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The Z transform approach to Ordinary difference

Equations (OdEs)

Z Transform

Easy

7

OdE
' Easy

OdE solution

Algebraic equation

Easy Arithmetic

Algebraic solution

Inverse Z Transform

> analogous to Laplace transform for continuous-time signals
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Definition

> let x(k) be a real discrete-time sequence that is zero if k < 0
> the (one-sided) Z transform of x(k) is

X(2) £ Z{x(k)} = x(kz *
k=0

=x(0) + x(1)zt +x(2)z 2 +

where z€ C

> a linear operator: Z {aflk) + Bg(k)} = aZ {flk)} + BZ {g(k)}
> the series 1+~ +~2 + ... converges to — for |7] < 1 [region of
convergence (ROC)]

iy #£1)

> (also, recall that S 0¥

3/16



Example: geometric sequence {ak}iio

11—y
k=0
> x(k) = a*
- 1
> Z{ad) = k= [ 1|~ s
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Example: step sequence (discrete-time unit step function)

1
z{a" =
{a'} 1—az1
1, Vk=1,2,...
> l(k): ) v )=
0, Vk=...,-1,0
k 1 z
> Z{10} = 2{dY, . = | 7= = &
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Example: discrete-time impulse

0, otherwise

N 6(k):{1’ k=0
}
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Exercise: cos(wok)
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f(k) F(z) ROC
o) b Al 2
ak1 (k -
( ) 1 —].32*1 ’Z| > |a]
—af(—k-1) ———
( ) 1-— az—l1 2| < |a
kak1 (k) ez
(1—az1)2 2| > |al
—1
Ckafl(—k—1) —
( ) (1—az 1)2 1z] < |4
1 -z cos(wp)
cos(wok 0
) 1- 2z—1lcos(w0) 472 2] > 1
sin(wok z~ " sin(wo)
) 1-2z1 cosgwo) + 2 2] > 1
ak cos(wok) 1 — az " cos(wo)
1 —2az 1 cos(wp) + a?z2 |2 > |al
a¥sin(wok az" ! sin(wo)
(wok) 2> |

1 —2az ! cos(wp) + a°z 2
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Properties of Z transform: time shift

> let Z{x(k)} = X(z) and x(k) =0Vk<0
P one-step delay:

Z{x(k—1)} = Zx(k— 1)z K= xk—1)z*+x(-1)
=0 k=1
= ZX 7 D1 4 (1)

= 7X(2) + A1) = |7 IX()

> analogously, Z{x(k+ 1)} = 332 x(k+1)z7H = zX(2) — 2¢(0) |
» thus, if x(k+ 1) = Ax(k) + Bu(k) and x(0) =0,

zX(2) = AX(2) + BU(z) = X(2) = (zI — A) "' BU(2)

provided that (z/ — A) is invertible
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Solving difference equations

Solve the difference equation

where y(—2) = y(—1) = 0 and u(k) = 1(k).
> Z{k-1)} =z 1Z{y(k} =z V()
> Z{y(k—-2)} =z 1Z{y(k— 1)} =z 2Y(2)
> Z{U(k—2)} = z72U(2)
> = (1+3z1+2272)Y(2) = z72U(=2)

u(z)

> =

Y(k) +3y(k = 1) + 2y(k = 2) = u(k - 2)

Y(2)

1

:zz+3z+2
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Solving difference equations

Solve the difference equation
Y(K) + 3y(k — 1) + 2y(k — 2) = u(k — 2)
where y(—2) = y(—1) = 0 and u(k) = 1(k).

1 1
> V@)= z2+3z+2U( 2) = (z+2)(z+1)

> u(k) =1(k) = U2)=1/1-2z")
1 z 1 z 1 z :
> = Y(Z) = m 62—1 + 3702 — 271 (Carefu| Wlth the
partial fraction expansion)

U(z)

> inverse Z transform then gives

y(k) = B1(k) + L(=2)F = L(~1)%, k=0
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From difference equation to transfer functions

> general discrete-time OdE:
y(k)+an—1y(k—1)+- - -+aoy(k—n) = bpu(k+m—n)+---+bou(k—n)
where y(k) =0Vk <0

> applying Z transform to the OdE vyields
(z” +a, 127+ ao) Y(z) = (bmzm + by 2™ 4 bo) U(2)

> hence
_ b2 4 by 12" bzt by

z"+ap_ 12"+ a1z +

Y(2) u(z)

Gyu(2): discrete-time transfer function
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DC gain of discrete-time transfer functions

> general discrete-time OdE and transfer function:
y(k)+an—1y(k—1)+- - -+aoy(k—n) = bpu(k+m—n)+---+bou(k—n)

B 2™ + by 1271+ + bz + b
Y(z) = omZ Tt Omot AT )

Z'+a, 12" 1+ +a1z+ ag

~
Gyu(z): discrete-time transfer function

P assuming constant input and convergent output, then at steady state,

> y(k)=y(k—1)=--- = y(k— n) = ys and
uk+m—n)=uk+m—n—1)=---=u(k—n) 2 ug
P Ves+ an—1Yss + -+ agyes = bmuss + - -+ 4 bouss
> thus,

i bm+bm—1+"'+b0
DC gain of Gyu(2) = 14+a,1+ -+ ao :%
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Transfer functions in two domains

y(k) + an—iy(k— 1)+ - -+ aoy(k — n) = bmu(k+ m —n) + --- + bou(k — n)
B(z)  bmZ" + bp_12"t 4 bz + bo

Gu(2) = -
= Gul2) Alz) 2+ a1z 4+ aiz+ a
V.S.
d"y(t) d"y(t) d"u(t) d" u(t)
n— . t) = bm bm— oo+ bou(t
g T a1 g o aoy(t) g T bm—1— e e bou(t)
__ B(s) _ bms™ + -+ bis+ bo
< Gu(s) A(s) T "+ a,_18" -+ ais+ ao
Properties Gyu(s) Gyu(z)
poles and zeros roots of A(s) and B(s) roots of A(z) and B(z2)
causality condition n>m n>m

DC gain / steady-state
response to unit step G,u(0) Gyu(1)
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Additional useful properties of Z transform

>

vV vyy

v

time shifting (assuming x(k) = 0 if k < 0):
Z{x(k—ng)} =z7"X(2)

Z-domain scaling: Z {ax(k)} = X (a™'2)

differentiation: Z {kx(k)} = —z%(zz)

time reversal: Z {x(—k)} = X(z71)

convolution: let f{k) * g(k) £ Z;{:O f(k—j)g()), then
Z{f(k) xg(k)} = F(2) G(2)

initial value theorem: f(0) = lim,_o F(2)

final value theorem: lim_ o, f(k) = lim,—1 (z— 1) F(2), if
limy_00 (k) exists and is finite
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Mortgage payment

vV VvyVvyYVvYy

image you borrow $100,000 (e.g., for a mortgage)
annual percent rate: APR = 4.0%

plan to pay off in 30 years with fixed monthly payments
interest computed monthly

what is your monthly payment?
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Mortgage payment

borrow $100,000 = initial debt y(0) = 100, 000

APR = 4.0% = MPR = %% = 0.0033

pay off in 30 years (N =30 x 12 = 360 months) = y(N) =0

debt at month k+ 1:

y(k+1) = (1+ MPR) y (k) — b 1(k)
Nl ——

4 monthly payment
> = Y(2) = 2£(0 >+ it
Y(2) = =0 (1 e 1)
> = y(k) = akY(0)+ s (3 1)
(N) =0=aVy(0) = — ;2. (a" - 1)
SO _ §477.42

vV VvVYyyYy

> need y

v

= b=
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