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From infinite series to Laplace

00 (_1)n+1 _
° Zn:l =7

n

@ how does it relate to the Laplace transform?
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Introduction

Pierre-Simon Laplace (1749-1827)
o “the French Newton” or “Newton of France”
@ 13 years younger than Lagrange

o studied under Jean le Rond d'Alembert
(co-discovered fundamental theorem of algebra,
aka d'Alembert/Gauss theorem)
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The Laplace approach to ODEs

Laplace Transform

Easy

? Easy

Easy

Inverse Laplace Transform

Arithmetic
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Sets of numbers and the relevant domains

set: a well-defined collection of distinct objects, e.g., {1,2,3}
R: the set of real numbers

C: the set of complex numbers

€: belong to, e.g., 1€ R

R : the set of positive real numbers

£: defined as, e.g., y(t) £ 3x(t) + 1

e 6 6 6 o o
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Continuous-time functions

Formal notation:
f: R+ — R

where the domain of fis in Ry, and the value of fis in R
@ we use f{t) to denote a continuous-time function
@ assume that f{t) =0 forall t<0
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Laplace transform definition

For a continuous-time function
f: R+ — R

define Laplace Transform:

F(s) = L{f1)} 2 /O T et
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Existence: Sufficient condition 1

e f(t) is piecewise continuous

t)

By

|
!
!
|
|
|
1
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Existence: Sufficient condition 2

o f(t) does not grow faster than an exponential as t — oo:
|f(t)| < ke, for all t > tg

for some constants: k, «a, tg € R,.

(1)
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Examples: Exponential
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Examples: Exponential

1, t>0

°ﬂ”:u”:{o,t<o
° Fs)=1

S
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Laplace transform and infinite series

0 I° =t s

n=1 n
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Examples: Sine

o f(t) =sin(wt)
° F(s)= 2t

o Use: sin(wt) = e"wt_;jwt, L{e¥t} = s_ljw
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Recall: Euler formula

€® =cosa+jsina
Leonhard Euler (04/15/1707 - 09/18/1783):

@ Swiss mathematician, physicist, astronomer, geographer, logician and

engineer

o studied under Johann Bernoulli

o teacher of Lagrange

o wrote 380 articles within 25 years at Berlin

@ produced on average one paper per week at age 67, when almost
blind!
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Examples: Cosine

o f{t) = cos(wt)

° Ks)= 222
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Examples: Dirac impulse

o(t—T)

T t
o a generalized function (formally, a distribution)
o e.g., consider y — ay = i+ bu
» if uis a unit step 1(t)
> i has ajump at 0
» cannot directly evaluate !
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Approximating the unit step

Amplitude
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Approximating the unit step

1
08 1
% 0.6 | 1
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< o4l 4
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o ‘ ‘ ‘ ‘
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Time (sec)
0 fort<O
pe(t) =< 1t foro0<t<e
1 fore<t
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Approximating 1(t)

; ° ' T\mez(sec) : ¢ * B ° ! T\m:(sec) ¢ ‘ *
0 fort<O 0 fort<O
pe(t):=q 1t foro<t<e fe(t) =3¢ L foro<t<e
1 fore<t 0 fore<t
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Approximating 1(t)
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Properties of the first-order approximation

fort< 0
for0<t<e
fore<t

ﬂe(t) =

Oanlm O

e ffooo fre(t)dt =1
o limeyo [70 At)aec(t)dt =
limeo [y f(t)2dt = A0)

Amplitude
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General Dirac impulse properties

15 5(t_ T)
L
0o . T '
o [T fe(t)dt=1
Sy o Jid(t= Ty =1
o limeo O At)c(t)dt = ° fo‘” (t— NAt)dt=AT)
limeo [y f(t) ¢ dt = A0) ’ )
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Challenges with the first-order approximation

ol ] o [1(t) is piecewise-continuous
and not fully differentiable

o /1c(t) = 1(t) is only first-order

g 0 " : - - ! differentiable
e @ cannot handle, e.g.,
o [ he(t)dt=1 y+2y—ay=u+3u+ bu

o limeo [7 ft)ic(t)dt =
limeo [y f(t)1dt = f0)
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Second-order approximation of 1(t)
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Second-order approximation of 1(t)
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Second-order approximation of 1(t)
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Second-order approximation of 1(t)

= Yo
' ° ! Tlmez(sec) : ! ’ ? Time (sec) : ‘ °
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Second-order approximation of 1(t)

delta

t<0
O<t<e
€< t< 2e
2e < t

08
0.6
0.4

0.2

time (sec)

o ue(t) = [ b

T)dr: a smoother

apprOX|mat|on of the unit step!

@ is twice differentiable

@ can keep on doing this to make

¢ infinitely differentiable
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Application of

the concept

Transmission of Signal Nonsmoothness
and Transient Improvement in
Add-On Servo Control

Tianyu Jiang and Xu Chen
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Laplace transform of the Dirac impulse

o L{0(t)} = [y e to(t)dt=eP =1
o because [;° (t)f(t)dt = f0)
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Properties of Laplace transform

—
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Linearity

For any «, 8 € C and functions f(t), g(t), let

F(s) = L{f(t)}, G(s) = L{g(1)}

then

| L{af(t) + Be(t)} = aF(s) + BG(s) |
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Differentiation

Defining
i) = 90
Fs) = £{AD)
o then

L{f(1)} = sF(s) — 0)

@ via integration by parts:
LIRD) = /OOO =t 1)dt
—— [ A (A}
= s/o e *tf(t)dt — f{0) = sF(s) — f0)
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Integration

Definin
: F(s) = L{f(1)}

then

z{ Otf(T)dT} - %F(s)
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at

Multiplication by e~

Defining
F(s) = L{(t)}
@ then
L{e 1)} = F(s+ a)
o Example: ) )
LAY = Lo =
L{sin(wt)} = 521’7&)2 L{e sin(wt)} = Muﬁ
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Multiplication by t

Defining
F(s) = L{A)
o then
£y = -0
o Example:
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Time delay 7

Defining

then

F(s) = L{A1)}

LAft—7)} =€ F(s)
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Convolution

Given f(t), g(t), and
(Fxg)(t /f(t 7)g(T)dr = (g* f)(t)

o then

L{(fxg)(t)} = A5)G(s)|

@ hence we have

9) — Gle) () = £ {(s
Ol Gl

because
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Initial Value Theorem

If 104) = lim0, A(t) exists, then

f04) = lim sF(s)

S—00
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Final Value Theorem

If lim;_oo () exists,
o then

fin 9 = Iy o5

o Example: find the final value of the system corresponding to:

 3(s+2) 3
M) = qer a0y 29 =55
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Common Laplace transform pairs

fit)  F(s) f(t) F(s)
H w —at 1
sinwt  — 5 €
s 4w s+ a
s 1
cos wt 52&%}2) t 52—2
s
tx(t) — 2 =
x(t) s s3 )
@ / X(s)ds te 5
s (5+ a
d(t 1 e %sin (wt
(1 (1) (s+a)° +w?
1
1(t) B e fcos (wt) st a
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