Delta Robot Kinematics
 3D printing-building by learning

X. Chen A. Wentworth
University of Connecticut

Oct 292016

History

- Originated from delta robots (invented in 1980s, Switzerland)

Device for the movement and positioning of an element in space

Page bookmark US4976582 (A) - Device for the movement and positioning of an element in space Inventor(s): CLAVEL REYMOND $[\mathrm{CH}] \pm$
Applicant(s): SOGEVA SA $[\mathrm{CH}] \pm$
Classification: - international: B25J11/00; B25J17/00; B25J17/02; B25J9/06; B25J9/10; (IPC1-7):

- cooperative: B25J17/0266; B25J9/0051; B25J9/1065; Y10T74/20207

Application number: US19890403987 19890906
Priority number(s): \quad CH19850005348 19851216

Today

Widely used in pick-n-place operations of relatively light objects.

Fundamental Principles

- Actuators are all located in the workspace on the base
- Arm made of light materials

Hence the moving parts of the printer have a small inertia, allowing for very high speed and high accelerations.

Core Advantage

demo1 | demo2

Problem Definition

- forward kinematics: joint angles to position of the end effector
- inverse kinematics: (desired) position of the end effector to required joint angles

Inverse Kinematics

Inverse Kinematics

Dimensions:

- f : side of the fixed triangle (green in picture)
- e : side of the end effector triangle (pink in picture)
- r_{f} : length of upper joint
- r_{e} : length of lower joint (parallelogram joint)

Inverse Kinematics >> Geometry

- joint $F_{1} J_{1}$ only rotates in YZ plane ($F_{1} J_{1}$ forms a circle of radius r_{f})
- J1 and $E 1$ are called universal joints: $E_{1} J_{1}$ rotates freely relative to E_{1}, forming a sphere of radius r_{e}
- the fixed triangle and the end effector triangle are always parallel (no rotational motion for the end effector triangle)

Inverse Kinematics >> Geometry

- define: the position of the center of the end effector as $E_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- goal: given $E_{0}\left(x_{0}, y_{0}, z_{0}\right)$, find $\theta_{i} ; i=1,2,3$

Inverse Kinematics $\gg \theta_{1}$

- The sphere intersects with the YZ plane, forming a circle with center E_{1}^{\prime} and radius $E_{1}^{\prime} J_{1}$:

$$
\left|E_{1}^{\prime} J_{1}\right|^{2}+\left|E_{1} E_{1}^{\prime}\right|^{2}=\left|E_{1} J_{1}\right|^{2}=r_{e}^{2}
$$

Inverse Kinematics $\gg \theta_{1}$

Let's focus on the geometry in the YZ plane to find θ_{1}. Big picture: decide E_{1}^{\prime} and $\left|E_{1}^{\prime} J_{1}\right| \Rightarrow$ Find the intersection of the two circles \Rightarrow Find $J_{1} \Rightarrow \theta_{1}=\arcsin \frac{z_{J_{1}}}{r_{f}}$

Inverse Kinematics $\gg \theta_{1}$

- E_{1} is the projection of E_{0} to the bottom side of the end effector triangle on the $X Z$ plane:

$$
\left|E E_{1}\right|=\frac{e}{2} \tan 30^{\circ}=\frac{e}{2 \sqrt{3}} \Longrightarrow E_{1}\left(x_{0}, y_{0}-\frac{e}{2 \sqrt{3}}, z_{0}\right)
$$

Inverse Kinematics $\gg \theta_{1}$

- E_{1} is the projection of E_{0} to the bottom side of the end effector triangle on the $X Z$ plane:

$$
\left|E E_{1}\right|=\frac{e}{2} \tan 30^{\circ}=\frac{e}{2 \sqrt{3}} \Longrightarrow E_{1}\left(x_{0}, y_{0}-\frac{e}{2 \sqrt{3}}, z_{0}\right)
$$

- E_{1}^{\prime} is the projection of E_{1} onto the $Y Z$ plane:

$$
\left|E_{1} E_{1}^{\prime}\right|=x_{0}
$$

Inverse Kinematics $\gg \theta_{1}$

- We have

$$
\left|E_{1}^{\prime} J_{1}\right|^{2}+\left|E_{1} E_{1}^{\prime}\right|^{2}=\left|E_{1} J_{1}\right|^{2}=r_{e}^{2}
$$

Inverse Kinematics $\gg \theta_{1}$

- We have

$$
\left|E_{1}^{\prime} J_{1}\right|^{2}+\left|E_{1} E_{1}^{\prime}\right|^{2}=\left|E_{1} J_{1}\right|^{2}=r_{e}^{2}
$$

- and

$$
\left|E_{1} E_{1}^{\prime}\right|=x_{0}
$$

Inverse Kinematics $\gg \theta_{1}$

- We have

$$
\left|E_{1}^{\prime} J_{1}\right|^{2}+\left|E_{1} E_{1}^{\prime}\right|^{2}=\left|E_{1} J_{1}\right|^{2}=r_{e}^{2}
$$

- and

$$
\left|E_{1} E_{1}^{\prime}\right|=x_{0}
$$

- Hence

$$
\left|E_{1}^{\prime} J_{1}\right|^{2}+\left|E_{1} E_{1}^{\prime}\right|^{2}=\left|E_{1} J_{1}\right|^{2}=r_{e}^{2}
$$

Inverse Kinematics $\gg \theta_{1}$

- The intersection of the two circles are defined by

$$
\left(y_{J_{1}}-y_{F_{1}}\right)^{2}+\left(z_{J_{1}}-z_{F_{1}}^{2}\right)^{2}=r_{f}^{2}
$$

and

$$
\left(y_{J_{1}}-y_{E_{1}^{\prime}}\right)^{2}+\left(z_{J_{1}}-z_{E_{1}^{\prime}}^{2}\right)^{2}=r_{e}^{2}-x_{0}^{2}
$$

- solve for $z_{J_{1}}$ and $y_{J_{1}}$ to get θ_{1}

Inverse Kinematics $\gg \theta_{2}$ and θ_{3}

- θ_{2} and θ_{3} can be similarly derived.
- but there is a shortcut: rotating the axis, we can use the exact same formula on the new coordinates

Forward Kinematics

Forward Kinematics

Goal:

- given $\theta_{1}, \theta_{2}, \theta_{3}$
- find $E_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$\mathrm{E}_{0}\left(\mathrm{x}_{0} ; \mathrm{y}_{0} ; \mathrm{z}_{\mathrm{o}}\right)$

Forward Kinematics

Solution concept:

- given $\theta_{1}, \theta_{2}, \theta_{3}$
- compute the coordinates of J_{1}, J_{2}, J_{3}
- move J_{1}, J_{2}, J_{3} to $J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}$ using transition
- compute the intersection of the three spheres centered at J_{1}^{\prime}, $J_{2}^{\prime}, J_{3}^{\prime}$

$$
\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}+\left(z-z_{j}\right)^{2}=r_{e}^{2}
$$

- the intersection is E_{0}

Forward Kinematics

Illustration of the intersection of the three spheres

Forward Kinematics $\gg J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}$

$$
\begin{aligned}
& \mathrm{OF}_{1}=\mathrm{OF}_{2}=\mathrm{OF}_{3}=\mathrm{f} / 2 \tan (30)=\mathrm{f} / 2 \sqrt{ } 3 \\
& J_{1} J_{1}^{\prime}=J_{2} J_{2}^{2}=J_{3} J_{3}=e / 2 \tan (30)=e / 2 \sqrt{3} \\
& F_{1} J_{1}=r_{f} \cos \left(\theta_{1}\right), F_{2} J_{2}=r_{f} \cos \left(\theta_{1}\right), F_{3} J_{3}=r_{f} \cos \left(\theta_{3}\right) \\
& J_{1}^{\prime}\left(0 ;-(f-e) / 2 \sqrt{3}-r_{\mathrm{f}} \cos \left(\theta_{\mathrm{f}}\right) ;-\mathrm{r}_{\mathrm{f}} \sin \left(\theta_{\mathrm{t}}\right)\right) \\
& J_{2}^{1}\left[\left([f-e) / 2 \sqrt{3}+r_{\mathrm{f}} \cos \left(\theta_{2}\right)\right] \cos (30) ;\left[(f-\mathrm{e}) / 2 \sqrt{3}+\mathrm{r}_{\mathrm{f}} \cos \left(\theta_{2}\right)\right] \sin (30) ;-\mathrm{r}_{\mathrm{f}} \sin \left(\theta_{2}\right)\right) \\
& \mathrm{J}_{3}^{2}\left(\left[(f-\mathrm{e}) / 2 \sqrt{ } 3+\mathrm{r}_{\mathrm{f}} \cos \left(\theta_{3}\right)\right] \cos (30) ;\left[(f-\mathrm{e}) / 2 \sqrt{3}+\mathrm{r}_{\mathrm{f}} \cos \left(\theta_{3}\right)\right] \sin (30) ;-\mathrm{r}_{\mathrm{f}} \sin \left(\theta_{3}\right)\right)
\end{aligned}
$$

Forward Kinematics \gg equation for the intersection point

$$
\begin{align*}
& \left\{\begin{array} { l }
{ x ^ { 2 } + (y - y _ { 1 }) ^ { 2 } + (z - z _ { 1 }) ^ { 2 } = r _ { e } ^ { 2 } } \\
{ (x - x _ { 2 }) ^ { 2 } + (y - y _ { 2 }) ^ { 2 } + (z - z _ { 2 }) ^ { 2 } = r _ { e } ^ { 2 } } \\
{ (x - x _ { 3 }) ^ { 2 } + (y - y _ { 3 }) ^ { 2 } + (z - z _ { 3 }) ^ { 2 } = r _ { e } ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{ll}
x^{2}+y^{2}+z^{2}-2 y_{1} y-2 z_{1} z=r_{e}^{2}-y_{1}^{2}-z_{1}^{2} \\
x^{2}+y^{2}+z^{2}-2 x_{2} x-2 y_{2} y-2 z_{2} z=r_{e}^{2}-x_{2}^{2}-y_{2}^{2}-z_{2}^{2} \\
x^{2}+y^{2}+z^{2}-2 x_{3} x-2 y_{3} y-2 z_{3} z=r_{e}^{2}-x_{3}^{2}-y_{3}^{2}-z_{3}^{2}
\end{array}\right.\right. \tag{1}\\
& \begin{cases}x_{2} x+\left(y_{1}-y_{2}\right) y+\left(z_{1}-z_{2}\right) z=\left(w_{1}-w_{2}\right) / 2 & \text { (4) }=(1)-(2) \\
x_{3} x+\left(y_{1}-y_{3}\right) y+\left(z_{1}-z_{3}\right) z=\left(w_{1}-w_{3}\right) / 2 & \text { (5) }=(1)-(3) \\
\left(x_{2}-x_{3}\right) x+\left(y_{2}-y_{3}\right) y+\left(z_{2}-z_{3}\right) z=\left(w_{2}-w_{3}\right) / 2 & \text { (6) }=(2)-(3)\end{cases} \tag{3}
\end{align*}
$$

From (4)-(5):

$$
\begin{array}{ll}
x=a_{1} z+b_{1} \\
a_{1}=\frac{1}{d}\left[\left(z_{2}-z_{1}\right)\left(y_{3}-y_{1}\right)-\left(z_{3}-z_{1}\right)\left(y_{2}-y_{1}\right)\right] & y=a_{2} z+b_{2} \tag{8}\\
b_{1}=-\frac{1}{2 d}\left[\left(w_{2}-w_{1}\right)\left(y_{3}-y_{1}\right)-\left(w_{3}-w_{1}\right)\left(y_{2}-y_{1}\right)\right] & b_{2}=\frac{1}{d d}\left[\left(z_{2}-z_{1}\right) x_{3}-\left(z_{3}-z_{1}\right) x_{2}\right] \\
\left.d=\left(y_{2}-y_{1}\right) x_{3}-\left(w_{3}-w_{1}\right) x_{2}\right] \\
\end{array}
$$

Now we can substitute (7) and (8) in (1):

$$
\left(a_{1}^{2}+a_{2}^{2}+1\right) z^{2}+2\left(a_{1}+a_{2}\left(b_{2}-y 1\right)-z_{1}\right) z+\left(b_{1}^{2}+\left(b_{2}-y_{1}\right)^{2}+z_{1}^{2}-r_{e}^{2}\right)=0
$$

Solve the last equation and calculate x_{0} and y_{0} from equations (7) and (8).

References

- Paul Zsombor-Murray, Descriptive Geometric Kinematic Analysis of Clavel's "Delta" Robot, 2004
- http://reprap.org/wiki/Delta_geometry

