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Population dynamics
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prokaryotic fission

@ ~1 hour / division with infinite resource
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Population dynamics
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Population dynamics
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prokaryotic fission
@ ~1 hour / division with infinite resource
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o after 1 day:
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Population dynamics
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Environmental limits to population growth: Figure 1, by OpenStax
College, Biology, CC BY 4.0.
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The exponential function and population dynamics

Exponential Growth Logistic Growth

Carrying capacity

Population size
Population size

Time Time

@ more general population dynamics (w/ infinite resources)

r

dN ~
i (birth rate — death rate) N = N(t) = ¢"N(0)
o logistic growth (w/ limited resources in reality)
dN _ K- N KNoe' K
T N= N(t)= _
dt K = N(t) (K— No) + Noet 1+ %e_rt
0
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The exponential function and the logistic S curve: example
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The logistic S curve

can also be written as
K
14e—(t—to)

o K: final value
o r: logistic growth rate

@ t,: midpoint
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The logistic S curve

K
K—N,
1 0 o—rt
+ o e
. 10000 { — tp=2
can also be written as to=a
K — tp=6
m 80001 — to=8
o K: final value
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o r: logistic growth rate
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The logistic S curve

can also be written as
K
14e—(t—to)

o K: final value

o r: logistic growth rate

@ t,: midpoint
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The logistic function in deep learning

1

7= T e

1+
P (1+e%)

o transforms the input variables into a probability value between 0 and 1
o represents the likelihood of the dependent variable being 1 or 0
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@ Continuous-time state-space solution
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General LTI continuous-time state equation

Z—);:Ax—i—Bu

Z: |: Aan ‘ Bn><m :|

Cny><n ‘ Dny><m

@ to solve the vector equation X = Ax+ Bu, we start with the scalar
case when x, a, b, u € R.
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The solution to x = ax+ bu

o fundamental property of exponential functions

g,
dt

g
dt

—at _ _ jo—at

o X(t) = ax(t) + bu(t), a#0 " =Z° e atx(t) — etax(t) = e *thu (t)

o namely,

% {e 7' (t)} = e *bu(t) & d{e ¥x(t)} = e **bu(t) dt

t
= e 'x(t) = e "x(tp) +/ e Tbu(T)dr

to
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The solution to x = ax+ bu

t
e ?'x(t) = e ™ x(tp) +/ e bu(r)dr

to

when tg = 0, we have

t
x(t) = €"x(0) +/ by (1) dr
—— 0

free response

forced response
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About e

o e=> L =271828...

n=0 n
» Taylor expansion

. x 1, 1
=1+ 7+ 5007+ ()" +
> letting x=1gives e= Y7 &

o Python demonstration:

import math
math.e
for ii in range(10):
print(sum(1/math.factorial(k) for k in range(ii)))
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About e

1
e:ZE:2.71828...
n=0

3.0

e=2.71828...

2.5

n=0
N
o
L

Convergence of » 1/n!
- -
o w
n |

0.5 4

0.0

20/ 84



About e
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About e

1
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About e

1
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About e

1
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About e
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About e
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About e
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The solution to x = ax+ bu

Solution concepts of €”x(0)

15 , : : , — e=2.71828...
09 gi: 1 e—l ~ 37%
08 Fi' 1 _
ol | €2~ 14%,
g 08f g 6_3 ~ 5%,
gosp o 1 e =2%
< o4} . 1 . A1
ol i | time constant 7 = = when
! 1 a<0: after 37, €?'x(0), the
ot e 1 transient has approximately
o ‘ ‘ LR
0 05 1 15 2 25 3
- converged
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The solution to x = ax+ bu

Unit step response

when a < 0 and u(t) = 1(t) (the step function), the solution is
x(t) = %(1 —e)

|a
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The solution to n'"-order LTI systems

@ general state-space equation

) X(t) = Ax(t) + Bu(t) _ n
Y { We) = Cx(t) + Du(t) x(th) =x €R", AeR

@ solution

t
x(t) = eAlt-0)xg 4 / A7) Bu(r)dr
N’

to

free response

forced response

t
Y () = CAt-)yg 4 ¢ / A7) Bu(r)dr + Du (¢)
to

o in both the free and the forced responses, computing €’ is key

o eAlt=t). called the transition matrix
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The state transition matrix et
scalar case with a € R: Taylor expansion gives
at 1 2 1 n
e :1+at+§(at) —|—---+m(at) +...

the transition scalar ®(t, ty) = e?(*~%) satisfies

ot t)=1 (transition to itself)
O(t3, t2)P(t2, t1) = P(t3, t1) (consecutive transition)

O(tp, t1) = O (11, 1) (reverse transition)
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The state transition matrix et

matrix case with A € R™";

1 1
eAt:/,,+At+§A2t2+-~+ﬁA"t”+...

@ as /, and A’ are matrices of dimension n x n, et must € R™"

o the transition matrix ®(t, to) = eA(t=1%) satisfies

0 =1, o(t,t) = I,
eAtl eAt2 = eA(t1+t2) ¢(t3, tz)q)(tz, tl) = ¢(t3, tl)

-1
At = [eAt] O(t2, 11) = O~} (ta, 12)

o note, however, that e*teBt = eA+tB)t if and only if AB = BA (check
by using Taylor expansion)

32/84



Computing €t when A is diagonal or in Jordan form

convenient when A is a diagonal or Jordan matrix

A 0 O
the case with a diagonal matrix A= | 0 X O
0 0 A3
M0 0 M0 0
o A= 0 N 0|, ...,A=0 N O
0 0 A 0 0 XS

@ all matrices on the right side of
At 1 2 1 ngn
M= I+ At SA £ b A 4
n!

are easy to compute
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Computing a structured ! via Taylor expansion

A1 0 0
the case with a diagonal matrix A= | 0 X O
0 0 A3
At 12 1 nen
e :/+At+§At2+~-~+mAt+...

(10 0 Mt 00 1N o 0
=0 10|+ 0 Xt 0 [+ 0 B2 o |+.
[0 0 1 0 0 st 0 0 1xap
[T+ xt+ 3082+ 0 0
= 0 1+ Xt 4 3A32 + ... 0
i 0 0 L4+ Ast+ 2032+ ...

eMt 0 0
=| 0 e 0
0 0 et
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Computing a structured ! via Taylor expansion

0

1

0
Al

e also, (Mszt) (Nt) = AN = (Nt) (Ait) and hence e(MstHNt) — Alteht
o thus

the case with a Jordan matrix A =

> = O

A
0
0
A0 O 0
o decompose A= 0 AN 0 |+]|0 = At — (Ast+NI)
0 0 A 0

1
0
0
N

VN Atl
At — e(/\l3t+Nt) — Mgt =7 At Nt
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Computing a structured ! via Taylor expansion

A0 O 010
0 XN 0|+ |0 0 1f, eMt=eMeM
0 0 X 0 0O
N N
o Nis nilpotent': N® = N* = ... = 0/, yielding
Nt 1o 1 ° 0 Lo g
e :I3+Nt+§Nt2+— B4~ =101 ¢
| 0 0 1
@ thus
At et ge)‘t
A= 0 &t Tt
0 0 et

Lnil” ~ zero; “potent” ~ taking powers.
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Computing a structured ! via Taylor expansion

Mass moving on a straight line with zero friction and no external force

x(t) = e*tx(0) where
. o1 170 1][0 1 1t
e“_l+[0 O]t+2![0 OHO 0:|t2+...—|:0 1].

155)
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Computing low-order ¢! via column solutions

an intuition of the matrix entries in €*t: consider:

. 0 1
x:Ax:{O _1]x, x(0) = xo

o A 1st column | 2nd column x1(0)
(t) = €''x(0) = /a-;(?) ’3'2/(?) ] [Xz(o)] (1)

= a1(t)x1(0) + a2(t)x2(0)

observation
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Computing low-order ¢! via column solutions

X = Ax = [

hence, we can obtain €* from:

t
. x1(t) =x2(t) x1(t) :eOtX1(0) +/ eo(tiT)XQ(T)dT
o write out | ) = — () = 0
fo(t) == xo(t) =e 'x2(0)
t)=1
o let x(0) = [ (1) } then 2 t; _o namely x(t) = [ é ]
o let x(0) = [ (1) } then xo(t) = et and x1(t) =1 — €%, or more
1—et
compactly, x(t) = ot
ot
o using (1), write out directly et = [ é L ej }
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Computing low-order ¢! via column solutions

Compute et where

>

Il
o O >
O >
> = O
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© Discrete-time state-space solution
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Recall: population dynamics

1

prokaryotic fission
@ ~1 hour / division with infinite resource
o after 1 day:
100 - 200 "> 400 - 100 x 224 = 1.7BI

AN __
=1

o or: N(k+ 1) =2N(k) = N(k) =2%N(0)

43 /84



Solution to discrete-time state equation

discrete-time system:
x(k + 1) = Ax(k) + Bu(k), x(0) = xo,

iteration of the state-space equation gives:

u (ko)
u(ko+1
x (k) = A" Rox (ko) + [Ak—ko—ls, Ak-ko=2p ... B ( . )
u(k—1)
k—1 .
Slx(k) = ARx (ko) + > A TIBu())
J=ko

free response

forced response
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Solution to discrete-time state equation

k—1
x(k) = A Rox (ko) + Y - A*1Bu())
Jj=ko

free response

forced response

®(k,j) = AkJ: the transition matrix:

Ok k) =1
®(ks, ko)P(ko, k1) = P(ks, k1) ks > ko > ki
®(ka, k1) = @ L(ki, ko) if and only if A is nonsingular
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The state transition matrix AX

similar to the continuous-time case, when A is a diagonal or Jordan
matrix, A¥ is easy

A1 0 0 Moo
o diagonal matrix A= | 0 X 0 [: Ak=] 0 )\é 0
0 0 A3 0 0 X
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Computing a structured A via Taylor expansion

@ Jordan canonical form

A1 0 A0 O 010
A=]10 X 1 |=[0 X 0]|+|[0 01
0 0 X 0 0 A 0 00O

s N

A= (A + M)

_ k - k _
= (AL 4+ k(MBI N+ ( 5 ) (AB)* 2N2+( 3 )(AI;;)k N4
2 comblnatlon N3=N4=...=0l3

0 0 0 1
= o + kAl 1 +k(k2_1)xk*2 0 0 0
/\k 0 0 0 O

;

2!

k )\k 1 72
=|0 A k)\“
0 0 MK

o O O
o O
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Computing a structured A via Taylor expansion

Recall that < ,; > = 3k(k—1) (k—2). Show

A 1 0 0
0N 10

A=1o0 0 a1
[0 0 0 A
AR AR Lk (k—1) A2 Zk(k—1) (k—2) Ak3

Ak | O MK kK1 Fk(k—1) A2

0 0 MK kK1
| 0 0 0 MK
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@ Explicit computation of the state transition matrix e*t
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Explicit computation of a general e*!

@ why another method: general matrices may not be diagonal or Jordan

@ approach: transform a general matrix to a diagonal or Jordan form,
via similarity transformation
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Computing €t via similarity transformation

principle concept:

@ given
x(t) = Ax(t) + Bu(t), x(0) =xp € R", A R™"

o find a nonsingular T € R™" such that a coordinate transformation
defined by x(t) = Tx*(t) yields

9 (T (8)) = AT (£) + Bu(t)

dt
d * . —1 * —1
e (t) = T AT x(t)—i—\T\/_BJu(t)
2£A: diagonal or Jordan B*
x*(0) = T 1x
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Computing €t via similarity transformation

o when u(t) =0

. . x=Tx* 9« . 1 %
X(t) = Ax(t) = s (t) = T AT x*(t)
£A: diagonal or Jordan
. : A1 0
@ now x*(t) can be solved easily: e.g., if A = 0 | then
2

co-eew=[4 2400
o x(t) = Tx*(t) then yields
x(t) = Téx*(0) = T T 1xg

o on the other hand, x(t) = e*'xp =

At = TMT
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Similarity transformation

@ existence of solutions: T comes from the theory of eigenvalues and
eigenvectors in linear algebra

o if Aand B € C"™" are similar: A= TBT~ 1, T C"™", then

> their A" and B" are also similar: e.g.,
A2 =TBT'TBT ' = TR T
> their exponential matrices are also similar
At — TBET-1

as
1
TP T = T(I, + Bt + 5/321:2 +..)T!

1

=TLT Y+ TBtT 1 + ETthzT‘l +...
1

= /+At+§A2t2+~--:eAt
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Similarity transformation

o for A€ R™" an eigenvalue A € C of A is the solution to the
characteristic equation

|det(A—\))=0| (2)

o the corresponding eigenvectors are the nonzero solutions to

At=At< (A-A)t=0 (3)

5584



Similarity transformation

The case with distinct eigenvalues (diagonalization)

recall: when A € R™" has n distinct eigenvalues such that

Ax1 = \1xq
AXp = AnXn
or equivalently
A0 0
0 A
Alxa, x2, o5 xn] = X, X2, Xa] | 2
- 0 0 A
A
[x1,X2,...,x%s] is square and invertible. Hence

A=TAT Y A= T1AT
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Similarity transform: diagonalization

Physical interpretations

o diagonalized system:

0-|% & [ || 240 ]

o x(t) = Tx*(t) = eMix(0)t1 + €2tx5(0)t, then decomposes the state
trajectory into two modes parallel to the two eigenvectors.

57/84



Similarity transform: diagonalization

Physical interpretations

o if x(0) is aligned with one eigenvector, say, t;, then x5(0) = 0 and
x(t) = eMix;(0)t; + €2ix5(0)ty dictates that x(t) will stay in the
direction of t;

o i.e., if the state initiates along the direction of one eigenvector, then
the free response will stay in that direction without “making turns”

o if A1 <0, then x(t) will move towards the origin of the state space; if
A1 = 0, x(t) will stay at the initial point; and if positive, x(t) will
move away from the origin along t;

o furthermore, the magnitude of A; determines the speed of response
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Similarity transform: diagonalization

Physical interpretations

t1 T2

1.5

. t2

0.5

0 . a','l
05

B et

33 1 05 0 s of is
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Similarity transformation

The case with complex eigenvalues

consider the undamped spring-mass system

T R
——

A

the eigenvectors are
. . 1
)\1:JI(A—J/)t1:0:>t1:|:j:|

M=—j: (A+jltb=0=tr = [ 1. } (complex conjugate of t;)

hence
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Similarity transformation

The case with complex eigenvalues

—_———
A
° Ao =4y
|11 11| 1 =
°T_[ J]’T _2[1 J]
@ we have
At TMTL_ T el 0 1 _ | cost sin t
0 et —sint cost
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Similarity transformation

The case with complex eigenvalues

for a general A € R2*2 with complex eigenvalues o & jw, by using
T = [tg, tj], where tg and t; are the real and the imaginary parts of t1, an
eigenvector associated with \; = ¢ + jw , x = Tx" transforms x = Ax to

vw=| 7, ¢

—W o

and

o w |,
ol W o] _ e’tcoswt  fsinwt
T | —e%tsinwt e’tcoswt
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

consider A = [ 12 ]: two repeated eigenvalues A (A) =1, and

01

(A—Al)tlz[g é]tlzozmlz[(”

@ No other linearly independent eigenvectors exist. What next?
o A is already very similar to the Jordan form. Try instead

Al bl=[t 1.'2][())\ i\]

which requires Aty = t; + Ay, i.e.,

(A—)\/)tg_t1<=>|:8 g]fz_{(l)}#b_[o%}

tr is linearly independent from t; = t; and t» span R?. (t2 is called a
generalized eigenvector.)
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

for general 3 x 3 matrices with det(A/ — A) = (A — \p)3, i.e
A1 = A2 = A3 = A\, we look for T such that

A= TJT !

where J has three canonical forms:

0, 0 )\ iii) A 1
0 Am
0
0

—_
o

3

Am 1 0
i), 0 Am or Am 1
0 0 Apm 0 Anm
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

An 0 0
), A=TJT Y, J=| 0 X, O
0 0 Anm

this happens

o when A has three linearly independent eigenvectors, i.e.,
(A— An/)t = 0 yields t;, tp, and t3 that span R3

e mathematically: when nullity (A — Am/) = 3, namely,
rank(A — Ap/) = 3 — nullity (A — Apn/) =0
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

i, A=TJT Y, J=] 0 Xy O |or | O A, 1
0 0 Anm 0 0 An

o this happens when (A — A\,,/)t = 0 yields two linearly independent
solutions, i.e., when nullity (A — Ap/) =2

@ we then have, e.g.,

Ay 1 0
Alty, to, t3] = [t1, o, t3] | O Ay O
0 0 M\,

= [)\mtla t1 + )\mt2> )\mt3] = [Atla At27 At3]

o t; and t3 are the directly computed eigenvectors
o for ty, the second column of the above gives (A — Ap)tr = t1
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Similarity transformation

The case with repeated eigenvalues via generalized eigenvectors

Am 1 0
i, A=TJT Y, J=| 0 Apn 1
0 0 Anm

o this is for the case when (A — A\,/)t = 0 yields only one linearly
independent solution, i.e., when nullity(A — A\p,/) =1
o We then have

Am 1 0
Alti, to, t3] = [t1,t2,t3] | O Ay 1
0 0 Am

& [Amti, t1 + Amto, t2 + Amts] = [At1, Ao, Ats]
yielding
(A= Anht1 =0
(A= M, to = t1, (to : generalized eigenvector)
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Example

-1 1 00
o two repeated eigenvalues with rank(A — 0/) = 1 = only one linearly

A:[_l 1],det(A)\l):)\2:>)\1:)\2:0,J:[0 1]

independent eigenvector:(A—0/)t; =0 = t; = [ 1 }

o generalized eigenvector:(A—0)tp = t; = th = [ (1) ]

@ coordinate transform matrix:

O RSN

1 0] [ € te 1 0 1—¢t ¢t
At _ Jt—1 __ —
e_TeT_[l 1“0 eOfH—l 1]_[4 1+t]
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Example

-1 1
observation:

0)\1:0,t1:|:1

characterized by *t =1

A= [ -1l ] det(A— M) =)2= X\ =\ = 0.
} implies that if x1(0) = x2(0) then the response is

o ie., x1(t) = x1(0) = x2(0) = x2(t). This makes sense because
X1 = —x1 + xo from the state equation
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Exercise

Obtain the eigenvectors of

—2 2 -3
A=| 2 1 6| (M=5 Aa=A3=-3).
1 -2 0
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Generalized eigenvectors

Physical interpretation

Am 1 0
when x= Ax, A= TJT 1 with J= 0 MAn O |, wehave
0 0 Anm
eMmt et 0
xX()=e"x0)=T| 0 et 0 | T 1x0)
0 0 e\t
e)\mt te mt 0 )l
=T| 0 &t 0 |FTX(0)
0 0 et

o if the initial condition is in the direction of ty, i.e.,
x*(0) = [x;(0),0,0] " and x;(0) # 0, the above equation yields

x(t) = x(0)ty el
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Generalized eigenvectors

Physical interpretation

Am 1 0
when x= Ax, A= TJT 1 with J= 0 MAn O |, wehave
0 0 M\p
et termt
xX()=e"x0)=T| 0 et 0 | T 1x0)
0 0 et

=T| 0 & 0 Pl”T?l(O)
0 0 et

o if x(0) starts in the direction of tp, i.e., x*(0) = [0, x5(0),0] ", then
x(t) = x5(0)(t1te*t + tre*mt). In this case, the response does not
remain in the direction of t, but is confined in the subspace spanned

by t; and t,
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Example

Obtain eigenvalues of J and e’t by inspection:

-1 0 0 0 O
0 -2 1 0 O

J=1 0 -1 =2 0 O
0 0 0 -3 1
0

0 0 0 -3
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© Explicit Computation of the State Transition Matrix A
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Explicit computation of A¥

everything in getting the similarity transform applies to the DT case:
A= TNT L or A= TST!

J JK
X\ O [ A0
LR
A 10 [ AR AL Lk (k— 1) AF2
0 A 1 (D L > U
[0 0 A L 0 0 Ak
A 1 0 [N kAL 0
0 XN O 0 A" 0
| 0 0 A3 | 0 A5
) rk[ cosk9 sin k6
o w —sin kf cos kB
| —w U:| = Vo2 4+ w?
Hztanflw

o
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Example

_| .
1
— o
coo~3
— |
|
8 —~
| I — |
[ co Yoo
-
S o
< 11__000
X
<
c o
M 1ﬂ oooo
o
[0} N —
=
= Il
= =
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@ Transition Matrix via Inverse Transformation
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Transition matrix via inverse transformation

Continuous-time system

state eq. x(t) = Ax(t) + Bu(t), x(0) = xo
t
solution x(t) = €*'x(0) +/ A7) Bu(r)dr
~—— 0

free response
forced response

transition matrix e*t

On the other hand, from Laplace transform:

x(t) = Ax(t) + Bu(t) = X(s) = (sl — A" x(0) + (sl — A"t BU(s)

free response forced response

Comparing x(t) and X(s) gives

=L {(sI- A}
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Example

a=[ 2, ¢]

Ul R |

cos (wt)  sin (wt)

= e"t[ —sin(wt) cos (wt) ]
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Transition matrix via inverse transformation (DT case)

Discrete-time system

state eq. x(k+ 1) = Ax(k) + Bu(k), x(0) = xo
(k=1)
solution x(k) = Akx(0) + Z AC=1=0) By(j)
SN——" =0

free response

forced response
transition matrix  transition matrix AX

On the other hand, from Z transform:
X(2) = (21 — A) "t 2x(0) + (21 — A) ' BU(s)

Hence

Ak = 271 (21— A) 12}
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Example
A [ ocow }
—WwW o

ol o))
I{H W[Z:s )
1 {z

zZ— rcosf rsin@
— 2rcos€z+ r —rsin@  z— rcosf

w
r= \/m, 0 =tan"1 =
o

cos k@  sin kO
—sin kf cos kO

-1
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Example

Consider A = [

[ 075

0.7 0.3
01 05 } We have
(2l —A) 'z
r 2(z—0.5) 0.3z
(z—0.8)(z—0.4) (z-0.8)(z—0.4)
0.1z 2(z—0.7) ]
(z—0.8)(z—0.4) (z-0.8)(z—0.4)

r 0.75z 0.25z
z—0.8 +

z—0.4
0.25z 0.25z

z—0.8 z—0.4
0.25z 0.75z

L z—0.8 z—0.4

0.8
0.8

0.25(

0.75z _ 0.75z :|

z—0.8 + z—0.4

)€+ 0.25(0.4)% 0.75(0.8)% — 0.75 (0.4)"
)k —0.25(0.4)F 0.25(0.8)" + 0.75 (0.4)*

|

84 /84



	Introduction
	

	Continuous-time state-space solution
	

	Discrete-time state-space solution
	

	Explicit computation of the state transition matrix eAt
	

	Explicit Computation of the State Transition Matrix Ak
	

	Transition Matrix via Inverse Transformation
	


