
ME547: Linear Systems
State-Space Dynamic System Models

Xu Chen

University of Washington

UW Linear Systems (X. Chen, ME547) State-Space Introduction 1 / 12



Why state space?

static/memoryless system: present output depends only on its present
input: y(k) = f(u(k))
dynamic system: present output depends on past and its present
input,

▶ e.g., y(k) = f(u(k), u(k − 1), . . . , u(k − n), . . . )
▶ described by differential or difference equations, or have time delays

how much information from the past is needed?

UW Linear Systems (X. Chen, ME547) State-Space Introduction 2 / 12



The concept of states of a dynamic system

the state x(t) is the information you need at time t that together with
future values of the input, will let you compute future values of the
output y
loosely speaking:

▶ the “aggregated effect of past inputs”
▶ the necessary “memory” that the dynamic system keeps at each time

instance

UW Linear Systems (X. Chen, ME547) State-Space Introduction 3 / 12



Example

position: y(t)

m

k

b

u = F

to predict the future motion, we need to know
▶ current position and velocity
▶ future force

⇒ states: position and velocity

UW Linear Systems (X. Chen, ME547) State-Space Introduction 4 / 12



The order of a dynamic system

position: y(t)

m

k

b

u = F

the number, n of state variables that is necessary and sufficient to
uniquely describe the system
for a given dynamic system,

▶ the choice of state variables is not unique
▶ however, its order n is fixed
▶ i.e. you need not more than n but not less than n state variables

UW Linear Systems (X. Chen, ME547) State-Space Introduction 5 / 12



States of a discrete-time system

consider a discrete-time dynamic system:

u (k) // System
x1,x2,...,xn

// y (k)

the state at any instance ko is the minimum set of variables,

x1(ko), x2(ko), · · · , xn(ko)

that fully describe the system and its response for k ≥ ko to any given
set of inputs
loosely speaking, x1(ko), x2(ko), · · · , xn(ko) defines the system’s
memory

UW Linear Systems (X. Chen, ME547) State-Space Introduction 6 / 12



Discrete-time state-space description

u (k) // System
x1,x2,...,xn

// y (k)

general case

x(k + 1) = f(x(k), u(k), k)
y(k) = h(x(k), u(k), k)

u(k): input; y(k): output
x(k): state
x(k + 1) = f(·): state Eq
y(k) = h(·): output Eq

linear time-invariant (LTI) case

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

Σ(A,B,C,D) denotes a
state-space realization

also written as Σ =

[
A B
C D

]

UW Linear Systems (X. Chen, ME547) State-Space Introduction 7 / 12



Continuous-time state-space description

u (t) // System
x1,x2,...,xn

// y (t)

general case

dx(t)
dt = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)

LTI case

dx(t)
dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

UW Linear Systems (X. Chen, ME547) State-Space Introduction 8 / 12



Example: mass-spring-damper

position: y(t)

m

k

b

u = F

x(t) =


mass position︷︸︸︷

y(t)
v(t)︸︷︷︸

mass velocity

 ∈ R2

UW Linear Systems (X. Chen, ME547) State-Space Introduction 9 / 12



Example: mass-spring-damper

position: y(t)

m

k

b

u = F

d
dt

[
y(t)
v(t)

]
︸ ︷︷ ︸

x(t)

=

[
0 1

− k
m − b

m

]
︸ ︷︷ ︸

A

[
y(t)
v(t)

]
︸ ︷︷ ︸

x(t)

+

[
0
1
m

]
︸︷︷︸

B

u(t)

y(t) =
[
1 0

]︸ ︷︷ ︸
C

[
y(t)
v(t)

]
︸ ︷︷ ︸

x(t)

UW Linear Systems (X. Chen, ME547) State-Space Introduction 10 / 12



Coding a continuous-time state-space system in MATLAB

A = [0,1;-3,-2];
B = [0;1];
C = [2,1];
D = 0;
sys_ss = ss(A,B,C,D)

[yout, T] = step(sys_ss);
figure, plot(T, yout)

UW Linear Systems (X. Chen, ME547) State-Space Introduction 11 / 12



Coding a continuous-time state-space system in Python

import control as co
import matplotlib.pyplot as plt
import numpy as np
A = np.array([[0,1],[-3,-2]])
B = np.array([[0],[1]])
C = np.array([2,1])
D = np.array([0])

sys_ss = co.ss(A,B,C,D)
print(sys_ss)

T,yout = co.step_response(sys_ss)

plt.figure(1,figsize = (6,4))
plt.plot(T,yout)
plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

UW Linear Systems (X. Chen, ME547) State-Space Introduction 12 / 12


	Motivation
	State-space description of a system

