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Background of Digital Control Systems

» Practically all control systems are implemented on digital computers:
the controller uses sampled output of the plant and periodically
computes a sequence of commands {u[k]} = {u(tc)} (k=0,1,2,...),
instead of directly generating a continuous signal u(t). e.g.,

——TADC ™ Controller [ DACH“ X Plant 27—

> analog-to-digital converter (ADC): converts y(t) to y[k] = y(tk)
(k=0,1,2,...)
digital-to analog converter (DAC): converts u(tx) to u(t)

v

» the overall system is known as a sampled-data system
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From Sampled-Data to Discrete-Time Systems

Y(tk)“(tk) u(t) y(t)

» Mixing continuous- and discrete-time signals and systems causes
multiple difficulties in analysis.

» Often, it is sufficient to understand and control the behavior of the
system at the sampling instances.

» Then the previous block diagram can be re-ordered to

o - u(ty) - u(t) - y(t) - y(tk)

If only the signals at tx's are of interest, the system is called a

discrete-time system.
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ADC and DCA
» the most widely used DAC is the zero order holder (ZOH)

u . tk) (tk+l

Time index

K1  k K+l Time index

> we often treat the ADC as a sampler

u(t) - y(t) - )’(tk) - o/ey(tk)
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Big picture

> implementation platform of digital control: digital signal processor,
field-programmable gate array (FPGA), etc

P either: controller is designed in continuous-time domain and
implemented digitally

» or: controller is designed directly in discrete-time domain
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Frequency response of LTI SISO digital systems

asin(w Tsk) G(z) bsin(wT-k+¢) at steady state

> sampling time: T
> ¢ (e/*7+): phase difference between the output and the input
> M (e&/®7s) = b/a: magnitude difference

continuous-time frequency response:

G(jo) = G(s)| |G (jo)| U

s=jo —

discrete-time frequency response:

¢ (eijs) = G(2)|,—gjors = |G (eijs) JLG(e7T5)

-M (ef“’Ts) LGRS

UW Controls Discretization — 6



The units of frequency
> sampling time: T
G (jw): default unit of @ is radians/second or rad/sec in Matlab
G (6/®T:): o is in rad/sec; Q= @ T in radians or randians/sample
Hz as the other common unit of frequency: ® =270y,
—~—
in rad/s
a little abuse of notation in literature: sin(wk) as a discrete signal (@
in radians/sample here) and G(e/®) also used for discreteOtime
frequency response

vyvyy

v

2 plane Amaginary

K\i)ﬂ — ej27erZ Ts
=1 K/ 1 » Real
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Sampling

sufficient samples must be collected (i.e., fast enough sampling frequency)

to recover the frequency of a continuous-time sinusoidal signal (with
frequency o in rad/sec) ..

.

Figure: Sampling example (source: Wikipedia.org)

» the sampling frequency = 2%

» Shannon's sampling theorem

: the Nyquist frequency (= T.) must
satisfy

i << 75
Ts Ts
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Sampling

» Shannon's sampling theorem: the Nyquist frequency (

satisfy

TC <0< TC
Ts Ts

) must

» The Nyquist frequency is the maximum frequency in the bode plot of
a discrete-time system in Matlab: e.g.,
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Approximation of continuous-time controllers

bilinear transform

formula:
2 z-1 1+ L5
s= £z z= % (1)
Tsz+1 1- s
intuition:

sTs/2 Ts
sT, _ © o/ ,\_,]'—’_2s

e=sTs/2 1 Iss

Z=2¢

implementation: start with G (s), obtain the discrete implementation

G4(2) = G(s)=z =2 (2)

Bilinear transformation maps the closed left half s-plane to the closed unit
ball in z-plane

Stability reservation: G(s) stable <= G4 (z) stable
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Approximation of continuous-time controllers

history

Bilinear transform is also known as Tustin transform.
Arnold Tustin (16 July 1899 — 9 January 1994):
» British engineer, Professor at University of Birmingham and at
Imperial College London
» served in the Royal Engineers in World War |

» worked a lot on electrical machines
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Approximation of continuous-time controllers

frequency mismatch in bilinear transform

oy
2 z-1 2 &/0Ts/2 (eJ0Ts/2 _e=j0Ts/2) " oTs
TsZJrl'zeijs - ?seijs/z (eja)Tg/2+efjcoT5/2) =J Tsta“< > )

G(s)]
gives,

s=jo 1S the true frequency response at m; yet bilinear implementation

Ga (27 ) = G ()lsjo, # G ()lugi

s

UW Controls Discretization — 12



Approximation of continuous-time controllers

bilinear transform with prewarping

goal: extend bilinear transformation such that

G (2)],—etors = G (5)]s=jo

at a particular frequency w,

solution:
1
S:pz—l _1+p5 b= 0p
z+1 17%5’ tan <wp2Ts>
which gives
g Gd(Z) = G(S)’s_ a)pT ZTI
tan(
and w, z—1 a/é)f/j
n
w, Ts 1

tan (73 )z+ o M
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Approximation of continuous-time controllers

bilinear transform with prewarping

choosing a prewarping frequency wp:
» must be below the Nyquist frequency:

0<w, < i
P Ts

» standard bilinear transform corresponds to the case where @, =0

> the best choice of @, depends on the important features in control
design

example choices of wp:
> at the cross-over frequency (which helps preserve phase margin)

> at the frequency of a critical notch for compensating system
resonances
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Sampling and aliasing

sampling maps the continuous-time frequency

ﬂ << r
Ts Ts
onto the unit circle
Almaginary Almaginary
s — plane z — plane
7/ Ts
Sampling
> Real =1 L > Real
—n/Ts
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Sampling and aliasing

sampling also maps the continuous-time frequencies 2 < w < 3%,

Y3 T
3i<w<5ﬁ'

A

etc, onto the unit circle

s — plane

UW Controls
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Sampling and aliasing

Example (Sampling and Aliasing)

T.=1/60 sec (Nyquist frequency 30 Hz).
a continuous-time 10-Hz signal [10 Hz<> 2zx10 rad/sec e(-z/Ts,n/T,)]

y1(t) =sin (27 x 10t)

1 1
y1 (k) =sin <27t X 6—8/() =sin (2717 X 6k>

a 70-Hz signal [2zx70 rad/sec e(x/T37/Ts)]
y2(t) =sin (27 x 70t)

is sampled to

is sampled to

1
y2 (k) =sin <2n X gk) =sin (27r X 6k> = y1 (k)!
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Anti-aliasing

need to avoid the negative influence of aliasing beyond the Nyquist
frequencies

» sample faster: make 7/ Ts large; the sampling frequency should be
high enough for good control design

P anti-aliasing: perform a low-pass filter to filter out the signals
lo| >n/Ts
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Sampling example

P continuous-time signal

Z{y(t)} =

> discrete-time sampled signal

efaTsk’ k>0
y (k)= { _

s+a

0, k<0
Z{y(k)} = L
y(k)} = 1_zleals
» sampling maps the continuous-time pole s; = —a to the discrete-time
pole zi = =275, via the mapping
zZi = eSiTs
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