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Review: examples of nonlinear systems (Section 2.9)

Magnetically Suspended Ball

2

oot u the current injected into the magnet coils
“p 12 y the position of the ball
Fop y
Newton’s law gives
. cu?
2
Define the states: 1 =y, 22 =9
State-space model:
r1 = fi(z1,m2,u) = 22
cu? u 2
To = T1,To,U) = g — =10 —
? fo(@y, 22, u) = g ma? (3.87371)
y = h(x1,22,u) =11




Review: examples of nonlinear systems (Section 2.9)

Pendulum

Input: u(t) =T.(t), torque to the pivot point

Output: y(t) = 0(¢), angle of the pendulum

Moment of inertia about the pivot point: I = ml?

Rigid body dynamics:

10(t) = T, — mglsin(0(t))

State-space model with z1(t) = (t) and xa(t) = 6(t):

:1:'1::172

= — I 1
Ty = lsm(:cl)—l—mpu

Yy—=2a




Generalization

Example 1 .
1 = fi(xi,22,u) =22
2
cu
To = T1,To,U) = g — = 10 —
2 fal@1,w2,1) = g ma? (3.87:131
y = h(zy,z2,u) =11
Example 2 Tl = To
. g 1
Ty = _757/”(371) + g
Yy=a




Nonlinear system and linearization

Nonlinear system N/:

z(t) = f(z(t),u(t))
y(t) = hz(t),ull))

Equilibrium point (state/input pair)
reR", ueR™

satisfying
f(z,u) =0,

Associated equilibrium output
y:= h(z,u) € R?

N

(z

Behavior at equilibrium point:

if z(0) = =
u(t) = u, Yt>0
then x(t) =z Vt >0
y(t) =9y vVt >0

Behavior near equilibrium point
—Express in new variables
n(t) =z(t) —
v(t) :=u(t) —u
w(t) ==y(t) — ¥
which just represent offset from
equilibrium point
—How are these deviation variables
related?
—“near” refers to(n, v) being small




Nonlinear system and linearization

Express Nonlinear system

z(t) = [f(z(t),u(t)) Conclusion: while the deviations from
y(t) = h(z(t),u(t)) equilibrium,
in new coordinates (deviations) (u(t) —u,z(t) — )
n(t) :=xz(t) — both remain small, the deviations
v(t) = u(t) —u from equilibrium are approximately
w(t) :=y(t) — g governed by the linear ODE
Exact Dynamics are n(t) = An(t) + Bu(t)
7(t) (2)

T

f(&+n(t), u+o(t))

What if (n(t),v(t)) are “small”? Then the right-hand side is =
of
ou | =

/ / /

f(z,u) =0, = AcR"™" = BeR™™

()

Il I
=



Nonlinear system and linearization

Express Nonlinear system

r(t) = f(z(t),u(t)) Conclusion: while the (deviations
y(t) = h(z(t),u(t)) from equilibrium)

in new coordinates (deviations) (u(t) — u,z(t) — x)
n(t) :=xz(t) — both remain small, the deviations
v(t) = u(t) —u from equilibrium are approximately
w(t) :=y(t) — g governed by the linear state-space

model _
Exact output is n(t) = An(t) + Bu(t)

Cn(t) + Do(t)

oh oh
t +

ou |z =
U

/o /



Nonlinear system and linearization

Nonlinear system N/:

z(t) = fla(t), u(t))
y(t) = h(z(t),u(t))

Equilibrium point (state/input pair)
reR", ueR™

satisfying
f(:E, ﬁ) = Up

Associated equilibrium output

y:= h(z,u) € R?

N

(z

A=

C =

()
w(t)

of
ox

@
ox

Jacobian Linearization:

of
B .= —
T =3 oul| z=
oh
D= —
T =T oul| =

Linear system 7 :

An(t) + Bo(t)
Cn(t) + Dou(t)

J

(0

]

~JIES]

What is the relationship between these?




Nonlinear system and linearization

The shifted linear system (input v, .

state #, output Y) i u Y
i) = An(t) + B (u(t) - A‘J)_ i\
: J O

y(t) = Cn(t) + D (u(t) —u) +9

n(0) =mno . n0)=m
behaves “approximately” like the

appropriately initialized nonlinear

system

x(t) = f(z(t),u®)

y(t) = h(a(t), u(?)) . '

£(0) = Z + 10 — Nﬁ —

as long as the variables

(u(t) —u,z(t) — T) S A

remain “small”



Nonlinear system and linearization

While the variables (alternatlve VIeW)
(v(t), 2(t) - 7) S — .

remain small, the shifted nonlinear
system (input v, state X, output w) v

z(t) = fz(l),u+v(t))
w(t) =h(z@),u+v®t) -y L w0 Zw
z(0) = xg

behaves “approximately” like the
appropriately initialized linear
system

0(t) = An(t) + Bu(t) b | w
w(t) = Cn(t) + Do(t) - J Y
n0) =zo —z i "0 —zo—z |



Use in feedback design

Design controller to regulate the linearized system

N v(t)

Wemd (1) - » C - J ~ w(t)
Here w_,, represents desired value of w, in other words,

(y(t) - g)desired = Wemd (t) |:> Ydesired (t) =Y + wcmd(t)

r 4+ : l
(5 + wWema) 17 th 1LY F
Y Wemd ) — : : B
: i | y (=7 +w)




Background: Derivative

Suppose fis a real-valued function of a single real variable, notated

f:R—=R

The function is differentiable at x if the limit below exists

i [+~ F(@)

e—0 €

If so, then the derivative of f, at x is notated and defined as

F) ot L = )

e—0 €

Interpretation: slope of tangent line to graph of f, at the point

(z, f(z))



Background: Derivative {
Pick fixed value z, define function h:R—R f(2) h(z)
) = £G) 4 (o —2) aeR T
/ 2 T

Facts about h:

o Linear function

= graph is a straight line
= The slope of his constant, and ' (z) = f'(z) forall z € R

 h(z) = f(2)

The function h is the only linear function with these two properties

s h(x) = f(x) at . = 2
« h'(x) = f'(z) at x = 2

The function h is called the linear approximation to f at x=z



Accuracy of linear approximation

The difference between f and h, near x=z is small
h(z) = f(z)+ f(z)(x—2) VzxeR f(z)
f(a’fV
Hence f(z)—h(z) = f(z) - f(2) = f'(2)(z —2) —7 z p

d cl | lim x)—h(x) =0
and clearly lim f(z) — h(x) L CR

More is true, consider

lim f(l?) _ h(:l?) — lim f(x) o f(Z) — f,(Z)(x — z)
— lim f(z) — f(2) B f'(z)(z— 2)

i S@ -G PR 2)

T2 €T — Z T—z T —Zz



Multivariariate Partial Derivative

Let f be a function of x, and x,. Pick fixed value z=[z,,z,]7, define h : R* —» R

0 0
h(x) = f(z)+ a—a‘i ) (1 —2z1) + 8—xf2 ) (xo — 20) Vz € R?
0 0 —
1@+ et ] [BTn] wew

= f(2)+ V(@) (r—2) VzeR?

Facts about h: \

Linear function
= graphis a plane
The partial derivative of h is constant,and h'(z) = f'(2)
h(2) = f(2) . - .
The function h is the only linear function with these two properties
o« h(x)= f(x)at x =2
° Vh(z) =V f(x) at z =2

Called the gradient of f(x)

The function h is called the linear approximation to f at x=z



Example: Tank System

Hot and Cold supplies (fixed temperatures)

Tc, Ty
Hot and cold inflows (eg., m3/sec) QH(t)’TH—l r telt)- 1o
qc, qH Th(t)
Perfect instantaneous mixing Ap, Tr(t) L
— Temperature in Tank (assumed uniform) A,,cp
17

Orifice outflow: Area, discharge coefficient

cpAo\/2gh(t)

AO& CD

Mass Balance

it) = = (ac() +an(t) - epAo/290(0))
Tr(t) = g (ao®) [Te = Tr®)] +qu(t) [Ta — Tr(t)])



Nonlinear system and linearization

W@

Define state and input vectors as

h(t) qc (t) } cpAor/2gh(t)
t) := , t) .=
\
Then, with f1: R’ x R? =+ R? h(t) + (qc(t)+qH(t)cDAo\/m)

war ac®) [Te = Tr(O)] + qu (t) [Tr — Tr(t))])

And 1

ﬂ?lAT

1
fi(z1, w2, ur, uz) = . (u1 +uz — cpAsy/ 2933'1)
T
Dynamic equations are of the form

1(t) = fi(z(t),u(t))
io(t) = folz(t),u(t))

fo(x1, 22, ur,u2) = (u1 [Te — x2] + w2 [TH — x2))



Equilibrium Points

Equilibrium points are characterized by f(Z,u) = 0. In this case, with

1
f1(£13‘1;33‘2;u1,u2) — _A (’Uq + Ug — CDAO\/ 292171)
T
1
371AT

fo(x1, T2, u1,u2) = (ur [To — xo| + uo [Ty — x2))

Writing with barred-quantities, and setting to 0 gives (assuming 1 # 0)
1 1 u; | _ | epAov/297;
To —x9 Ty — o U9 o 0
invertible < T 7é Ty

For any choice of Z, there is a unique equilibrium input %, given by

[m] 1 [TH—J:Q —1}[CDAO(\J/QQ_§:1}

o | Tp—To | Zo—Tc 1




Equilibrium Points
For any choice of Z, there is a unique equilibrium input u, given by

’ﬁl _ 1 TH — .21_32 —1 CDAO«\KQ.gfl
'l_LQ TH — TO 3_:2 - TC‘ ]_ O

invertible < T¢ 75 Ty

which gives

CDAO«./QQ.Tl (TH — 3_32) G — CDA01/29E1 (:fg — Tc)
Ty — To ! 2 Ty — To

The inputs u, represent flow into tank, before irreversible mixing, and
should be restricted to be nonnegative

U =

Since the u; represent flow rates into the tank, physical consid-
erations restrict them to be nonegative real numbers. This implies
that z; > 0 and 7o < Ty < Ty. Looking at the differential equa-
tion for T, we see that its rate of change is inversely related to
h. Hence, the differential equation model is valid while h(t) > 0,
so we further restrict x1 > 0. Under those restrictions, the state
Z is indeed an equilibrium point, and there is a unique equilibrium
input given by the equations above.



Partial derivatives

Obtain the “A” and “B” matrices, by first taking partial derivatives

Con on || _ _gcpAq 0o
85’31 8$2 — AT\/zgﬂfl
Ofs  Of ~uy [To—x2]4uz [T —x2] —(u1+u2)
| 835‘1 8$2 _ | .’E%AT SS‘J_AT _
Con o | | L 1
Ou,  Ous _ Ar At
O fo Ofo Tec—xz2 Thy—xo
| 8u1 8’11,2 N B il?]_AT .’E]_AT

Pick some values for the constants

Te =10°, Ty = 90°, Ay = 3m°, A, = 0.05m, cp = 0.7
Compute linearization at 4 different equilibrium points

(h = 1m,Tp = 25°) (h = 3m, T = 25°)

(h = 1m, Ty = 75°) (h = 3m, Ty = 75°)



Obtain the “A” and “B” matrices, by first taking partial derivatives

ofr
85‘3‘1

Of2
83.,"‘1

R_eSL_JIts for:
(h.) TT) = (1m, 25°)

A

Partial derivatives

9fr

8$2 —

9fs

8$2 _ |

- 9fi  Of
8’&1 8’&52
O f2 0f2

_ Ouy Ous

_ QCDAO 0
AT\/ 293‘)1
_wr[To—xa|+ua [Ty —x2]  —(uitus)
.’E%AT SCJ_AT
1 1
_ Ar At
Tc—i'Cg TH—SL‘Q
_ x1 AT x1 AT

u; = qc = 0.126

—0.0258

0

us = qg = 0.029

0
wr) B

0.333 0.333
—5.00 21.67

|



