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1 From Transfer Function to State Space: State-Space Canonical Forms

It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse
problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization
theory.

A single transfer function has infinite amount of state-space representations. Consider, for example, the two
models

z = Ax + Bu T :Ax—i—%Bu
y =Cu ’ y =2Cz

which share the same transfer function C(sI — A)™!B.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan
form, using the following unit problem:

b282 + b18 + bo
s34 ags? +as+ag

G(s) = (1)

1.1 Controllable Canonical Form.
Consider first: )
Yis)= 53+a252+als+aoU(8)' @

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

xl:y7x2:j)1:ga 1‘3:3'32:?37 (3)
which gives
d x1 0 1 0 X1 0
— |z |l= 0 0 1 ||z |+]0]|u (4)
dt
I3 —ap —ay —as9 I3 1
Z1
Yy = [ 1 00 ] T2
r3

For the general case in (1), i.e., Y + asl + a1y + agy = beil + b1t + bou, there are terms with respect to the
derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose
(1) as

1
2 — 5
u 53+a252+a15+a0 b25 +b15+b0 Yy ()

The first part of the connection

1
$3 4+ ass2 +ais+ag

looks exactly like what we had in (2). Denote the output here as §. Then we have

d I 0 1 0 X1 0
— T2 = 0 0 1 X9 + 0 | u,
dt
T3 —ap —a; —a X3 1
where
x1 =Y, Tz = I1, T3 = L2 (7)

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the
second part of (5) is nothing but

Ty — bys® +bys+by —Y
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So
T
Yy = bgl.l.il + bljjl + bol‘l = bQIg + b1x2 + boIl = [ bo bl b2 } xTo
Zs3

The above procedure constructs the controllable canonical form of the third-order transfer function (1):

d x1(t) 0 1 0 z1(t) 0
p zo(t) | = 0 0 1 z2(t) |+ | 0 | u(t)
LL'3(t) —ap —aq —as l‘3(t) 1
z1(t)
y(f) = [ bo b1 b2 ] IEQ(t)
3(t)
In a block diagram, the state-space system looks like
o]
+
— -
U(s) + o 1| X 1 |[X2 1 X1 ™ o Y(s)
s s s 9]
O
O (@]
0]
Example 1. Obtain the controllable canonical forms of the following systems
s2+1
* G = 55510
bos? +b b
.« G(s) = 05 + 015 + b2
s34+ aps? + a1s + as
General Case.
For a single-input single-output transfer function
by 18" 14+ b b
G(s) = 18 -ﬁ; + 015+ bo +d,
s"+ap-1S"" + - ta1stap
we can verify that
[0 1 0 0 07
0 0 0 0 0
B : : : : :
A T
C. | D 0 0 .- 0 1 0
—ap —Q1 - —Gp_2 —ap_ |1
L bo b1 - bpo by_1 | d |

realizes G(s). This realization is called the controllable canonical form.
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1.2 Observable Canonical Form.

Consider again
b282 + b1s+ by
$3 + ags? 4+ a1s + ag

Y(s)=G(s)U(s) =

Expanding and dividing by s3 yield

1 1 1 1 1 1
(1 + a2 + a5 + aos3> Y(s)= (b28 + blsj + bos3> U(s)
and therefore

Y(s) = —agéY(s) - als—le(s) - aosi,Y(s)

1 1 1

In a block diagram, the above looks like

{62]
1]
Us) [y ERENaN 10+ - 1T 1 Yis)
190 | N\ ) s )
2]
L]
m
or more specifically,
b2
L]
+ +
U(S) m + 1 X3 A~ 1 X2 N 1 X1 Y(S)
190 | 1\ s ) s ) s
a2]
L]
0 |
Here, the states are connected by
Y(s) = Xy(s) y(t) = a1(t)
SXl(S) = —agXl(S) + XQ(S) + bQU(S) T (t) = —a2T1 (t) + l‘g(t + bzu(t)
sXa(s) = —a1X1(s) + X3(s) + 01U (s) = Eo(t) = —ar121(t) + x3(t) + byu(t)
SXg(S) = 70,0X1 (5) + boU(S) xg(t) = 70,0‘%1(75) + bou(t)
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or in matrix form:

—az 1 0 )
zt)y=| —ar 0 1 |z(t)+ | b1 | u(t)
—ap 0 O bo
—_— N——
A, B,
yH=[1 0 0]a
~———
C,

The above is called the observable canonical form realization of G(s).
Exercise 1. Verify that C,(sI — A,) B, = G(s).

General Case.

In the general case, the observable canonical form of the transfer function

bp18" 14+ bys+b
G(s) = S T 4
"+ ap-18"" "+ -+ a1s+ap

is

[ —Qnp—-1 1 0 0 bnfl
—Qnp—2 0 0 0 bn_QO
A, | B, } : o :
- _ : : Do :
’ [Co D, @y 0 - 0 1| b
—ag 0| by
1 d |
Exercise 2. Obtain the controllable and observable canonical forms of
k1
G(s) = .
(5) = — o
1.3 Diagonal and Jordan canonical forms.
1.3.1 Diagonal form.
When B b2 4 )
Gls) = (s) _ 25 + 015 + 0p
A(s) s34 azs?+a1s+ag
and the poles of the transfer function p; # ps # p3, we can write, using partial fractional expansion,
ey ko ks . B(s)
G = ka = 1 — Vi )
(s) 5*171+$*102+5*1037 Pl—{%i(s p)A(s)

namely

+ /\SXl 1 X1

=]

G

+
®
s

®» =
e
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The state-space realization of the above is

P1 0 0 1
A= 0 D2 0 ,B: 1 ,Cz[k‘l kQ kg],D—O
0 0 P3 1
1.3.2 Jordan form.
If poles repeat, say,
b282 +b18+b(] b282+b1$+b0
G(s) = = , m € R,
() s34 ags? +ars+ag (s —p1)(s—pm)? nzy

then partial fraction expansion gives

where

S—p1
ko = lim G(s)(s — pm)
S*}pm
) d
o= i {66~ )
In state space, we have
+ X
I 1 ! ky
S
+T
]
U(s) +| Y(s)
— k3 O
+
X3
+ —~ 1 + ~ 1 X5
£ ES ko —
S S
Pm Pm

The state-space realization of the above, called the Jordan canonical form,' is

pt 0 O 1
A= 0 Pm 1 ,B: 0 ,C:[k‘l kg kg],D:O
0 0 pm 1

1.4 Modified canonical form.
If the system has complex poles, say,

b282 + b1s + by
(s —p1)[(s —0)* +w?]’

2
G(S): bos® 4+ b1s + by _

83 4+ ass2 +a1s + ag

then partial fraction expansion gives
k as +
L i g 7
s=p1 (s—o0) +w?

which has the graphical representation as below:

G(s) =

1The A matrix is called a Jordan matrix.
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+/\ l Xl k:
7
U(s) LYe)
— ks O
+
X p

BV 1 W T~ 1 2 ko |

v s T+ s

- <]

w

Here ks = (8 + ao)/w and ks = a.
You should be able to check that the block diagram matches with the transfer function realization.
The above can be realized by the modified Jordan form in state space:

P1 0 0 1
A= 0 g w ,B: 0 ,C:[k‘l k‘g k)g],D:O
0 —w o 1

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms

The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only

difference is that we use
Z{z(k+n)t =2"X(2),

instead of

{0} -,

assuming zero state initial conditions.
We have the fundamental relationships:

x (k) 21 x(k—1)
X (2) 21 271X (2)
xz(k+mn) 21 x(k+n—1)

The discrete-time state-space description of a general transfer function G(z) is

x(k+1)= Az (k) + Bu (k)
y (k) = Cx (k) + Du (k)

and satisfies G (z) = C (21 — A) "' B+ D.
Take again a third-order system as the example:

b222 + blz —+ bo bQZil —+ b1272 —+ bozig

G(z) = = )
(2) PB4 a2 +aiz+ag l4+azl+a1z72+agz3

The A, B, C', D matrices of the canonical forms are exactly the same as those in continuous-time cases.
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Controllable canonical form:
1 (k+1) 0 1 0
To (/ﬂ + ].) = 0 0 1
T3 (l{? + 1) —ag —ai —a2
(
(
(

I k
y(k):[b() b1 bg]litg k ]
3 (k

Observable canonical form:

I (k+].) —ag 1 0 T k) b2
{xg(k—i—l)]:{—al 0 1][x2k)]+[b1:|u(k)
xzg(k+1) —ag 0 0 3 (k

X1 (k‘ + 1) P1 0 0 X1 (k) 1
z2(k+1) | =] 0 o0 w x2 (k) |+ 0 |u(k)
z3 (k+1) 0 —w o x3 (k) 1
z1 (k)
Yy (k‘) = [ k’l kg kg ] T2 (k)
z3 (k)

where ko = (8 + ao)/w, ks = a.
Exercise: obtain the controllable canonical form for the following systems
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-1__-3
i G(S) = 1+ZQZ—1i_ZTz

. G(S)fm

T z34apz2+aiz+tas

1.6 Similar Realizations

Besides the canonical forms, other system realizations exist. Let us begin with the realization ¥ of some transfer
function G(s). Let T' € C™*™ be nonsingular. We can define new states by:

Tz* = zx.

We can rewrite the differential equations defining ¥ in terms of these new states by plugging in x = T'x*:

d % _ *
= (Tx*(t)) = ATz*(t) + Bu(t),

to obtain
T~ YATz*(t) + T~ Bu(t)
yt) = CTz*(t) + Du(t)

™
*
—N
8-
*
—
I

This new realization

. T7'AT | T7'B
X = { cT | D |’ (12)
also realizes G(s) and is said to be similar to 2.

Similar realizations are fundamentally the same. Indeed, we arrived at Y,, from ¥ via nothing more than a
change of variables.

Exercise 3 (Another observable canonical form.). Verify that

—as 1 0 b2
o —a 0 1 bl
x= —aQp 0 0 bo
1 0 0]d
is similar to
0 0 —Q bo
x 1 O —day bl
X = 0 1 —as b2
00 1 [d
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