z-p_{m}} \\
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right] } & =\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{m} & 1 \\
0 & 0 & p_{m}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
\end{aligned}
$$

Jordan form (2 complex poles):

$$
\begin{gathered}
G(s)=\frac{k_{1}}{z-p_{1}}+\frac{\alpha z+\beta}{(z-\sigma)^{2}+\omega^{2}} \\
{\left[\begin{array}{c}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & \sigma & \omega \\
0 & -\omega & \sigma
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u(k)} \\
y(k)=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
\end{gathered}
$$

where $k_{2}=(\beta+\alpha \sigma) / \omega, k_{3}=\alpha$.
Exercise: obtain the controllable canonical form for the following systems

- $G(s)=\frac{z^{-1}-z^{-3}}{1+2 z^{-1}+z^{-2}}$
- $G(s)=\frac{b_{0} z^{2}+b_{1} z+b_{2}}{z^{3}+a_{0} z^{2}+a_{1} z+a_{2}}$

1.6 Similar Realizations

Besides the canonical forms, other system realizations exist. Let us begin with the realization Σ of some transfer function $G(s)$. Let $T \in \mathbb{C}^{n \times n}$ be nonsingular. We can define new states by:

$$
T x^{*}=x .
$$

We can rewrite the differential equations defining Σ in terms of these new states by plugging in $x=T x^{*}$:

$$
\frac{d}{d t}\left(T x^{*}(t)\right)=A T x^{*}(t)+B u(t)
$$

to obtain

$$
\Sigma^{*}:\left\{\begin{array}{rll}
\dot{x}^{*}(t) & = & T^{-1} A T x^{*}(t)+T^{-1} B u(t) \\
y(t) & = & C T x^{*}(t)+D u(t)
\end{array}\right.
$$

This new realization

$$
\Sigma^{*}=\left[\begin{array}{c|c}
T^{-1} A T & T^{-1} B \tag{12}\\
\hline C T & D
\end{array}\right]
$$

also realizes $G(s)$ and is said to be similar to Σ.
Similar realizations are fundamentally the same. Indeed, we arrived at $\Sigma_{\text {new }}$ from Σ via nothing more than a change of variables.
Exercise 3 (Another observable canonical form.). Verify that

$$
\Sigma=\left[\begin{array}{ccc|c}
-a_{2} & 1 & 0 & b_{2} \\
-a_{1} & 0 & 1 & b_{1} \\
-a_{0} & 0 & 0 & b_{0} \\
\hline 1 & 0 & 0 & d
\end{array}\right]
$$

is similar to

$$
\Sigma^{*}=\left[\begin{array}{ccc|c}
0 & 0 & -a_{0} & b_{0} \\
1 & 0 & -a_{1} & b_{1} \\
0 & 1 & -a_{2} & b_{2} \\
\hline 0 & 0 & 1 & d
\end{array}\right]
$$

[^0]: ${ }^{1}$ The A matrix is called a Jordan matrix.

