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Abstract—In repetitive control, the enhanced servo per-
formance at the fundamental frequency and its higher-
order harmonics is usually followed by undesired error
amplifications at other frequencies. In this paper, we discuss
a new structural configuration of the internal model in
repetitive control, wherein designers have more flexibility
in the repetitive loop-shaping design, and the amplification
of non-repetitive errors can be largely reduced. Compared
to conventional repetitive control, the proposed scheme is
especially advantageous when the repetitive task is subject
to large amounts of non-periodic disturbances. An addi-
tional benefit is that the transient response of the plug-in
repetitive control can be easily controlled, leading to an
accelerated transient with reduced overshoots. Verification
of the algorithm is provided by simulation of a benchmark
regulation problem in hard disk drives, and by tracking-
control experiments on a laboratory testbed of an industrial
wafer scanner.

Index Terms—repetitive control, digital control, distur-
bance observer, transient control, internal model principle

I. Introduction
Repetitive control (RC) is a well-known servo design

tool for systems that are subjected to periodic distur-
bances/references. It implements an internal model [1]
1/(1−z−N) (N is the period of the disturbance/reference),
or 1/(1− e−Tps) in the continuous-time case (Tp denotes
the period), into a feedback system, such that errors
in the previous repetition can be used to improve the
current regulation/tracking control. Distinguished by its
high performance as well as the simple design and
implementation criteria, ever since its introduction [2]–
[4], RC has attracted a great amount of research efforts
[3]–[6]. Its versatility has been tested in various prac-
tical applications, including but not limited to: track-
following in magnetic and optical disk drives [7]–[10],
robot arm control [11], and regulation control in vehicles
[12]. For more complete lists of applications, readers can
refer to the survey papers [5], [6].

The configuration of the internal model and its in-
teraction with the feedback system vary in literature.
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The continuous-time RC design mainly applies a series
or parallel plug-in configuration [3], [8], [13]–[16]. The
prototype RC [4], [17] applies the Zero-Phase-Error-
Tracking [18] idea and directly cascades a robust ver-
sion of 1/(1− z−N) into the open-loop transfer function.
Additionally there are plug-in configurations of discrete
RC design, among which [19], [20] applied optimization
techniques with an extended high-order internal model.

Ultimately, a generalized version of 1−z−N or 1− e−Tps

is absorbed into the denominator of the overall feed-
back controller, therefore creating high-gain control at
the repetitive frequencies (frequencies of the roots of
1− z−N = 0 or 1− e−Tps = 0).1 From Bode’s Integral Theo-
rem (see, e.g., [21]), enhanced servo performance at cer-
tain frequencies commonly results in deteriorated loop
shapes at other frequencies. This fundamental limitation,
reflected in repetitive control, is the comb-like magnitude
response in the closed-loop sensitivity function, along
with undesired gain amplifications at frequencies other
than the comb centers (see some examples in [8], [13],
[15], [16], [19], [20]). The problem is more significant if
there are large non-periodic components in the distur-
bance (e.g., in hard disk drive systems [22]).

Relaxing the previous performance limitations, this
paper proposes a new structural RC design with im-
proved loop-shaping properties. Instead of using the
full information of the previous errors, we provide an
approach to extract only the repetitive errors in feedback
control. In the frequency domain, this corresponds to a
series-parallel implementation of the internal model with
direct control of the comb-like loop shape, leading to
greatly reduced gain amplifications at the non-repetitive
frequencies. An additional benefit of the reduced gain
amplification is that the proposed design shows in-
creased ability to reject repetitive errors at high frequen-
cies. A second contribution of the paper is to provide a
generalized concept of the disturbance observer (DOB)
[23], which has been well-known as a robust control
design tool [24]–[28] but, to the authors’ best knowledge,
has not been discussed in a general context for repetitive
control. Finally, we discuss a flexible control of the
transient performance in RC, leading to a smoother and
accelerated transient response. A short version of the

1i.e., kFs/N Hz for 1− z−N = 0 and k/Tp Hz for 1− e−Tps = 0. Here
k = 0,1,2, ... and Fs is the sampling frequency. Fs/N and 1/Tp are called
the fundamental frequencies.



paper appeared in [29]. The added values here include:
detailed proof and analysis that are omitted from the
conference version (especially in Sections II and V);
additional discussion of the transient design in Sections
V and VI; experimental results; and the newly developed
Section III.

The remainder of the paper is organized as follows.
Sections II and IV present the proposed controller de-
sign and the stability conditions. Section III provides
a detailed comparison of the proposed algorithm with
related prior publications. In Section V, we discuss the
reduction of overshoot and transient time when imple-
menting the add-on compensator. Section VI provides
verification of the algorithm by simulation and experi-
mentation. Section VII concludes the paper.

II. Controller parametrization

Fig. 1 presents the proposed closed-loop repetitive
control scheme. Here P(z−1) is the sampled plant (with
digital holders) to be controlled. C(z−1) is an exist-
ing feedback controller designed by any proper loop-
shaping methods (e.g., PID or H∞ control) to achieve the
baseline servo performance and robustness. The signals
r(k), y(k), u(k), and d(k) are respectively the reference, the
plant output, the control input, and the lumped input
disturbance.

The proposed plug-in RC design utilizes the internal
signals e(k) and u(k) to generate a compensation signal
c(k) in Fig. 1. In the case of regulation control, r(k) = 0;
we aim to have c(k) cancel the periodic components in d(k).
In the tracking-control case, c(k) functions to reduce the
tracking error between y(k) and the non-zero periodic
r(k).

Within the plug-in compensator we have three mod-
ules:

• z−m, where m denotes the relative degree of P(z−1);
• P−1

n (z−1)–a nominal model of z−mP−1(z−1);
• and Q(z−1)–a filter to be designed shortly.

Notice that P−1(z−1) may be anti-causal but we have
added delays such that P−1

n (z−1) is realizable in Fig. 1.
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Figure 1: Block diagram of the proposed repetitive con-
trol scheme.
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(a) Equivalent form of Fig. 1.
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Figure 2: Block diagram transformation for converting
Fig. 1 to Fig. 3.

A. Time-domain analysis

Notice that if the P−1
n (z−1) block is removed from Fig.

1 and Q(z−1) is set to z−(N−m), the open-loop transfer
function becomes P(z−1) 1

1−z−N C(z−1), and the proposed
compensator reduces to an ideal-case plug-in repetitive
controller that is similar to prior constructions. To see
the intuition of the proposed scheme and the design
of Q(z−1), we first transform the block diagram to a
repetitive disturbance observer (RDOB) scheme. Notice
that for either regulation or tracking control, RC aims
at maintaining e(k) small. Performing the block diagram
transformations in Fig. 2, we obtain a unified regulation
problem in Fig. 3, where −e(k) can be regarded as a
fictitious output that is regulated in the presence of the
equivalent disturbances d(k) and r(k).
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Figure 3: Equivalent scheme of Fig. 1, from the perspec-
tive of a repetitive disturbance observer.

In Fig. 3, consider first the case where r(k) = 0 (reg-
ulation problem for rejecting repetitive disturbances).
Since y(k) = P(z−1)(u(k) + d(k)), the output of P−1

n (z−1) is
given by P−1

n (z−1)P(z−1)(u(k)+d(k)). Notice that P−1
n (z−1)≈

z−mP−1(z−1). Through the inverse filtering, the output of
P−1

n (z−1) thus approximately equals u(k −m) + d(k −m).
Subtracting now u(k−m), the output of the z−m block,
yields an approximated d(k−m) (i.e., uQ(k) = d̂(k−m)).
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Figure 4: Block diagram of a conventional disturbance
observer.

Due to the m-step delays, the non-repetitive components
in d(k), and the unavoidable modeling errors in P−1

n (z−1),
directly applying d̂(k−m) to cancel d(k) commonly gives
poor performance (consider a simple example where
P(z−1) = z−2(1+∆); ∆ is the model uncertainty). The idea
of the proposed RDOB is to first obtain this estimated
d(k − m) via the preceding filtering, and then apply
a Q filter that aims at extracting only the repetitive
components and counteracting the m-step delay effect.
This intuition applies also to the case when r(k) , 0 (in
repetitive reference tracking), where analogous analysis
gives that the output of Q(z−1) is an approximation of
−P−1(z−1)r(k).

Compared to a conventional DOB-based servo control
in Fig. 4 (see e.g., [26], [27], [30]), Fig. 3 differs in two
aspects. First, we directly treat the repetitive reference
r(k) as an output disturbance for e(k). This changes the
r(k)-to-e(k) transfer function from (1−z−mQ+PP−1

n Q)/(1+
PC + (PP−1

n − z−m)Q) in Fig. 4 to (1 − z−mQ)/(1 + PC +
(PP−1

n −z−m)Q) (derivations provided in the next subsec-
tion) in Fig. 3, and makes the proposed scheme suitable
for both regulation and tracking problems. Second, the
central component Q(z−1) is a repetitive-signal extractor
rather than a lowpass filter, yielding the fundamentally
different loop shapes and design criteria for repetitive
control.

B. Repetitive loop shaping
From Fig. 1, the equivalent controller from e(k) to u(k)

is

Ceq(z−1) =
C(z−1) + Q(z−1)P−1

n (z−1)
1− z−mQ(z−1)

, (1)

from which we can obtain the sensitivity function S =
1/(1+PCeq) (for the sake of brevity, we omit the z-domain
index z−1 here):

S =
1− z−mQ

1 + PC + (PP−1
n − z−m)Q

. (2)

The closed-loop transfer functions from d(k) and r(k)
to e(k) are respectively given by

Ged(z−1) = −P(z−1)S(z−1) (3)

Ger(z−1) = S(z−1). (4)

Notice that in regions where the frequency response
P(e− jω) is well modeled by e− jmωPn(e− jω), we have

P(z−1)P−1
n (z−1)− z−m

≈ 0 (in the frequency domain) such
that the sensitivity function in (2) satisfies

S(z−1) ≈
1− z−mQ(z−1)

1 + P(z−1)C(z−1)
. (5)

In the frequency regions where large model mismatch
exists, we will make |Q(e− jω)| small such that the con-
tribution of [P(z−1)P−1

n (z−1) − z−m]Q(z−1) in (2) is still
insignificant to make (5) a valid approximation.

By the above constructions, we have separated the
baseline system response 1/(1+P(z−1)C(z−1)) from S(z−1)
in (5), and can now focus on designing the term 1−
z−mQ(z−1), to introduce the desired regulation/tracking
performance. The use of the inverse model P−1

n (z−1) has
helped to make this added module 1−z−mQ(z−1) simple
and depend little on the dynamics of P(z−1) (only the
plant delay z−m appears here).

Assume the disturbance contains only repetitive com-
ponents that asymptotically satisfy the internal model

(1− z−N)d(k) = 0, (6)

or in the tracking-control case

(1− z−N)r(k) = 0. (7)

From (3) and (4), to reject d(k) and r(k), it suffices to
have S(z−1)d(k) and S(z−1)r(k) converge asymptotically to
zero. By combining (2), (6) and (7), one may notice that
this sufficient condition is achieved if 1−z−mQ(z−1) con-
tains the term 1− z−N. Assigning Q(z−1) = z−(N−m) is one
way which gives a scheme similar to conventional RC.
In this paper we propose to apply an Infinite Impulse
Response (IIR) Q filter satisfying

Q(z−1) ,
BQ(z−1)

AQ(z−1)

and

AQ(z−1)− z−mBQ(z−1) = 1− z−N. (8)

Designing
AQ(z−1) = 1−αNz−N (9)

and solving (8) yield

BQ(z−1) = (1−αN)z−(N−m) (10)

1− z−mQ(z−1) =
1− z−N

1−αNz−N . (11)

Hence we have achieved to include the 1−z−N numer-
ator in 1−z−mQ(z−1), with an additional tunable module
1− αNz−N. Here α(∈ [0,1]) is the ratio between magni-
tudes of the poles and the zeros in 1−z−mQ(z−1).2 If α= 0,
Q(z−1) becomes a Finite Impulse Response (FIR) filter
(Q(z−1) = z−N+m) and RDOB generates a loop shape that
is similar to prior publications. This will be discussed

2For this analytical reason, we used αN instead of defining AQ(z−1) =
1−βz−N in (9), to avoid the appearance of (numerically more fragile)
N √
· in our discussion. Yet for practical implementation, β , αN can

directly be used without the need of computing αN online.



in more details in Section III. On the other hand, α = 1
cuts off the repetitive compensation. When α ∈ [0,1),
the loop shape can be flexibly designed. For instance,
let N = 10, m = 1, and assume a sampling frequency
of 26400 Hz. Increasing α from 0 to 0.99 yields the
magnitude responses in Fig. 5. We observe from the top
plot that, as α increases towards 1 (while still satisfying
α ∈ [0,1)), 1− z−mQ(z−1) has a sharper comb-like mag-
nitude response and a smaller H∞ norm. Correspond-
ingly in the bottom plot, Q(z−1) behaves as a sharper
spectral-selection filter to preserve only the repetitive
components. Specifically, if α= 0, Q(z−1) has a magnitude
response valued always at 1, and both the repetitive and
the non-repetitive error components are directly used for
feedback compensation; in the mean time, the maximum
value of 1− z−mQ(z−1) equals

∥∥∥1− z−mz−(N−m)
∥∥∥
∞

= 2, i.e.,
disturbances at the corresponding frequencies get ampli-
fied by 100%. One can observe that the design of (9) and
the introduction of α have provided an additional degree
of freedom for repetitive loop shaping, enabling the
improvement in Fig. 5, from the solid lines to the dotted
lines. Additionally we have the following theorem:

Theorem 1: When P(z−1) = z−mPn(z−1), conventional
RC amplifies non-repetitive disturbances by 100%
in the worst case. The worst-case amplification is(
2/(1 +αN)−1

)
×100% in the proposed scheme. The max-

imum amplification occurs to the disturbance compo-
nents at the frequencies (2k + 1)/(2TsN) Hz, k = 0,1, . . . .

Proof: The maximum disturbance amplification cor-
responds to the maximum magnitude response of 1−
z−mQ(z−1) in (2). For (11), the squared magnitude response
is

1− e− jωN

1−αNe− jωN ×
1− e jωN

1−αNe jωN =
1− cos(ωN)

1+α2N

2 −αN cos(ωN)
(12)

where ω = 2πΩHzTs (ΩHz is in Hz, Ts is the sampling
time in sec).

Noting, cos(ωN) ∈ [−1,1], we need only consider the
behavior of the function

f (x) =
1−x

1+α2N

2 −αNx
, x ∈ [−1,1] .

The derivative of f (x) is

f
′

(x) =
−

1
2 (1−αN)2(

1+α2N

2 −αNx
)2 , x ∈ [−1,1] .

It is straightforward to see that f
′

(x) monotonically
decreases as x increases from −1 to 1. Thus, min

{
f (x)

}
and max

{
f (x)

}
are attained respectively at x = 1 and

x = −1, with min
{
f (x)

}
= 0 and

||1− z−mQ(z−1)||2∞ = max
{
f (x)

}
=

( 2
1 +αN

)2
. (13)

Taking the square root of (13) gives the maximum am-
plification gain. Solving x = cos(2πΩHzTsN) = −1 gives
that the maximum occurs at the frequencies ΩHz = (2k +

1)/(2TsN), k = 0,1, . . . . As a special case of α = 0 (conven-

tional RC), ||1− z−mQ(z−1)||∞ =
√

max
{
f (x)

}∣∣∣
α=0 = 2. The

proof is done by computing the relative amplification
(||1− z−mQ||∞−1)×100%.
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Figure 5: Magnitude responses of 1 − z−mQ(z−1) and
Q(z−1) with different values of α.

Notice that Bode’s Integral Theorem still holds. Re-
duced amplifications of the non-repetitive errors are
accompanied with smaller regions of repetitive-error
rejection in Fig. 5. Correspondingly, sensitivity of the
algorithm w.r.t. the repetitive frequencies is increased.

C. Robustness and implementation of Q(z−1)
One central assumption in the previous subsection is

the small gain of
[
P(z−1)P−1

n (z−1)− z−m
]
Q(z−1) in (2). It

is practically not possible to have a perfectly accurate
model of P(z−1) in the high-frequency region, and thus
necessary to incorporate a lowpass filter in Q(z−1) to
make the influence of

[
P(z−1)P−1

n (z−1)− z−m
]
Q(z−1) small.

In the context of repetitive control, it is additionally pos-
sible (and recommended) to apply a zero-phase lowpass
filter. One simple and flexible construction is proposed
as follows. Define first the following zero-phase lowpass
filter as a base structure

q0(z,z−1) =
(1 + z−1)n0 (1 + z)n0

4n0
(14)

where 2n0 is the number of placed zeros at the Nyquist
frequency. To have additional freedom on the cut-off
frequency, we can add extra zero-phase pairs given by

qi(z,z−1) = qi(z−1)qi(z), (15)

qi(z−1) =
1−2cos(ωiTs)z−1 + z−2

2−2cos(ωiTs)
. (16)

Here i is the index number; ωi is in rad/sec. The filter
qi(z,z−1) places four zeros at e±ωiTs to remove the fre-
quency components at ωi’s rad/sec, and is normalized by



(2−2cos(ωiTs))2 to have a unity DC gain. The zero-phase
property is preserved since the frequency responses of
qi(z−1) and qi(z) are complex conjugates of each other.

Defining q(z,z−1) =
∏

j q j(z,z−1), we can now construct
the practical version of Q(z−1):

Q(z−1) =
(1−αN)z−(N−m−nq)

1−αNz−N z−nq q(z,z−1) (17)

where nq is the highest order of z in q(z,z−1) (so that
z−nq q(z,z−1) is realizable). It can be noted that Q(z−1)
is causal as long as N−m− nq ≥ 0. Fig. 6 presents one
realization of (17), with N memory elements for the
repetitive signal generator. The bandwidth of the low-
pass filter q(z,z−1) can roughly be tuned by comparing
the magnitude responses of

[
P(z−1)P−1

n (z−1)− z−m
]
Q(z−1)

and 1 + P(z−1)C(z−1). A more strict constraint from the
stability criteria will be provided in Section IV.

z¡nqq(z; z¡1)

®Nz¡m¡nq

z¡N+m+nq

yQ(k)xQ(k)
(1¡ ®N)

u¤Q(k)

Figure 6: Implementation of the Q filter.

D. The plant and its inverse
In Fig. 1, stability of P−1

n (z−1) is required for inter-
nal stability. If Pn(z−1) is a minimum-phase system,
P−1

n (z−1) can directly be used. For a practical sampled-
data system, non-minimum phase zeros may occur in
P(z−1) (usually in the high-frequency region [31], [32]).
If this happens, the Zero-Phase-Error-Tracking (ZPET)
algorithm [18] can be used to obtain a stable P−1

n (z−1).
An additional concern for P(z−1) is the possible ap-

pearance of resonances in the high-frequency region. In
this case, one can extend P(z−1) to include the baseline
anti-resonance controllers (e.g., notch filters), yet with a
possible increase of m in P−1

n (z−1) ≈ z−mP−1(z−1), due to
the phase loss in anti-resonance design.

III. Connections with prior schemes
With (17), the equivalent feedback controller in (1) is

Ceq =
q(z,z−1)(1−αN)z−(N−m)P−1

n + (1−αNz−N)C
1−

[
1− (1−αN)(1−q(z,z−1))

]
z−N .

For the ideal case of q(z,z−1) = 1 (perfect disturbance
rejection), Ceq =

[
(1−αN)z−(N−m)P−1

n + (1−αNz−N)C
]
/(1 −

z−N). One can remark that the internal model is absorbed
in the loop in a series-parallel fashion (the two terms
in the numerator of Ceq are in parallel form, and the
common part 1/(1− z−N) is in series with them).

Table I summarizes the equivalent overall feedback
controllers in different repetitive-control schemes. The
ideal forms in the second and the third columns provide
perfect disturbance rejection but are highly sensitivity to

model mismatches. Lowpass filters in the form of q(z,z−1)
or q(s) are used in the robust versions. C(z−1) and C(s)
denote the baseline feedback controllers. On the fourth
line of Table I, P−1

ZPET(z−1) in prototype RC denotes the
ZPET inverse [18] that approximates P−1(z−1).

Several connections can be made from Table I. First,
comparing “Prototype RC” with “Proposed RDOB with
an FIR Q”, we can observe that the former can be
regarded as a special case of the latter with C(z−1) =
0 and zmP−1

n (z−1) = P−1
ZPET(z−1). Second, if we replace

z−(N−m)P−1
n (z−1) with P−1 ∑

m wmz−mN and let C(z−1) :=
Co(z−1)

∑
m wmz−mN, then the high-order RC can be re-

alized in a similar fashion as the proposed RDOB with
an FIR Q filter.

It can now be seen that with an FIR Q filter, the
proposed RDOB has close connections with prior RC
schemes. From the second and the third rows of Table I,
an IIR Q provides a different integration of the internal
model and introduces the additional design freedom of
α.

IV. Stability and robust stability

From the previous discussions, if P−1
n (z−1) and Q(z−1)

are properly designed, the sensitivity function in (2)
approximates (1− z−mQ(z−1))/(1 + P(z−1)C(z−1)), and the
closed-loop stability is preserved. Strict nominal closed-
loop stability is obtained by using (1) and comput-
ing the roots of the characteristics equation from 1 +
P(z−1)Ceq(z−1) = 0.

When the plant is perturbed to be P̃(z−1) = P(z−1)(1 +
∆(z−1)) (assume the uncertainty ∆(z−1) is stable and has
a bounded H∞ norm), applying the Small Gain Theo-
rem (see, e.g., [21]) yields the following robust-stability
condition: ∥∥∥∆(z−1)T(z−1)

∥∥∥
∞
< 1 (18)

where the complementary sensitivity function T =
PCeq/(1 + PCeq) is given by, after substituting in (1) and
simplification,

T =
CP + P−1

n PQ
1 + CP + Q(P−1

n P− z−m)
.

Notice that to avoid conservativeness, we perturbed
the plant w.r.t. P(z−1) instead of z−mPn(z−1), since from
Section II-D the latter term may already contain reduced
information compared to P(z−1). An example of robust
stability analysis is provided in Fig. 10.

V. Transient response and algorithm implementation

With the plug-in compensator, a new feedback sys-
tem is formed. The plug-in repetitive controller may be
turned on or off depending on the presence of repet-
itive disturbances. Although the two closed loops are
designed to be asymptotically stable, switching between
the two stabilizing controllers in general does not yield
smooth response [34]. To be more specific for the plug-in



Table I: Equivalent feedback controllers in repetitive control schemes

Ideal form (expanded) Ideal form Robust version

Proposed
RDOB w/ an

IIR Q

C(z−1)+P−1
n (z−1)Q(z−1)

1−z−mQ(z−1)
, Q(z−1) =

(1−αN )z−N+m

1−αNz−N
(1−αN )z−(N−m)P−1

n (z−1)+(1−αNz−N )C(z−1)
1−z−N

q(z,z−1)(1−αN )z−(N−m)P−1
n (z−1)+(1−αNz−N )C(z−1)

1−[1−(1−αN )(1−q(z,z−1))]z−N

Proposed
RDOB w/ an

FIR Q

C(z−1)+P−1
n (z−1)Q(z−1)

1−z−mQ(z−1)
, Q(z−1) = z−N+m z−(N−m)P−1

n (z−1)+C(z−1)
1−z−N

q(z,z−1)z−(N−m)P−1
n (z−1)+C(z−1)

1−q(z,z−1)z−N

Prototype RC
[4], [17]

krz−N

1−z−N P−1
ZPET(z−1), kr ∈ (0,2) krz−N

1−z−N P−1
ZPET(z−1) krq(z,z−1)z−N

1−q(z,z−1)z−N P−1
ZPET(z−1)

Plug-in RC [3],
[8], [13]–[16],

[33]

C(s)(1 + F(s) e−Tps

1−e−Tps ), F(s) differs in
specific papers.

C(s) (1−e−Tps)+F(s)e−Tps

1−e−Tps C(s) (1−q(s)·e−Tps)+q(s)F(s)·e−Tps

1−q(s)·e−Tps

High-order RC
[19], [20]

C(z−1)T−1
n (z−1)

∑
m wmz−mN

1−
∑

m wmz−mN , Tn ≈
P(z−1)C(z−1)

1+P(z−1)C(z−1)
(P−1(z−1)+C(z−1))

∑
m wmz−mN

1−
∑

m wmz−mN
C(z−1)T−1

n (z−1)(
∑

m wmz−mN )q(z,z−1)
1−(

∑
m wmz−mN )q(z,z−1)

repetitive control, we note that Fig. 6 has the following
state-space realization

xQ(k) = (1−αN)u∗Q(k) +αNxQ(k−N)

yQ(k) = xQ(k−N + m + nq)

where u∗Q(k), yQ(k) ∈ R, and xQ(k) ∈ RN. Notice that N,
the period of the repetitive disturbance/reference, can
be large. Correspondingly in this case, αN can be quite
small. When xQ(k) is initialized to zero, the first N−m−nq
values of yQ(k) equal zero. Starting from the time instant
N−m−nq +1, yQ(N−m−nq + i) = (1−αN)u∗Q(i) for i ∈ [1,N].
At this first period of actual compensation, depending
on the baseline closed-loop dynamics, the impulse of
u∗Q(k) can create high-amplitude transient response in
the error signal. Additionally, all the information in
u∗Q(k), including the non-repetitive components, are fed
back by the compensation signal c(k) in Fig. 3, yielding
mismatched cancellation for the non-periodic errors.

To reduce the possible overshoot and amplification of
non-repetitive components, we can apply a time-varying
α for transient improvement. It is proposed to initialize
α at 1, and gradually reduce it to a designed value αend
(from steady-state analysis), following the decay rule

α(k + 1) = αend− (αend−α(k))αrate, (19)

with α(0) = 1 and the decay rate αrate ∈ (0,1). Notice
that when α = 1, the Q filter is essentially turned off
in (17). By the above construction, at the first period
of compensation, u∗Q is gradually (weighted by 1−αN)
released to yQ.

As for the settling time of the Q filter, the transient
duration is determined by the pole location of the filter.
Let nt denote the number of periods for the impulse re-
sponse of Q(z−1) to reduce to less than 36.8% (≈ e−1) of its
peak value. From (17), this time constant is determined
by (αN)nt = e−1, i.e.,

nt =
−1

logαN . (20)

Here we allow non-integer value of nt (e.g., nt = 0.5
means that it takes half the time of a period to settle).

From (20), the smaller the term αN, the shorter the
settling time. In the case that α = 0, limα→0(nt) = 0.

Combining the above discussion with that of Fig. 5,
we can obtain in Table II the influence of α on vari-
ous closed-loop properties. Notice the two conflicting
objectives of maintaining (a) short transient duration and
(b) small transient overshoot as well as good steady-
state performance. Initializing α at 1 keeps the transient
smooth and gradually reducing it afterward helps to
accelerate the transient. Yet to maintain the steady-state
performance, the final value of α may be required to be
not too small. A slightly more complicated design of α
is to first reduce it from 1 to a middle value αmid and
then increase it to a final αend.

In summary, the following design procedures are sug-
gested for implementing the proposed algorithm:

1) analyze the plant; obtain z−m and P−1
n (z−1) accord-

ing to Section II-D.
2) design for steady-state performance according to Sec-

tions II-B and II-C: obtain (17), check the frequency
responses of 1−z−mQ(z−1) and S(z−1) (from (11) and
(2) respectively); compute the maximum amplifica-
tion from Theorem 1. Here it is suggested to start
with an α that is close to unity (this gives smaller
amplification of non-repetitive errors), and alter the
value if stability or the desired performance metric
is not reached.

3) transient improvement: compute (20) and simu-
late the time-domain closed-loop response–if large
overshoot occurs, consider the time-varying α and
initialize it at 1 as discussed in this section; if tran-
sient is excessively long, choose an intermediate
value for α that is smaller than its steady-state
value; keep the final value of α the same as the
one designed in step 2).

A detailed design example is provided in Section VI.

VI. Case studies
A. Application to regulation control on a hard disk drive

This section provides a design example in the track-
following control of a hard disk drive (HDD) system. In



Table II: The influence of α on the transient and the steady-state performance

value of α(∈ [0,1]) steady-state performance transient overshoot transient duration
large small amplification of non-repetitive components small long
small converse of the above possibly large short

this regulation-control example, the disk has a rotation
speed of 7200 revolutions per minute (rpm), and the reg-
ulation control aims at positioning the read/write heads
to follow the data tracks as precisely as possible. We im-
plement the proposed algorithm to the HDD benchmark
problem [35], where the plant is a 14-order system con-
sisting of the dynamics of the power amplifier, the voice-
coil motor, and the actuator mechanics. The input and
the output of the plant correspond respectively to the
(weighted) force input and the position of the read/write
heads. At every revolution of the disks, 220 measure-
ments are obtained, at a sampling frequency of 26400 Hz.
The period of the repeatable disturbance is thus N = 220,
at a fundamental frequency of 7200/60 = 120 Hz. The
baseline controller is a PID controller with several notch
filters. The resulting baseline feedback system has gain
and phase margins respectively of 5.45 dB and 38.2 deg,
and an open loop servo bandwidth of 1.19 kHz.

In the RDOB design, we model P(z−1) to contain the
plant as well as the notch filters. Fig. 7 shows the
frequency responses of P(z−1) and z−mPn(z−1) (m = 2 in
this example). Since modeling errors appear after around
2 kHz, the zero-phase lowpass filter in Section II-C is
designed to have a cut-off frequency of 2025 Hz, with
n0 = 1 in (14); ω1 = 2π×122000 rad/sec and ω2 = 2π×8400
rad/sec in (16). In view of the large value of N, α
is designed to be 0.999 to achieve good steady-state
performance. Correspondingly, αN becomes 0.8024. αN

is directly implemented instead of α.
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Figure 7: Frequency responses of P(z−1) and z−mPn(z−1).

The magnitude responses of Q(z−1) and 1− z−mQ(z−1)
are plotted respectively in the bottom and the top plots
of Fig. 8. Notice the repetitive spectral-selection property
(at multiples of the fundamental frequency 120 Hz)
in Q(z−1). This indicates that the repetitive disturbance

observer only “observes” the periodic components and
filters out the non-repetitive noise in the disturbance
estimation.3 For robustness, the zero-phase lowpass filter
keeps the Q-filter gain small at high frequencies, yielding
the gradual reduction of compensation capacity at high
frequencies in 1− z−mQ(z−1). The magnitude responses
of the actual closed-loop sensitivity functions are shown
in Fig. 9. We can see that the designed loop shape in
1− z−mQ(z−1) is successfully transformed to the closed-
loop system (recall the loop-shaping criterion (5)), and
that the loop shapes at the non-repetitive frequencies
are preserved in Fig. 9. The loop-shaping results can be
compared with those in [15], [16], [19].
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Figure 9: Magnitude responses of the sensitivity func-
tions with and without the proposed RDOB.

3Note that a constant disturbance is also repetitive and observed by
Q(z−1).
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Figure 10: Magnitude responses of 1/T(z−1), which de-
fine the upper bounds for plant uncertainty to preserve
robust stability.

Fig. 10 shows the magnitude responses of 1/T(z−1), the
inverse of the complementary sensitivity function. From
(18), in order to preserve the robust stability, magnitude
of the plant uncertainty has to be lower than that of
1/T(z−1) at all frequencies. From the top plot, we observe
that the introduction of RDOB largely preserves the
robust stability bounds (compared to the baseline closed-
loop system), especially in the high-frequency region.
The minimal value of the solid line is −4.7dB (0.582 in
absolute value) at 1327 Hz, i.e., the plant should not have
an uncertainty that is larger than 58.2% at this frequency.
The necessity of the zero-phase lowpass filter q(z,z−1) is
evident from the bottom plot. Without q(z,z−1), 3 percent
(-31dB) of model uncertainty at 6000 Hz will drive the
system unstable.

Simulation is conducted by applying a full set of
practical disturbances that includes the disk-flutter dis-
turbance, the sensor noise, the repeatable runout (RRO),
and the input force disturbance. Fig. 11 presents the
spectra of the position error signals (PES) (in the steady
state) with and without RDOB. One can remark that
the repetitive errors below 2000 Hz are successfully re-
moved,4 and that amplification of other errors is visually
not distinguishable. As a performance metric in HDD
industry, the 3σ (σ denotes the standard deviation) value
of the PES reduces from 10.77% Track Pitch (TP) to 9.30%
TP, indicating a 13.6 percent improvement.

The bottom plot of Fig. 12 shows the PES spectrum
with RDOB and α= 0, which corresponds to previous RC
schemes. It is observed that the repetitive disturbance
components are also significantly reduced. However,
due to the amplification of the non-periodic components

4The multiple spectral peaks between 800 Hz and 1300 Hz are due
to the non-repetitive disk-flutter disturbances.
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Figure 11: Spectra of PES with and without compensa-
tion.
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Figure 12: PES spectrum in RDOB with an FIR Q.

(see the amplified peaks compared to Fig. 11, and also
the enlarged view in the top plot of Fig. 12), the overall
3σ value does not improve but is instead amplified,
as can be predicted from the steady-state loop-shaping
analysis in Fig. 5. In addition, to avoid excessive high-
frequency disturbance amplification, the bandwidth of
the zero-phase lowpass filter in Q(z−1) has to be reduced
to 1585 Hz. In this environment that consists of not only
repetitive but also a significant amount of non-repetitive
disturbances, a conventional RC has experienced diffi-
culty improving the overall regulation performance.

To investigate further the transient performance, next
we provide simulation results using an additional distur-
bance profile that is richer in repetitive components. Figs.
13 and 14 demonstrate time traces of PES using different
configurations of α in Q(z−1). In all cases, the baseline
feedback loop has been running for 3 revolutions before
RDOB is turned on. In Fig. 13, α maintains at 0.999 in
the top plot throughout the simulation, and is configured
to exponentially decay from 1 to 0.999, at the rate of
0.9/sample in the bottom plot. We observe that the



dynamic switching algorithm provides a much smoother
transient response with no visually distinguishable over-
shoots.5
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Figure 13: Comparison of the transient responses with
and without the time-varying α in Q(z−1).

In the top plot of Fig. 14, the final value of the time-
varying α is chosen as 0.99. Compared to the bottom
plot of Fig. 13, we can see that a smaller α yields
shorter transient response, as predicted by the analysis in
Section V. More specifically, the time constants (defined
by (20)) for α = 0.999 and 0.99 are respectively 4.5432
and 0.4523 revolutions. One can observe from Fig. 13
and the top plot of Fig. 14, that the transient durations
are indeed about 4.5 and 0.5 revolutions, in agreement
with what have just been computed from (20). Note that
α = 0.99 yields worse disturbance rejection results at the
steady state. This is supported by the analysis in Section
II-B. One way to balance the performance is to let α
first reduce quickly from 1 to 0.99, and then gradually
increase to the final value 0.999, as shown in Fig. 15. The
bottom plot of Fig. 14 depicts the achieved PES time trace
using such a configuration.

B. Application to tracking control on a wafer-scanner system
Besides regulation control, the proposed algorithm has

also been implemented in tracking control on a labora-
tory testbed of an industrial wafer scanner. Such devices
are essential for manufacturing integrated circuits in
the semiconductor industry. The wafer scanner operates
by repeatedly following a designed reference trajectory.
A picture of the setup is shown in Fig. 16. There are
two stages in the system, mounted on air bearings and
actuated by epoxy-core linear permanent magnet motors
(LPMMs). The stage positions are measured by laser
interferometers. A LabVIEW real-time system with field-
programmable gate array (FPGA) is used to execute the
control commands with a sampling time of 0.0004 sec.

5The peaking phenomenon in the top plot comes from the closed-
loop dynamics. By checking the dynamics of P/(1+PC), one can verify
that the impulse and step responses from the RDOB output to e(k) have
large peak values.
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Figure 14: Comparison of the transient responses w.r.t.
different configurations of time-varying α’s.
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The top stage is used for verification of the proposed
algorithm. The system has a nominal model given by

z−mPn(z−1) = z−2 3.4766×10−7(1 + 0.8z−1)
(1− z−1)2

with the baseline feedback controller being a simple

Figure 16: A testbed of an industrial wafer-scanner sys-
tem.
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Figure 17: Reference trajectory and the actual wafer-stage
position without repetitive control.

PID controller. The applied reference trajectory is as
shown by the solid line in Fig. 17. The dashed line
in Fig. 17 shows the tracking result when we apply
only the baseline feedback controller. For the resulting
tracking errors, the 3σ value is 3.814× 10−4 m. By the
nature of the process, the trajectory is repeatedly applied.
Fig. 18 presents the experimental results of the tracking
errors for the first twenty repetitions, where the top
and the bottom plots provide respectively the position
errors without repetitive control and with the proposed
algorithm. No transient control for α is applied in Fig.
18. We can observe that repetitive control has greatly
reduced the tracking errors at the steady state. The 3σ
value reduces from 3.814×10−4 m at the first repetition
to 4.160 × 10−6 m at the 20th repetition, indicating a
99.7% reduction. The proposed algorithm in Section V
is then applied to additionally accelerate the transient
response. Fig. 19 shows the results for RDOB with
transient control. Comparing the results with that in
Fig. 18, we can see that the transient duration has been
significantly reduced while at the same time the steady-
state performance has been preserved.

To compare the performance of the proposed algo-
rithm with that of a conventional RC, a reference tra-
jectory that consists of four sinusoidal components at
20, 40, 60, and 80 Hz is tested. Additionally a random
disturbance obeying a normal distribution is applied
to the system to examine the performance of the al-
gorithms under noisy environments. Fig. 20 shows the
spectra of the resulting tracking errors. It is seen from
the first subplot that without repetitive control, large
peaks appear at 20, 40, 60, and 80 Hz in the tracking-
error spectrum. Using a conventional RC (α= 0), spectral
peaks at the repetitive frequencies are removed as shown
in the middle plot. However, since all error components
in the previous repetition are applied, the non-repetitive
errors can be seen to have increased (see the additional
spectral peaks at the non-repetitive frequencies). This
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Figure 18: Tracking errors with RDOB but without tran-
sient control.
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Figure 19: Tracking errors with RDOB and transient
control.

corresponds well to the loop-shaping results in Fig. 5.
In the proposed scheme, only the repetitive components
are reduced, and no visual amplification of the non-
repetitive disturbances is observed. A similar compari-
son can be made in the time domain, where we see from
Fig. 21 that the amplification of the non-repetitive errors
has actually increased the overall error magnitude.

VII. Conclusion and future work
In this paper, we have discussed a new repetitive

control scheme using the structure of a disturbance
observer. From the disturbance-observer perspective, the
conventional configuration is extended to address a gen-
eral class of disturbance spectrum. From the repetitive-
control perspective, a new implementation of the inter-
nal model principle is proposed, with a corresponding
loop-shaping design criteria that enables improved loop
shapes. This has an important advantage during reject-
ing repetitive disturbances or following repetitive trajec-
tories when the system is additionally subjected to non-
repetitive disturbances. A dynamic switching algorithm
is proposed and has been shown to effectively improve
the transient performance.

The proposed scheme requires knowledge of the pe-
riod of the repetitive disturbance/reference. In situations
where the period (order of the internal model) is un-
known or uncertain, online identification and adapta-
tion are required. Future works include identifying the
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Figure 20: Spectra of the tracking errors under different
RC schemes.
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Figure 21: A section of the time trace of the tracking
errors under different RC schemes.

internal-model order and analyzing the resulted tran-
sient response.

Finally we note that in a plug-in (ideal-case) repetitive
control scheme, if we apply αz−N/(1−z−N) parallel to the
baseline controller C(z−1), we get the following overall
feedback controller and the corresponding sensitivity
function:

Ceq(z−1) = C(z−1) +
αz−N

1− z−N

S(z−1) =
1− z−N

(1− z−N)[1 + P(z−1)C(z−1)] +αz−NP(z−1)
.

Here α is a scaling factor. If α = 0, no modification is

made to the closed-loop system; if α , 0, we have high-
gain control at the frequencies (denoted as {ωi}

N−1
i=0 ) of

the roots of 1−z−N = 0, and the internal model 1−z−N is
absorbed in S(z−1). Specifically we can make α small such
that αz−N/(1− z−N) has low magnitude at all frquencies
other than ω ∈ {ωi}

N−1
i=0 , while in the meantime 1− z−N

still operates to cancel the repetitive errors in S(z−1).
The structure of S(z−1) and the closed-loop properties
(such as the stability condition) are different from those
defined by (5) and (11). Yet this type of small-gain plug-
in repetitive control can also create loop shapes that are
similar to what we have discussed in the paper.
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