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15 Linearization

We have been learning about linear systems and controls for a while. In practice, many systems are nonlinear.
Nonetheless, there are ways to use linear control techniques to handle nonlinear systems. This section shows
one of such approaches.

15.1 State-space Representation of General Nonlinear Systems

Recall from Section 2.9, that a magnetically suspended ball can be modeled as

mÿ = mg − cu2

y2
(97)

Define the states: x1 = y, x2 = ẏ. We can have the state-space model:

ẋ1 = f1(x1, x2, u) = x2

ẋ2 = f2(x1, x2, u) = g − cu2

mx2
1

= 10−
(

u

3.87x1

)2

y = h(x1, x2, u) = x1

Similarly, for the pendulum model of

Iθ̈(t) = Tc −mglsin(θ(t)), I = ml2

we can model in the state space with u = Tc, x1(t) = θ(t), and x2(t) = θ̇(t):

ẋ1 = x2

ẋ2 = −g

l
sin(x1) +

1

ml2
u

y = x1

Both the above state-space models can be expressed as

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

where f(x, u) and h(x, u) are some nonlinear functions of the state vector x and input vector u. Let us call
this general nonlinear system N .

15.2 Equilibrium Point and Linearization around an Equilibrium Point

Focus first on the state equation. Notice that if there exists some x̄ ∈ Rn, ū ∈ Rm such that

f(x̄, ū) = 0n

then ˙̄x = 0, namely, if we initialize the system with

x(0) = x̄

u(t) = ū, ∀t ≥ 0
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then the state will not move, such that

x(t) = x̄ ∀t ≥ 0, y(t) = ȳ ∀t ≥ 0

where

ȳ := h(x̄, ū) ∈ Rq

Such a pair of x̄ ∈ Rn, ū ∈ Rm defines an equilibrium point of the nonlinear system, and the corresponding
ȳ := h(x̄, ū) ∈ Rq is the equilibrium output.

The remaining notes will explain that the behavior of a nonlinear system near an equilibrium point can be
approximated by a linear system.

Behavior near an equilibrium point: Express the system dynamics in some new variables

η(t) := x(t)− x̄

v(t) := u(t)− ū

w(t) := y(t)− ȳ

which represent the offset from the equilibrium point. The word “near” can now be quantitatively explained
as “(η, v) being small”.

The dynamics of the states can now be expressed as

η̇(t) = ẋ(t)

= f(x̄+ η(t), ū+ v(t))

If (η(t), v(t)) are small, then the right hand side of the above equation is approximately (via first-order Taylor
expansion):

f(x̄+ η(t), ū+ v(t)) ≈ f(x̄, ū) +
∂f

∂x

∣∣∣∣ x = x̄

u = ū

η(t) +
∂f

∂u

∣∣∣∣ x = x̄

u = ū

v(t) (98)

We can make the result a bit more compact by noticing that

f(x̄, ū) = 0n

and introducing

∂f

∂x

∣∣∣∣ x = x̄

u = ū

:= A ∈ Rn×n,
∂f

∂u

∣∣∣∣ x = x̄

u = ū

:= B ∈ Rn×m

This gives us the message that, while the deviations from equilibrium, namely, (u(t) − ū, x(t) − x̄), both
remain small, the deviations from equilibrium are approximately governed by the linear ODE

η̇(t) = Aη(t) +Bv(t)

The same can be done for the output equation

y(t) = h(x̄+ η(t), ū+ v(t))

and we have

h(x̄+ η(t), ū+ v(t)) ≈ h(x̄, ū) +
∂h

∂x

∣∣∣∣ x = x̄

u = ū

η(t) +
∂h

∂u

∣∣∣∣ x = x̄

u = ū

v(t) (99)
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Noticing ȳ := h(x̄, ū) and letting

∂h

∂x

∣∣∣∣ x = x̄

u = ū

:= C ∈ Rq×n,
∂h

∂u

∣∣∣∣ x = x̄

u = ū

:= D ∈ Rq×m

we get

y(t)− ȳ =: w(t) = Cη(t) +Dv(t)

Summarizing the above, we have now derived a linear system J :

η̇(t) = Aη(t) +Bv(t)

w(t) = Cη(t) +Dv(t)

with A, B, C, D as defined above, to approximate the nonlinear system around the equilibrium x̄. In block
diagrams, this means that the shifted linear system (input u, state η, output y)

behaves “approximately” like the appropriately initialized nonlinear system

as long as the variables (u(t)− ū, x(t)− x̄) remain small.

The linearized model above is called Jacobian linearization of the original nonlinear system.

With such results, we can control the nonlinear system as follows:

1, find the equilibrium input and output ū and ȳ that define the equilibrium state x̄ in the interested operation
range of the system

2, decompose the reference signal as ydesired(t) = ȳ + wcmd(t) and the actual output as y(t) = ȳ + w. The
control of the nonlinear system thus looks like

C N- - - c -
6

-
6
h+

−
r

(ȳ + wcmd)

v

ū

u

y (= ȳ + w)

3, design the controller C as if we are to regulate the linearized system
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C J- - - -
6
h+

−
wcmd(t)

v(t)
w(t)

4, implement the controller as shown in step 2

15.3 Multivariariate Partial Derivative

We learn in this section some details about obtaining the A, B, C, D matrices. This is just a generalization
of the single-variable differentiation.

Let f be a function of x1 and x2. Pick a fixed vector z = [z1, z2]
T . For this two-variable function, the

first-order Taylor expansion (around the point z) is

f(x) ≈ f(z) + ∂f
∂x1

∣∣∣
x=z

(x1 − z1) +
∂f
∂x2

∣∣∣
x=z

(x2 − z2) ∀x ∈ R2 close to z

= f(z) +
[

∂f
∂x1

∂f
∂x2

]
x=z

[
x1 − z1
x2 − z2

]
= f(z) + ∇f(x)|Tx=z (x− z)

(100)

The term

∇f(x) =

[
∂f
∂x1
∂f
∂x2

]

is called the gradient of f(x), which is a generalization of df(x)/dx in single-variable calculus. It is a 2 by 1
column vector if f(x) is a mapping from R2 and R. For instance, if f(x1, x2) = x1 + 2x2, then

∇f(x) =

[
1

2

]

Note: by convention, the gradient of a Rn → R mapping f(x1, x2, . . . , xn) is defined as a column vector:

∇f(x) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn


as it defines a direction in a vector space. A corresponding definition is the derivative

Df (x) =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂n

]
which is a row vector and

∇f (x) = [Df (x)]
T
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We can generalize the above result. For instance, if f1 (x, u) = f1(x1, x2, u1, u2) then the Taylor approxima-
tion around the point (x̄, ū) is

f1 (x, u) ≈ f1 (x̄, ū) +

[
∂f1 (x, u)

∂x1
,
∂f1 (x, u)

∂x2

]∣∣∣∣ x = x̄

u = ū

[
x1 − x̄1

x2 − x̄2

]

+

[
∂f1 (x, u)

∂u1
,
∂f1 (x, u)

∂u2

]∣∣∣∣ x = x̄

u = ū

[
u1 − ū1

u2 − ū2

]

= f1 (x̄, ū) + ∇T
x f1 (x, u)

∣∣
x = x̄

u = ū

(x− x̄) + ∇T
u f1 (x, u)

∣∣
x = x̄

u = ū

(u− ū)

If we have another similar function

f2 (x, u) ≈ f2 (x̄, ū) +

[
∂f2 (x, u)

∂x1
,
∂f2 (x, u)

∂x2

]∣∣∣∣ x = x̄

u = ū

[
x1 − x̄1

x2 − x̄2

]

+

[
∂f2 (x, u)

∂u1
,
∂f2 (x, u)

∂u2

]∣∣∣∣ x = x̄

u = ū

[
u1 − ū1

u2 − ū2

]

= f2 (x̄, ū) + ∇T
x f2 (x, u)

∣∣
x = x̄

u = ū

(x− x̄) + ∇T
u f2 (x, u)

∣∣
x = x̄

u = ū

(u− ū)

Then for the R2 ×R2 → R2 function

f (x, u) =

[
f1 (x, u)

f2 (x, u)

]
we have

f (x, u) ≈
[

f1 (x̄, ū)

f2 (x̄, ū)

]
+

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
︸ ︷︷ ︸

∇T
x f(x,u)

∣∣∣∣∣∣∣∣∣∣ x = x̄

u = ū

[
x1 − x̄1

x2 − x̄2

]
+

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

]
︸ ︷︷ ︸

∇T
u f(x,u)

∣∣∣∣∣∣∣∣∣∣ x = x̄

u = ū

[
u1 − ū1

u2 − ū2

]

= f (x̄,ū) +A (x− x̄) +B (u− ū)

From here we learnt how to compute the derivative and gradient of a multi-input multi-output function:

Dx

[
f1
f2

]
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
, ∇x

[
f1
f2

]
=

[
∂f1
∂x1

∂f2
∂x1

∂f1
∂x2

∂f2
∂x2

]

With the above results, we can writing down (98) and (99).

15.4 Example: Tank System

Consider the following water tank system:
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6

Ao, cD

h(t)

AT , TT (t)

qH(t), TH

?
qC(t), TC

?

There are hot and cold water supplies (at fixed temperatures TC and TH) going into the tank. We can
control the hot and cold inflows qC and qH (in the unit of m3/sec).

The orifice outflow is related to its area Ao and the discharge coefficient cD. Torricelli’s law states that the
speed of a fluid through a sharp-edged hole under the force of gravity is the same as the speed that a body
would acquire in falling freely from a height h, i.e. vout(t) =

√
2gh(t), where g is the acceleration due to

gravity. Hence the outflow is

qout(t) = cDAo

√
2gh(t)

Suppose the water supplies are instantaneously mixed in the tank, and the temperature of water in tank is
TT after mixing. By using the conservation law we can state that

ḣ(t) = 1
AT

(
qC(t) + qH(t)− cDAo

√
2gh(t)

)
ṪT (t) = 1

h(t)AT
(qC(t) [TC − TT (t)] + qH(t) [TH − TT (t)])

Nonlinear System and Linearization Define state and input vectors as

x(t) :=

[
h(t)

TT (t)

]
, u(t) :=

[
qC(t)

qH(t)

]
Then, with

f1(x1, x2, u1, u2) =
1

AT

(
u1 + u2 − cDAo

√
2gx1

)
f2(x1, x2, u1, u2) =

1

x1AT
(u1 [TC − x2] + u2 [TH − x2])

the dynamic equations of the system are of the form

ẋ1(t) = f1(x(t), u(t))

ẋ2(t) = f2(x(t), u(t))

Equilibrium Points Equilibrium points are characterized by f(x̄, ū) = 0. In this case, with

f1(x1, x2, u1, u2) =
1

AT

(
u1 + u2 − cDAo

√
2gx1

)
f2(x1, x2, u1, u2) =

1

x1AT
(u1 [TC − x2] + u2 [TH − x2])

Writing with barred-quantities, and setting to 0 gives (assuming x̄1 ̸= 0)[
1 1

TC − x̄2 TH − x̄2

] [
ū1

ū2

]
=

[
cDAo

√
2gx̄1

0

]
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The matrix on the left hand side of the equation is invertible if and only if ⇔ TC ̸= TH . Thus for any choice
of x̄, there is a unique equilibrium input ū, given by[

ū1

ū2

]
=

1

TH − TC

[
TH − x̄2 −1

x̄2 − TC 1

] [
cDAo

√
2gx̄1

0

]
which gives

ū1 =
cDAo

√
2gx̄1 (TH − x̄2)

TH − TC
, ū2 =

cDAo

√
2gx̄1 (x̄2 − TC)

TH − TC

Since u1 and u2x represent flow rates into the tank, physical considerations restrict them to be nonegative
real numbers. This implies that x̄1 ≥ 0 and TC ≤ T̄T ≤ TH . Looking at the differential equation for TT ,
we see that its rate of change is inversely related to h. Hence, the differential equation model is valid while
h(t) > 0, so we further restrict x1 > 0. Under those restrictions, the state x̄ is indeed an equilibrium point,
and there is a unique equilibrium input given by the equations above.

Partial Derivatives

Obtain the “A” and “B” matrices, by first taking partial derivatives

Dxf(x, u) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
− gcDAo

AT
√
2gx1

0

−u1[TC−x2]+u2[TH−x2]
x2
1AT

−(u1+u2)
x1AT

]

Duf(x, u) =

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

]
=

[
1

AT

1
AT

TC−x2

x1AT

TH−x2

x1AT

]

We can do some numerical examples by assuming

TC = 10◦, TH = 90◦, AT = 3m2, Ao = 0.05m, cD = 0.7

We can compute, for instance, linearization at 4 different equilibrium points

(h̄ = 1m, T̄T = 25◦), (h̄ = 3m, T̄T = 25◦), (h̄ = 1m, T̄T = 75◦), (h̄ = 3m, T̄T = 75◦)

The results for
(
h̄, T̄T

)
= (1m, 25◦) are as follows

ū1 = q̄C = 0.126 , ū2 = q̄H = 0.029

A =

[
−0.0258 0

0 −0.517

]
, B =

[
0.333 0.333

−5.00 21.67

]


