Delta Robot Kinematics 3D printing-building by learning

X. Chen A. Wentworth

University of Connecticut

Oct 29 2016

History

Originated from delta robots (invented in 1980s, Switzerland)

Device for the movement and positioning of an element in space

Page bookmark	US4976582 (A) - Device for the movement and positioning of an element in space
Inventor(s):	CLAVEL REYMOND [CH] ±
Applicant(s):	SOGEVA SA [CH] ±
Classification:	- international: B25J11/00; B25J17/00; B25J17/02; B25J9/06; B25J9/10; (IPC1-7):
	- cooperative: <u>B25J17/0266; B25J9/0051; B25J9/1065; Y10T74/20207</u>
Application number:	- cooperative: <u>B25J17/0266; B25J9/0051; B25J9/1065; Y10T74/20207</u> US19890403987 19890906
Application number: Priority number(s):	- cooperative: B25J17/0266; B25J9/0051; B25J9/1065; Y10T74/20207 US19890403987 19890906 CH19850005348 19851216
Application number: Priority number(s): Also published as:	- cooperative: B25J17/0266; B25J9/0051; B25J9/1065; Y10T74/20207 US19890403987 19890906 CH19850005348 19851216 D US4976582 (X6). D WO8703528 (A1). → JPS63501860 (A). D JPH0445310 (B2).

Today

Widely used in pick-n-place operations of relatively light objects.

Fundamental Principles

- Actuators are all located in the workspace on the base
- Arm made of light materials

Hence the moving parts of the printer have a small inertia, allowing for very high speed and high accelerations.

Core Advantage

demo1 | demo2

Problem Definition

- forward kinematics: joint angles to position of the end effector
- inverse kinematics: (desired) position of the end effector to required joint angles

Inverse Kinematics

Inverse Kinematics

Dimensions:

- f: side of the fixed triangle (green in picture)
- e: side of the end effector triangle (pink in picture)
- *r_f*: length of upper joint
- *r_e*: length of lower joint (parallelogram joint)

Inverse Kinematics >> Geometry

- ▶ joint F₁J₁ only rotates in YZ plane (F₁J₁ forms a circle of radius r_f)
- ► J1 and E1 are called universal joints: E₁J₁ rotates freely relative to E₁, forming a sphere of radius r_e
- the fixed triangle and the end effector triangle are always parallel (no rotational motion for the end effector triangle)

Inverse Kinematics >> Geometry

- ▶ define: the position of the center of the end effector as E₀(x₀, y₀, z₀)
- goal: given $E_0(x_0, y_0, z_0)$, find θ_i ; i = 1, 2, 3

► The sphere intersects with the YZ plane, forming a circle with center E'₁ and radius E'₁J₁:

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

Let's focus on the geometry in the YZ plane to find θ_1 . Big picture: decide E'_1 and $|E'_1J_1| \Rightarrow$ Find the intersection of the two circles \Rightarrow Find $J_1 \Rightarrow \theta_1 = \arcsin \frac{z_{J_1}}{r_f}$

E₁ is the projection of E₀ to the bottom side of the end effector triangle on the XZ plane:

$$|EE_1| = \frac{e}{2}\tan 30^\circ = \frac{e}{2\sqrt{3}} \Longrightarrow E_1(x_0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$

► E₁ is the projection of E₀ to the bottom side of the end effector triangle on the XZ plane:

$$|EE_1| = \frac{e}{2}\tan 30^\circ = \frac{e}{2\sqrt{3}} \Longrightarrow E_1(x_0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$

• E'_1 is the projection of E_1 onto the YZ plane:

 $|E_1E_1'|=x_0$

We have

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

We have

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

and

$$|E_1 E_1'| = x_0$$

We have

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

and

$$|E_1E_1'|=x_0$$

Hence

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

The intersection of the two circles are defined by

$$(y_{J_1} - y_{F_1})^2 + (z_{J_1} - z_{F_1}^2)^2 = r_f^2$$

and

$$(y_{J_1} - y_{E'_1})^2 + (z_{J_1} - z_{E'_1}^2)^2 = r_e^2 - x_0^2$$

• solve for z_{J_1} and y_{J_1} to get θ_1

Inverse Kinematics $>> \theta_2$ and θ_3

- θ_2 and θ_3 can be similarly derived.
- but there is a shortcut: rotating the axis, we can use the exact same formula on the new coordinates

Goal:

- given θ_1 , θ_2 , θ_3
- find $E_0(x_0, y_0, z_0)$

Solution concept:

- ▶ given θ_1 , θ_2 , θ_3
- compute the coordinates of J_1 , J_2 , J_3
- move J_1 , J_2 , J_3 to J'_1 , J'_2 , J'_3 using transition
- compute the intersection of the three spheres centered at J'_1 , J'_2 , J'_3

$$(x - x_j)^2 + (y - y_j)^2 + (z - z_j)^2 = r_e^2$$

• the intersection is E_0

Illustration of the intersection of the three spheres

Forward Kinematics $>> J'_1, J'_2, J'_3$

Forward Kinematics >> equation for the intersection point

$$(x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_e^2 \Longrightarrow \begin{cases} x^2 + y^2 + z^2 - 2x_2x - 2y_2y - 2z_2z = r_e^2 - x_2^2 - y_2^2 - z_2^2 \\ 0 = x_2^2 - x_2^2 - x_2^2 - x_2^2 - x_2^2 - x_2^2 \end{cases}$$
(2)

$$\begin{aligned} & (x-x_3)^* + (y-y_3)^* + (z-z_3)^* = r_e^* \qquad [x^* + y^* + z^* - 2x_3x - 2y_3y - 2z_3z = r_e^* - x_3^* - y_3^* - z_3^* \qquad (3) \\ e_i &= x_i^2 + y_i^2 + z_i^2 \\ & (x_2x + (y_1 - y_2)y + (z_1 - z_2)z = (w_1 - w_2)/2 \qquad (4) = (1) - (2) \end{aligned}$$

 $\begin{array}{l} x_2 x + (y_1 - y_2)y + (y_1 - z_2) & \cdots & x_{-1} \\ x_3 x + (y_1 - y_3)y + (z_1 - z_3)z = (w_1 - w_3)/2 \\ (x_2 - x_3)x + (y_2 - y_3)y + (z_2 - z_3)z = (w_2 - w_3)/2 \\ \end{array}$ (5) = (1) - (3) (6) = (2) - (3)

From (4)-(5):

$$\begin{aligned} x &= a_1 z + b_1 \quad (7) \qquad \qquad y = a_2 z + b_2 \quad (8) \\ a_1 &= \frac{1}{d} [(z_2 - z_1)(y_3 - y_1) - (z_3 - z_1)(y_2 - y_1)] \qquad \qquad a_2 = -\frac{1}{d} [(z_2 - z_1)x_3 - (z_3 - z_1)x_2] \\ b_1 &= -\frac{1}{2d} [(w_2 - w_1)(y_3 - y_1) - (w_3 - w_1)(y_2 - y_1)] \qquad \qquad b_2 = \frac{1}{2d} [(w_2 - w_1)x_3 - (w_3 - w_1)x_2] \\ d &= (y_2 - y_1)x_3 - (y_3 - y_1)x_2 \end{aligned}$$

Now we can substitute (7) and (8) in (1): $(a_1^2 + a_2^2 + 1)z^2 + 2(a_1 + a_2(b_2 - y1) - z_1)z + (b_1^2 + (b_2 - y_1)^2 + z_1^2 - r_e^2) = 0$

Solve the last equation and calculate x_0 and y_0 from equations (7) and (8).

References

- Paul Zsombor-Murray, Descriptive Geometric Kinematic Analysis of Clavel's "Delta" Robot, 2004
- http://reprap.org/wiki/Delta_geometry