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1 From Transfer Function to State Space: State-Space Canonical Forms
It is straightforward to derive the unique transfer function corresponding to a state-space model. The inverse
problem, i.e., building internal descriptions from transfer functions, is less trivial and is the subject of realization
theory.

A single transfer function has infinite amount of state-space representations. Consider, for example, the two
models {

ẋ = Ax+Bu

y = Cx
,

{
ẋ = Ax+ 1

2Bu

y = 2Cx

which share the same transfer function C(sI −A)−1B.
We start with the most common realizations: controller canonical form, observable canonical form, and Jordan

form, using the following unit problem:

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

. (1)

1.1 Controllable Canonical Form.
Consider first:

Y (s) =
1

s3 + a2s2 + a1s+ a0
U (s) . (2)

Similar to choosing position and velocity in the spring-mass-damper example, we can choose

x1 = y, x2 = ẋ1 = ẏ, x3 = ẋ2 = ÿ, (3)

which gives

d

dt

 x1
x2
x3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1
x2
x3

+

 0
0
1

u (4)

y =
[

1 0 0
]  x1

x2
x3


For the general case in (1), i.e.,

...
y + a2ÿ + a1ẏ + a0y = b2ü + b1u̇ + b0u, there are terms with respect to the

derivative of the input. Choosing simply (3) does not generate a proper state equation. However, we can decompose
(1) as

u // 1

s3 + a2s2 + a1s+ a0
// b2s

2 + b1s+ b0
// y (5)

The first part of the connection

u // 1

s3 + a2s2 + a1s+ a0
// ỹ (6)

looks exactly like what we had in (2). Denote the output here as ỹ. Then we have

d

dt

 x1
x2
x3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1
x2
x3

+

 0
0
1

u,
where

x1 = ỹ, x2 = ẋ1, x3 = ẋ2. (7)

Introducing the states in (7) also addresses the problem of the rising differentiations in u. Notice now, that the
second part of (5) is nothing but

x1 // b2s
2 + b1s+ b0

// y
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So

y = b2ẍ1 + b1ẋ1 + b0x1 = b2x3 + b1x2 + b0x1 =
[
b0 b1 b2

]  x1
x2
x3

 .
The above procedure constructs the controllable canonical form of the third-order transfer function (1):

d

dt

 x1(t)
x2(t)
x3(t)

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1(t)
x2(t)
x3(t)

+

 0
0
1

u(t) (8)

y(t) =
[
b0 b1 b2

]  x1(t)
x2(t)
x3(t)


In a block diagram, the state-space system looks like

U(s) 1
s

X3 1
s

X2 1
s

X1
b0

−

+ Y (s)

a2

a1

a0

b1

b2

+

+

+

+

Example 1. Obtain the controllable canonical forms of the following systems

• G (s) =
s2 + 1

s3 + 2s+ 10

• G (s) =
b0s

2 + b1s+ b2
s3 + a0s2 + a1s+ a2

General Case.

For a single-input single-output transfer function

G(s) =
bn−1s

n−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

+ d,

we can verify that

Σc =

[
Ac Bc

Cc Dc

]
=



0 1 · · · 0 0 0
0 0 · · · 0 0 0
...

... · · ·
...

...
...

0 0 · · · 0 1 0
−a0 −a1 · · · −an−2 −an−1 1
b0 b1 · · · bn−2 bn−1 d


(9)

realizes G(s). This realization is called the controllable canonical form.

2



Xu Chen 1.2 Observable Canonical Form. January 9, 2021

1.2 Observable Canonical Form.
Consider again

Y (s) = G(s)U(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

U(s).

Expanding and dividing by s3 yield(
1 + a2

1

s
+ a1

1

s2
+ a0

1

s3

)
Y (s) =

(
b2

1

s
+ b1

1

s2
+ b0

1

s3

)
U(s)

and therefore

Y (s) = −a2
1

s
Y (s)− a1

1

s2
Y (s)− a0

1

s3
Y (s)

+ b2
1

s
U(s) + b1

1

s2
U(s) + b0

1

s3
U(s).

In a block diagram, the above looks like

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

+ +

− −

or more specifically,

U(s) 1
s

1
s

1
s

b0

−

+ Y (s)

a2

a1

a0

b1

b2

X3

+

− −

+
X2 X1

Here, the states are connected by

Y (s) = X1(s) y(t) = x1(t)

sX1(s) = −a2X1(s) +X2(s) + b2U(s) ẋ1(t) = −a2x1(t) + x2(t) + b2u(t)

sX2(s) = −a1X1(s) +X3(s) + b1U(s) ⇒ ẋ2(t) = −a1x1(t) + x3(t) + b1u(t)

sX3(s) = −a0X1(s) + b0U(s) ẋ3(t) = −a0x1(t) + b0u(t)
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or in matrix form:

ẋ(t) =

 −a2 1 0
−a1 0 1
−a0 0 0


︸ ︷︷ ︸

Ao

x(t) +

 b2
b1
b0


︸ ︷︷ ︸

Bo

u(t) (10)

y(t) =
[

1 0 0
]︸ ︷︷ ︸

Co

x(t)

The above is called the observable canonical form realization of G(s).

Exercise 1. Verify that Co(sI −Ao)−1Bo = G(s).

General Case.

In the general case, the observable canonical form of the transfer function

G(s) =
bn−1s

n−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

+ d

is

Σo =

[
Ao Bo

Co Do

]
=



−an−1 1 · · · 0 0 bn−1
−an−2 0 · · · 0 0 bn−20

...
... · · ·

...
...

...
−a1 0 · · · 0 1 b1
−a0 · · · 0 b0

1 · · · d


. (11)

Exercise 2. Obtain the controllable and observable canonical forms of

G(s) =
k1

s− p1
.

1.3 Diagonal and Jordan canonical forms.
1.3.1 Diagonal form.

When

G(s) =
B(s)

A(s)
=

b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0
and the poles of the transfer function p1 6= p2 6= p3, we can write, using partial fractional expansion,

G (s) =
k1

s− p1
+

k2
s− p2

+
k3

s− p3
, ki = lim

p→pi

(s− pi)
B(s)

A(s)
,

namely

1
s

k1

1
s

k3

1
s

k2

p2

p3

p1

+

+

+

+

+

+

+

+

sX1 X1

sX2 X2

sX3 X3

Y (s)U(s)
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The state-space realization of the above is

A =

 p1 0 0
0 p2 0
0 0 p3

 , B =

 1
1
1

 , C =
[
k1 k2 k3

]
, D = 0.

1.3.2 Jordan form.

If poles repeat, say,

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

=
b2s

2 + b1s+ b0
(s− p1)(s− pm)2

, p1 6= pm ∈ R,

then partial fraction expansion gives

G (s) =
k1

s− p1
+

k2

(s− pm)
2 +

k3
s− pm

,

where

k1 = lim
s→p1

G(s)(s− p1)

k2 = lim
s→pm

G(s)(s− pm)2

k3 = lim
s→pm

d

ds

{
G(s)(s− pm)2

}
In state space, we have

1
s

k1

1
s

k2
1
s

k3

pm pm

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

The state-space realization of the above, called the Jordan canonical form,1 is

A =

 p1 0 0
0 pm 1
0 0 pm

 , B =

 1
0
1

 , C =
[
k1 k2 k3

]
, D = 0.

1.4 Modified canonical form.
If the system has complex poles, say,

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

=
b2s

2 + b1s+ b0
(s− p1) [(s− σ)2 + ω2]

,

then partial fraction expansion gives

G (s) =
k1

s− p1
+

αs+ β

(s− σ)
2

+ ω2
,

which has the graphical representation as below:
1The A matrix is called a Jordan matrix.
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1
s

k1

1
s

k2
1
s

k3

σ σ

p1

+

+

+

+

+

+

+

+

X1

X3
X2

Y (s)U(s)

ω

ω

+

−

Here k2 = (β + ασ)/ω and k3 = α.
You should be able to check that the block diagram matches with the transfer function realization.
The above can be realized by the modified Jordan form in state space:

A =

 p1 0 0
0 σ ω
0 −ω σ

 , B =

 1
0
1

 , C =
[
k1 k2 k3

]
, D = 0.

1.5 Discrete-Time Transfer Functions and Their State-Space Canonical Forms
The procedures for finding state space realizations in discrete time is similar to the continuous time cases. The only
difference is that we use

Z {x(k + n)} = znX(z),

instead of
L
{
dn

dtn
x(t)

}
= snX(s),

assuming zero state initial conditions.
We have the fundamental relationships:

x (k) // z−1 // x (k − 1)

X (z) // z−1 // z−1X (z)

x (k + n) // z−1 // x (k + n− 1)

The discrete-time state-space description of a general transfer function G(z) is

x (k + 1) = Ax (k) +Bu (k)

y (k) = Cx (k) +Du (k)

and satisfies G (z) = C (zI −A)
−1
B +D.

Take again a third-order system as the example:

G (z) =
b2z

2 + b1z + b0
z3 + a2z2 + a1z + a0

=
b2z
−1 + b1z

−2 + b0z
−3

1 + a2z−1 + a1z−2 + a0z−3
.

The A, B, C, D matrices of the canonical forms are exactly the same as those in continuous-time cases.
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Controllable canonical form: x1 (k + 1)
x2 (k + 1)
x3 (k + 1)

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1 (k)
x2 (k)
x3 (k)

+

 0
0
1

u (k)

y (k) =
[
b0 b1 b2

]  x1 (k)
x2 (k)
x3 (k)


Observable canonical form: x1 (k + 1)

x2 (k + 1)
x3 (k + 1)

 =

 −a2 1 0
−a1 0 1
−a0 0 0

 x1 (k)
x2 (k)
x3 (k)

+

 b2
b1
b0

u (k)

y (k) =
[

1 0 0
]  x1 (k)

x2 (k)
x3 (k)


Diagonal form (distinct poles):

G(z) =
k1

z − p1
+

k2
z − p2

+
k3

z − p3 x1 (k + 1)
x2 (k + 1)
x3 (k + 1)

 =

 p1 0 0
0 p2 0
0 0 p3

 x1 (k)
x2 (k)
x3 (k)

+

 1
1
1

u (k)

y (k) =
[
k1 k2 k3

]  x1 (k)
x2 (k)
x3 (k)


Jordan form (2 repeated poles):

G(z) =
k1

z − p1
+

k2

(z − pm)
2 +

k3
z − pm

 x1 (k + 1)
x2 (k + 1)
x3 (k + 1)

 =

 p1 0 0
0 pm 1
0 0 pm

 x1 (k)
x2 (k)
x3 (k)

+

 1
0
1

u (k)

y (k) =
[
k1 k2 k3

]  x1 (k)
x2 (k)
x3 (k)


Jordan form (2 complex poles):

G (s) =
k1

z − p1
+

αz + β

(z − σ)
2

+ ω2

 x1 (k + 1)
x2 (k + 1)
x3 (k + 1)

 =

 p1 0 0
0 σ ω
0 −ω σ

 x1 (k)
x2 (k)
x3 (k)

+

 1
0
1

u (k)

y (k) =
[
k1 k2 k3

]  x1 (k)
x2 (k)
x3 (k)


where k2 = (β + ασ)/ω, k3 = α.

Exercise: obtain the controllable canonical form for the following systems
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• G (s) = z−1−z−3

1+2z−1+z−2

• G (s) = b0z
2+b1z+b2

z3+a0z2+a1z+a2

1.6 Similar Realizations
Besides the canonical forms, other system realizations exist. Let us begin with the realization Σ of some transfer
function G(s). Let T ∈ Cn×n be nonsingular. We can define new states by:

Tx∗ = x.

We can rewrite the differential equations defining Σ in terms of these new states by plugging in x = Tx∗:

d

dt
(Tx∗(t)) = ATx∗(t) +Bu(t),

to obtain
Σ∗ :

{
ẋ∗(t) = T−1ATx∗(t) + T−1Bu(t)
y(t) = CTx∗(t) +Du(t)

This new realization
Σ∗ =

[
T−1AT T−1B
CT D

]
, (12)

also realizes G(s) and is said to be similar to Σ.
Similar realizations are fundamentally the same. Indeed, we arrived at Σnew from Σ via nothing more than a

change of variables.

Exercise 3 (Another observable canonical form.). Verify that

Σ =


−a2 1 0 b2
−a1 0 1 b1
−a0 0 0 b0

1 0 0 d


is similar to

Σ∗ =


0 0 −a0 b0
1 0 −a1 b1
0 1 −a2 b2
0 0 1 d
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