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Why modeling?

Modeling of physical systems:
> a vital component of modern engineering

> often consists of complex coupled differential equations

» only when we have good understanding of a system can we optimally
control it:
» can simulate and predict actual system response, and
> design model-based controllers
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Two general approaches of modeling

> based on physics:

> using fundamental engineering principles such as Newton's laws, energy
conservation, etc

> based on measurement data:

> using input-output response of the system
> a field itself known as system identification

> often the tools are combined in practice
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Example: Mass spring damper

position: y(t)

—f

b m

Newton's second law gives
my () + by (1) + ky (t) = u(t), ¥(0) = yo, ¥(0) = Jo

> modeled as a second-order ODE with input u(t) and output y(t)
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Example: HDD

> Newton's second law for rotation

ZT,‘ = J a
_ ~— ~—
! moment of inertia angular acceleration
net torque
> letting 6 :=output and 7 :=input yields
R 1
=a=-1

J
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Example: HDD

) 1 1
0=a= 77’ = 9(5) = PT(S)

> with damping:
K
2 + 2Cwps + w?

0 + 2Cwnd + w20 = kT = O(s) = T(s)
> with multiple modes:

L T(s)
2 + 2Cwis + w?
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Example: HDD

Rj

é; + 2(,'(,0,'9.,' + w,-29,- = KT < @,’(S) =

» final model:
n

o(s) = Z ol T(s)

2 + 2Cwis + w?
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numpy np
matplotlib.pyplot plt
scipy signal

control ct
num_sector 420 # Number of sector
num_rpm = 7200 # Number of RPM
Kp_vem = 3.7976e+07 # VCM gain
omega_vcm np.array([0, 5300, 6100, 6500, 8050, 9600, 14800, 17400,

21000, 26000, 26600, 29000, 32200, 38300, 43300,
44800]) * 2 * np.p%

kappa_vcm = np.array([1, -1.0, +0.1, -0.1, 0.04,

0.2y =iy H.0; BBy Bodlg c 2.0
0.3, -0.51)
zeta_vem = np.array([0, 0.02, 0.04, 0.02, 0.01, 0.03, 0.01,
0.02, 0.02, 0.012, 0.007, 0.01, 0.03, 0.01, 0.01,
0.011)
Sys_Pc_vem_cl = ct.TransferFunction([], [1]) # Create an empty

transfer function
i range (len(omega_vcm)) :
Sys_Pc_vcm_c1 Sys_Pc_vcm_c1l ct. TransferFunction(np. array(
[0, O, kappa_vem[i]]) * Kp_vem, np.array([1, 2 * zeta_vem[i]
omega_vcm[i], (omega_vcm[i]) 21))
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Models of continuous-time systems

» modeled as differential equations:

position: y(t)

Rj
—T(s
2 + 2C,w,-s+ w,~2 ( )
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Models of continuous-time systems

General continuous-time systems:

dut) I

d"u(t) d™u(t)
den der—1 b

dtm drm—1

+ -+ aoy(t) = bm

+ -+ bou(t)

with the initial conditions y(0) = yo, ..., ™(0) = yg").

21/29



Models of discrete-time systems

General discrete-time systems
> inputs and outputs defined at discrete time instances k=1,2,...

> described by ordinary difference equations in the form of

y(K)+an—1y(k—1)+- - -+aoy(k—n) = bpu(k+m—n)+---+bou(k—n)

Example: bank statements
> x(k+1) = (14 p)x(k) + u(k), x(0) = xo
> k — month counter; p — interest rate; x(k) — wealth at the beginning

of month k; u(k) — money saved at the end of month k; xp — initial
wealth in account
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Model properties: static v.s. dynamic, causal v.s. acausal

u—=Mp—>y
Model M is said to be

> memoryless or static if y(t) depends only on u(t)

» dynamic (has memory) if y at time t depends on input values at other
times

> eg y(t) = M(u(t) = u(t), W(6) = Jg u(r)dr, Y(K) = S u(i)
> causal if y(t) depends on u(T ) for T<t
> strictly causal if y(t) depends on u(7) for 7 < t, e.g.: y(t) = u(t— 10)
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Linearity and time-invariance

The system M is called

| 2

vV V. VvV VvV

linear if satisfying the superposition property:
M(arun(t) + azuz(t)) = caM(ui(t)) + e M(u2(t))

for any input signals u1(t) and wa(t), and any real numbers oy and ap
time-invariant if its properties do not change with respect to time
e.g., ¥(t) = Ay(t) + Bu(t) is linear and time-invariant

y(t) = 2y(t) —sin(y(t))u(t) is nonlinear, yet time-invariant

y(t) = 2y(t) — tsin(y(t))u(t) is time-varying

assuming the same initial conditions, if we shift u(t) by a constant time
interval, i.e., consider M(u(t+ 79)), then M is time-invariant if the output
M(u(t+ 10)) = y(t+ 70)
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George Box

“All Models are Wrong, but Some are Useful”

> statistical models always fall short of the
complexities of reality but can still be useful
nonetheless

P a dynamic system may simply be too complex
(consider the neural system of human brains)

» or there are inevitable hardware uncertainties
such as the fatigue of gears or bearings in a car |
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> temperature influence

» manufacturing variations w*

Frequency [Hz]

» but, control works!

Frequency [Hz]
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Amplitude spectrum of y
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of Track wi
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