
Essentials of Control Systems

Discretization and Implementation of
Continuous-time Design

Xu Chen

University of Washington

ver. May 26, 2020



Outline

1. Big picture

2. Discrete-time frequency response

3. Approximation of continuous-time controllers

4. Sampling and aliasing

UW Controls Discretization – 1



Background of Digital Control Systems

I Practically all control systems are implemented on digital computers:
the controller uses sampled output of the plant and periodically
computes a sequence of commands {u[k]}, {u(tk)} (k = 0,1,2, . . .),
instead of directly generating a continuous signal u(t). e.g.,

// ADC
y(tk ) // Controller

u(tk ) // DAC
u(t) // Plant

y(t) //

I analog-to-digital converter (ADC): converts y(t) to y [k] = y(tk)
(k = 0,1,2, . . .)

I digital-to analog converter (DAC): converts u(tk) to u(t)

I the overall system is known as a sampled-data system

UW Controls Discretization – 2



From Sampled-Data to Discrete-Time Systems

// ADC
y(tk ) // −C(z)

u(tk ) // DAC
u(t) // P(s)

y(t) //

I Mixing continuous- and discrete-time signals and systems causes
multiple difficulties in analysis.

I Often, it is sufficient to understand and control the behavior of the
system at the sampling instances.

I Then the previous block diagram can be re-ordered to

◦ // C(z)
u(tk ) // DAC

u(t) // P(s)
y(t) // ADC

y(tk ) //
− OO

If only the signals at tk ’s are of interest, the system is called a
discrete-time system.
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ADC and DCA
I the most widely used DAC is the zero order holder (ZOH)

u(tk)

<latexit sha1_base64="BZk8qUuhLjlv+OxsGYYRiuKUkuU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXInoMevEYwTwgWcLsZDYZMzu7zPQKIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVA44T7kd0oEQoGEUrNdMy9kbnvWLJrbhzkFXiZaQEGeq94le3H7M04gqZpMZ0PDdBf0I1Cib5tNBNDU8oG9EB71iqaMSNP5lfOyVnVumTMNa2FJK5+ntiQiNjxlFgOyOKQ7PszcT/vE6K4bU/ESpJkSu2WBSmkmBMZq+TvtCcoRxbQpkW9lbChlRThjaggg3BW355lTQvKl61cnlfLdVusjjycAKnUAYPrqAGd1CHBjB4hGd4hTcndl6cd+dj0Zpzsplj+APn8wf/JI7C</latexit>

u(tk+1)

<latexit sha1_base64="AFgDHzu9yORwMVaGSVAuoen1Mdg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAiQtiViB6DXjxGMA9MljA7mSRDZmeXmV4hLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+Oyura+sbm7mt/PbO7t5+4eCwYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqAccx90M6UKIvGEUrPSYl7Kajc29y1i0U3bI7A1kmXkaKkKHWLXx1ehFLQq6QSWpM23Nj9FOqUTDJJ/lOYnhM2YgOeNtSRUNu/HR28YScWqVH+pG2pZDM1N8TKQ2NGYeB7QwpDs2iNxX/89oJ9q/9VKg4Qa7YfFE/kQQjMn2f9ITmDOXYEsq0sLcSNqSaMrQh5W0I3uLLy6RxUfYq5cv7SrF6k8WRg2M4gRJ4cAVVuIMa1IGBgmd4hTfHOC/Ou/Mxb11xspkj+APn8wehLZA+</latexit>

I we often treat the ADC as a sampler

u(t) // P(s)
y(t) // ADC

y(tk )// ⇒
u(t) // P (s)

y(t) ◦
∆T

y(tk)//
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Big picture

I implementation platform of digital control: digital signal processor,
field-programmable gate array (FPGA), etc

I either: controller is designed in continuous-time domain and
implemented digitally

I or: controller is designed directly in discrete-time domain
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Frequency response of LTI SISO digital systems

a sin(ωTsk) // G (z) // b sin(ωTsk+φ) at steady state

I sampling time: Ts
I φ

(
ejωTs

)
: phase difference between the output and the input

I M
(
ejωTs

)
= b/a: magnitude difference

continuous-time frequency response:

G (jω) = G (s)|s=jω = |G (jω)|ej∠G(jω)

discrete-time frequency response:

G
(

ejωTs
)

= G (z)|z=ejωTs =
∣∣∣G (ejωTs

)∣∣∣ej∠G(ejωTs )

= M
(

ejωTs
)

ejφ(ejωTs )
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The units of frequency
I sampling time: Ts
I G (jω): default unit of ω is radians/second or rad/sec in Matlab
I G

(
ejωTs

)
: ω is in rad/sec; Ω , ωTs in radians or randians/sample

I Hz as the other common unit of frequency: ω︸︷︷︸
in rad/s

= 2πωHz

I a little abuse of notation in literature: sin(ωk) as a discrete signal (ω
in radians/sample here) and G

(
ejω) also used for discrete0time

frequency response

Real

Imaginaryz−plane

−1 1

ejωTs = ej2πωHzTs
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Sampling

sufficient samples must be collected (i.e., fast enough sampling frequency)
to recover the frequency of a continuous-time sinusoidal signal (with
frequency ω in rad/sec)

Figure: Sampling example (source: Wikipedia.org)

I the sampling frequency = 2π

Ts

I Shannon’s sampling theorem: the Nyquist frequency (, π

Ts
) must

satisfy
− π

Ts
< ω <

π

Ts
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Sampling
I Shannon’s sampling theorem: the Nyquist frequency (, π

Ts
) must

satisfy
− π

Ts
< ω <

π

Ts
I The Nyquist frequency is the maximum frequency in the bode plot of

a discrete-time system in Matlab: e.g.,
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Approximation of continuous-time controllers
bilinear transform

formula:

s =
2

Ts

z−1
z +1 z =

1+ Ts
2 s

1− Ts
2 s

(1)

intuition:

z = esTs =
esTs/2

e−sTs/2
≈

1+ Ts
2 s

1− Ts
2 s

implementation: start with G (s), obtain the discrete implementation

Gd (z) = G (s)|s= 2
Ts

z−1
z+1

(2)

Bilinear transformation maps the closed left half s-plane to the closed unit
ball in z-plane
Stability reservation: G (s) stable ⇐⇒ Gd (z) stable
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Approximation of continuous-time controllers
history

Bilinear transform is also known as Tustin transform.
Arnold Tustin (16 July 1899 – 9 January 1994):
I British engineer, Professor at University of Birmingham and at

Imperial College London
I served in the Royal Engineers in World War I
I worked a lot on electrical machines
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Approximation of continuous-time controllers
frequency mismatch in bilinear transform

2
Ts

z−1
z +1

∣∣∣∣
z=ejωTs

=
2

Ts

ejωTS/2
(
ejωTS/2− e−jωTS/2

)
ejωTS/2

(
ejωTS/2 + e−jωTS/2

) = j

ωv︷ ︸︸ ︷
2

Ts
tan

(
ωTs
2

)
G (s)|s=jω is the true frequency response at ω; yet bilinear implementation
gives,

Gd

(
ejωTs

)
= G (s)|s=jωv

6= G (s)|s=jω

ωv

ω

0

π/T
Tangent line at ω = ωv = 0

45
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Approximation of continuous-time controllers
bilinear transform with prewarping
goal: extend bilinear transformation such that

Gd (z)|z=ejωTs = G (s)|s=jω

at a particular frequency ωp
solution:

s = p z−1
z +1 , z =

1+ 1
p s

1− 1
p s

, p =
ωp

tan
(

ωpTs
2

)
which gives Gd (z) = G (s)|s=

ωp
tan(

ωpT
2 )

z−1
z+1

and ωp

tan
(

ωpTs
2

) z−1
z +1

∣∣∣∣∣∣
z=ejωpTs

= j ωp

������
tan
(

ωpTs
2

)
��

���
��

tan

(
ωpTs
2

)
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Approximation of continuous-time controllers
bilinear transform with prewarping

choosing a prewarping frequency ωp:
I must be below the Nyquist frequency:

0< ωp <
π

Ts

I standard bilinear transform corresponds to the case where ωp = 0
I the best choice of ωp depends on the important features in control

design
example choices of ωp:
I at the cross-over frequency (which helps preserve phase margin)
I at the frequency of a critical notch for compensating system

resonances
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Sampling and aliasing
sampling maps the continuous-time frequency

− π

Ts
< ω <

π

Ts

onto the unit circle

Real

Imaginary

π/Ts

−π/Ts

s−plane

Real

Imaginary
z−plane

−1 1

Sampling

UW Controls Discretization – 15



Sampling and aliasing

sampling also maps the continuous-time frequencies π

Ts
< ω < 3 π

Ts
,

3 π

Ts
< ω < 5 π

Ts
, etc, onto the unit circle

Real

Imaginary

π/Ts

3π/Ts

−π/Ts

s−plane

Real

Imaginary

z−plane

−1 1

Sampling
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Sampling and aliasing

Example (Sampling and Aliasing)
Ts =1/60 sec (Nyquist frequency 30 Hz).
a continuous-time 10-Hz signal [10 Hz↔ 2π×10 rad/sec ∈(−π/Ts ,π/Ts )]

y1 (t) = sin(2π×10t)

is sampled to
y1 (k) = sin

(
2π× 10

60k
)

= sin

(
2π× 1

6k
)

a 70-Hz signal [2π×70 rad/sec ∈(π/Ts ,3π/Ts )]
y2 (t) = sin(2π×70t)

is sampled to
y2 (k) = sin

(
2π× 70

60k
)

= sin

(
2π× 1

6k
)
≡ y1 (k)!

UW Controls Discretization – 17



Anti-aliasing

need to avoid the negative influence of aliasing beyond the Nyquist
frequencies
I sample faster: make π/Ts large; the sampling frequency should be

high enough for good control design
I anti-aliasing: perform a low-pass filter to filter out the signals
|ω|> π/Ts
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Sampling example
I continuous-time signal

y (t) =

{
e−at , t ≥ 0
0, t < 0

, a > 0

L {y (t)}=
1

s + a
I discrete-time sampled signal

y (k) =

{
e−aTsk , k ≥ 0
0, k < 0

Z {y (k)}=
1

1− z−1e−aTs

I sampling maps the continuous-time pole si =−a to the discrete-time
pole zi = e−aTs , via the mapping

zi = esi Ts
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