Nonlinear systems and linearization

1 State-space models and equilibrium points
2 Linearization
3 Example

15 Linearization

We have been learning about linear systems and controls for a while. In practice, many systems are nonlinear. Nonetheless, there are ways to use linear control techniques to handle nonlinear systems. This section shows one of such approaches.

15.1 State-space Representation of General Nonlinear Systems

Recall from Section 2.9, that a magnetically suspended ball can be modeled as

$$
\begin{equation*}
m \ddot{y}=m g-\frac{c u^{2}}{y^{2}} \tag{97}
\end{equation*}
$$

Define the states: $x_{1}=y, x_{2}=\dot{y}$. We can have the state-space model:

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}, u\right)=x_{2} \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}, u\right)=g-\frac{c u^{2}}{m x_{1}^{2}}=10-\left(\frac{u}{3.87 x_{1}}\right)^{2} \\
y & =h\left(x_{1}, x_{2}, u\right)=x_{1}
\end{aligned}
$$

Similarly, for the pendulum model of

$$
I \ddot{\theta}(t)=T_{c}-m g l \sin (\theta(t)), I=m l^{2}
$$

we can model in the state space with $u=T_{c}, x_{1}(t)=\theta(t)$, and $x_{2}(t)=\dot{\theta}(t)$:

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} \\
& \dot{x_{2}}=-\frac{g}{l} \sin \left(x_{1}\right)+\frac{1}{m l^{2}} u \\
& y=x_{1}
\end{aligned}
$$

Both the above state-space models can be expressed as

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
y(t) & =h(x(t), u(t))
\end{aligned}
$$

where $f(x, u)$ and $h(x, u)$ are some nonlinear functions of the state vector x and input vector u. Let us call this general nonlinear system \mathcal{N}.

15.2 Equilibrium Point and Linearization around an Equilibrium Point

Focus first on the state equation. Notice that if there exists some $\bar{x} \in \mathbf{R}^{n}, \bar{u} \in \mathbf{R}^{m}$ such that

$$
f(\bar{x}, \bar{u})=0_{n}
$$

then $\dot{\bar{x}}=0$, namely, if we initialize the system with

$$
\begin{aligned}
x(0) & =\bar{x} \\
u(t) & =\bar{u}, \quad \forall t \geq 0
\end{aligned}
$$

then the state will not move, such that

$$
x(t)=\bar{x} \quad \forall t \geq 0, y(t)=\bar{y} \quad \forall t \geq 0
$$

where

$$
\bar{y}:=h(\bar{x}, \bar{u}) \in \mathbf{R}^{q}
$$

Such a pair of $\bar{x} \in \mathbf{R}^{n}, \bar{u} \in \mathbf{R}^{m}$ defines an equilibrium point of the nonlinear system, and the corresponding $\bar{y}:=h(\bar{x}, \bar{u}) \in \mathbf{R}^{q}$ is the equilibrium output.
The remaining notes will explain that the behavior of a nonlinear system near an equilibrium point can be approximated by a linear system.
Behavior near an equilibrium point: Express the system dynamics in some new variables

$$
\begin{aligned}
\eta(t) & :=x(t)-\bar{x} \\
v(t) & :=u(t)-\bar{u} \\
w(t) & :=y(t)-\bar{y}
\end{aligned}
$$

which represent the offset from the equilibrium point. The word "near" can now be quantitatively explained as " (η, v) being small".

The dynamics of the states can now be expressed as

$$
\begin{aligned}
\dot{\eta}(t) & =\dot{x}(t) \\
& =f(\bar{x}+\eta(t), \bar{u}+v(t))
\end{aligned}
$$

If $(\eta(t), v(t))$ are small, then the right hand side of the above equation is approximately (via first-order Taylor expansion):

$$
\begin{equation*}
f(\bar{x}+\eta(t), \bar{u}+v(t)) \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}} \eta(t)+\left.\frac{\partial f}{\partial u}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}} v(t) \tag{98}
\end{equation*}
$$

We can make the result a bit more compact by noticing that

$$
f(\bar{x}, \bar{u})=0_{n}
$$

and introducing

$$
\left.\frac{\partial f}{\partial x}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}}:=A \in \mathbf{R}^{n \times n},\left.\quad \frac{\partial f}{\partial u}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}}:=B \in \mathbf{R}^{n \times m}
$$

This gives us the message that, while the deviations from equilibrium, namely, $(u(t)-\bar{u}, x(t)-\bar{x})$, both remain small, the deviations from equilibrium are approximately governed by the linear ODE

$$
\dot{\eta}(t)=A \eta(t)+B v(t)
$$

The same can be done for the output equation

$$
y(t)=h(\bar{x}+\eta(t), \bar{u}+v(t))
$$

and we have

$$
\begin{equation*}
h(\bar{x}+\eta(t), \bar{u}+v(t)) \approx h(\bar{x}, \bar{u})+\left.\frac{\partial h}{\partial x}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}} \eta(t)+\left.\frac{\partial h}{\partial u}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}} v(t) \tag{99}
\end{equation*}
$$

Noticing $\bar{y}:=h(\bar{x}, \bar{u})$ and letting

$$
\left.\frac{\partial h}{\partial x}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}}:=C \in \mathbf{R}^{q \times n},\left.\quad \frac{\partial h}{\partial u}\right|_{\substack{x=\bar{x} \\ u=\bar{u}}}:=D \in \mathbf{R}^{q \times m}
$$

we get

$$
y(t)-\bar{y}=: \quad w(t)=C \eta(t)+D v(t)
$$

Summarizing the above, we have now derived a linear system \mathcal{J} :

$$
\begin{aligned}
\dot{\eta}(t) & =A \eta(t)+B v(t) \\
w(t) & =C \eta(t)+D v(t)
\end{aligned}
$$

with A, B, C, D as defined above, to approximate the nonlinear system around the equilibrium \bar{x}. In block diagrams, this means that the shifted linear system (input u, state η, output y)

behaves "approximately" like the appropriately initialized nonlinear system

as long as the variables $(u(t)-\bar{u}, x(t)-\bar{x})$ remain small.
The linearized model above is called Jacobian linearization of the original nonlinear system.
With such results, we can control the nonlinear system as follows:
1, find the equilibrium input and output \bar{u} and \bar{y} that define the equilibrium state \bar{x} in the interested operation range of the system

2 , decompose the reference signal as $y_{\text {desired }}(t)=\bar{y}+w_{\text {cmd }}(t)$ and the actual output as $y(t)=\bar{y}+w$. The control of the nonlinear system thus looks like

3 , design the controller C as if we are to regulate the linearized system

4, implement the controller as shown in step 2

15.3 Multivariariate Partial Derivative

We learn in this section some details about obtaining the A, B, C, D matrices. This is just a generalization of the single-variable differentiation.

Let f be a function of x_{1} and x_{2}. Pick a fixed vector $z=\left[z_{1}, z_{2}\right]^{T}$. For this two-variable function, the first-order Taylor expansion (around the point z) is

$$
\begin{align*}
f(x) & \approx f(z)+\left.\frac{\partial f}{\partial x_{1}}\right|_{x=z}\left(x_{1}-z_{1}\right)+\left.\frac{\partial f}{\partial x_{2}}\right|_{x=z}\left(x_{2}-z_{2}\right) \quad \forall x \in \mathbf{R}^{2} \text { close to } z \\
& =f(z)+\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]_{x=z}\left[\begin{array}{c}
x_{1}-z_{1} \\
x_{2}-z_{2}
\end{array}\right] \tag{100}\\
& =f(z)+\left.\nabla f(x)\right|_{x=z} ^{T}(x-z)
\end{align*}
$$

The term

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]
$$

is called the gradient of $f(x)$, which is a generalization of $d f(x) / d x$ in single-variable calculus. It is a 2 by 1 column vector if $f(x)$ is a mapping from \mathbf{R}^{2} and \mathbf{R}. For instance, if $f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$, then

$$
\nabla f(x)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Note: by convention, the gradient of a $\mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$ mapping $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined as a column vector:

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

as it defines a direction in a vector space. A corresponding definition is the derivative

$$
D f(x)=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \ldots & \frac{\partial f}{\partial n}
\end{array}\right]
$$

which is a row vector and

$$
\nabla f(x)=[D f(x)]^{T}
$$

We can generalize the above result. For instance, if $f_{1}(x, u)=f_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right)$ then the Taylor approximation around the point (\bar{x}, \bar{u}) is

$$
\begin{aligned}
& f_{1}(x, u) \approx f_{1}(\bar{x}, \bar{u})+\left.\left[\frac{\partial f_{1}(x, u)}{\partial x_{1}}, \frac{\partial f_{1}(x, u)}{\partial x_{2}}\right]\right|_{x=\bar{x}}\left[\begin{array}{l}
x_{1}-\bar{x}_{1} \\
x_{2}-\bar{x}_{2}
\end{array}\right] \\
& u=\bar{u} \\
& +\left.\left[\frac{\partial f_{1}(x, u)}{\partial u_{1}}, \frac{\partial f_{1}(x, u)}{\partial u_{2}}\right]\right|_{x=\bar{x}}\left[\begin{array}{l}
u_{1}-\bar{u}_{1} \\
u_{2}-\bar{u}_{2}
\end{array}\right] \\
& u=\bar{u} \\
& =f_{1}(\bar{x}, \bar{u})+\left.\nabla_{x}^{T} f_{1}(x, u)\right|_{x=\bar{x}}(x-\bar{x})+\left.\nabla_{u}^{T} f_{1}(x, u)\right|_{x=\bar{x}}(u-\bar{u}) \\
& u=\bar{u} \\
& u=\bar{u}
\end{aligned}
$$

If we have another similar function

$$
\begin{aligned}
& \left.f_{2}(x, u) \approx f_{2}(\bar{x}, \bar{u})+\left[\frac{\partial f_{2}(x, u)}{\partial x_{1}}, \frac{\partial f_{2}(x, u)}{\partial x_{2}}\right] \right\rvert\, x=\bar{x}\left[\begin{array}{c}
x_{1}-\bar{x}_{1} \\
x_{2}-\bar{x}_{2}
\end{array}\right] \\
& u=\bar{u} \\
& +\left.\left[\frac{\partial f_{2}(x, u)}{\partial u_{1}}, \frac{\partial f_{2}(x, u)}{\partial u_{2}}\right]\right|_{x=\bar{x}}\left[\begin{array}{l}
u_{1}-\bar{u}_{1} \\
u_{2}-\bar{u}_{2}
\end{array}\right] \\
& u=\bar{u} \\
& =f_{2}(\bar{x}, \bar{u})+\left.\nabla_{x}^{T} f_{2}(x, u)\right|_{x=\bar{x}}(x-\bar{x})+\left.\nabla_{u}^{T} f_{2}(x, u)\right|_{x=\bar{x}}(u-\bar{u}) \\
& u=\bar{u} \quad u=\bar{u}
\end{aligned}
$$

Then for the $\mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ function

$$
f(x, u)=\left[\begin{array}{l}
f_{1}(x, u) \\
f_{2}(x, u)
\end{array}\right]
$$

we have

$$
\begin{aligned}
f(x, u) & \approx\left[\begin{array}{c}
f_{1}(\bar{x}, \bar{u}) \\
f_{2}(\bar{x}, \bar{u})
\end{array}\right]+\left.\underbrace{\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]}_{\nabla_{x}^{T} f(x, u)}\right|_{\begin{array}{l}
x=\bar{x} \\
u=\bar{u}
\end{array}}\left[\begin{array}{c}
x_{1}-\bar{x}_{1} \\
x_{2}-\bar{x}_{2}
\end{array}\right]+\left.\underbrace{\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}}
\end{array}\right]}_{\nabla_{u}^{T} f(x, u)}\right|_{\begin{array}{l}
x=\bar{x} \\
u=\bar{u}
\end{array}} \begin{array}{l}
u_{1}-\bar{u}_{1} \\
u_{2}-\bar{u}_{2}
\end{array}] \\
& =f(\bar{x}, \bar{u})+A(x-\bar{x})+B(u-\bar{u})
\end{aligned}
$$

From here we learnt how to compute the derivative and gradient of a multi-input multi-output function:

$$
D_{x}\left[\begin{array}{c}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right], \nabla_{x}\left[\begin{array}{c}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} \\
\frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]
$$

With the above results, we can writing down (98) and (99).

15.4 Example: Tank System

Consider the following water tank system:

There are hot and cold water supplies (at fixed temperatures T_{C} and T_{H}) going into the tank. We can control the hot and cold inflows q_{C} and q_{H} (in the unit of $\mathrm{m}^{3} / \mathrm{sec}$).

The orifice outflow is related to its area A_{o} and the discharge coefficient c_{D}. Torricelli's law states that the speed of a fluid through a sharp-edged hole under the force of gravity is the same as the speed that a body would acquire in falling freely from a height h, i.e. $v_{\text {out }}(t)=\sqrt{2 g h(t)}$, where g is the acceleration due to gravity. Hence the outflow is

$$
q_{\text {out }}(t)=c_{D} A_{o} \sqrt{2 g h(t)}
$$

Suppose the water supplies are instantaneously mixed in the tank, and the temperature of water in tank is T_{T} after mixing. By using the conservation law we can state that

$$
\begin{aligned}
\dot{h}(t) & =\frac{1}{A_{T}}\left(q_{C}(t)+q_{H}(t)-c_{D} A_{o} \sqrt{2 g h(t)}\right) \\
\dot{T}_{T}(t) & =\frac{1}{\overline{h(t) A_{T}}}\left(q_{C}(t)\left[T_{C}-T_{T}(t)\right]+q_{H}(t)\left[T_{H}-T_{T}(t)\right]\right)
\end{aligned}
$$

Nonlinear System and Linearization Define state and input vectors as

$$
x(t):=\left[\begin{array}{c}
h(t) \\
T_{T}(t)
\end{array}\right] \quad, \quad u(t):=\left[\begin{array}{c}
q_{C}(t) \\
q_{H}(t)
\end{array}\right]
$$

Then, with

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) & =\frac{1}{A_{T}}\left(u_{1}+u_{2}-c_{D} A_{o} \sqrt{2 g x_{1}}\right) \\
f_{2}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) & =\frac{1}{x_{1} A_{T}}\left(u_{1}\left[T_{C}-x_{2}\right]+u_{2}\left[T_{H}-x_{2}\right]\right)
\end{aligned}
$$

the dynamic equations of the system are of the form

$$
\begin{aligned}
\dot{x}_{1}(t) & =f_{1}(x(t), u(t)) \\
\dot{x}_{2}(t) & =f_{2}(x(t), u(t))
\end{aligned}
$$

Equilibrium Points Equilibrium points are characterized by $f(\bar{x}, \bar{u})=0$. In this case, with

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) & =\frac{1}{A_{T}}\left(u_{1}+u_{2}-c_{D} A_{o} \sqrt{2 g x_{1}}\right) \\
f_{2}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) & =\frac{1}{x_{1} A_{T}}\left(u_{1}\left[T_{C}-x_{2}\right]+u_{2}\left[T_{H}-x_{2}\right]\right)
\end{aligned}
$$

Writing with barred-quantities, and setting to 0 gives (assuming $\bar{x}_{1} \neq 0$)

$$
\left[\begin{array}{cc}
1 & 1 \\
T_{C}-\bar{x}_{2} & T_{H}-\bar{x}_{2}
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{D} A_{o} \sqrt{2 g \bar{x}_{1}} \\
0
\end{array}\right]
$$

The matrix on the left hand side of the equation is invertible if and only if $\Leftrightarrow T_{C} \neq T_{H}$. Thus for any choice of \bar{x}, there is a unique equilibrium input \bar{u}, given by

$$
\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right]=\frac{1}{T_{H}-T_{C}}\left[\begin{array}{cc}
T_{H}-\bar{x}_{2} & -1 \\
\bar{x}_{2}-T_{C} & 1
\end{array}\right]\left[\begin{array}{c}
c_{D} A_{o} \sqrt{2 g \bar{x}_{1}} \\
0
\end{array}\right]
$$

which gives

$$
\bar{u}_{1}=\frac{c_{D} A_{o} \sqrt{2 g \bar{x}_{1}}\left(T_{H}-\bar{x}_{2}\right)}{T_{H}-T_{C}} \quad, \quad \bar{u}_{2}=\frac{c_{D} A_{o} \sqrt{2 g \bar{x}_{1}}\left(\bar{x}_{2}-T_{C}\right)}{T_{H}-T_{C}}
$$

Since u_{1} and $u_{2} x$ represent flow rates into the tank, physical considerations restrict them to be nonegative real numbers. This implies that $\bar{x}_{1} \geq 0$ and $T_{C} \leq \bar{T}_{T} \leq T_{H}$. Looking at the differential equation for T_{T}, we see that its rate of change is inversely related to h. Hence, the differential equation model is valid while $h(t)>0$, so we further restrict $x_{1}>0$. Under those restrictions, the state \bar{x} is indeed an equilibrium point, and there is a unique equilibrium input given by the equations above.

Partial Derivatives

Obtain the "A" and "B" matrices, by first taking partial derivatives

$$
\begin{aligned}
& D_{x} f(x, u)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{g c_{D} A_{o}}{A_{T} \sqrt{2 g x_{1}}} & 0 \\
-\frac{u_{1}\left[T_{C}-x_{2}\right]+u_{2}\left[T_{H}-x_{2}\right]}{x_{1}^{2} A_{T}} & \frac{-\left(u_{1}+u_{2}\right)}{x_{1} A_{T}}
\end{array}\right] \\
& D_{u} f(x, u)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{A_{T}} & \frac{1}{A_{T}} \\
\frac{T_{C}-x_{2}}{x_{1} A_{T}} & \frac{T_{H}-x_{2}}{x_{1} A_{T}}
\end{array}\right]
\end{aligned}
$$

We can do some numerical examples by assuming

$$
T_{C}=10^{\circ}, T_{H}=90^{\circ}, A_{T}=3 \mathrm{~m}^{2}, A_{o}=0.05 \mathrm{~m}, c_{D}=0.7
$$

We can compute, for instance, linearization at 4 different equilibrium points

$$
\left(\bar{h}=1 \mathrm{~m}, \bar{T}_{T}=25^{\circ}\right),\left(\bar{h}=3 \mathrm{~m}, \bar{T}_{T}=25^{\circ}\right),\left(\bar{h}=1 \mathrm{~m}, \bar{T}_{T}=75^{\circ}\right),\left(\bar{h}=3 \mathrm{~m}, \bar{T}_{T}=75^{\circ}\right)
$$

The results for $\left(\bar{h}, \bar{T}_{T}\right)=\left(1 \mathrm{~m}, 25^{\circ}\right)$ are as follows

$$
\begin{aligned}
& \bar{u}_{1}=\bar{q}_{C}=0.126 \quad, \quad \bar{u}_{2}=\bar{q}_{H}=0.029 \\
& A=\left[\begin{array}{cc}
-0.0258 & 0 \\
0 & -0.517
\end{array}\right] \quad, \quad B=\left[\begin{array}{cc}
0.333 & 0.333 \\
-5.00 & 21.67
\end{array}\right]
\end{aligned}
$$

