
UC Berkeley
Lecture Notes for ME233

Advanced Control Systems II

Xu Chen and Masayoshi Tomizuka

Spring 2014

Copyright: Xu Chen and Masayoshi Tomizuka 2013~. Limited copying or use for educational
purposes allowed, but please make proper acknowledgement, e.g.,

“Xu Chen and Masayoshi Tomizuka, Lecture Notes for UC Berkeley Advanced Control Systems
II (ME233), Available at http://www.me.berkeley.edu/ME233/sp14, May 2014.”

or if you use LATEX:

@Misc{xchen14,
key = {controls,systems,lecture notes},
author = {Xu Chen and Masayoshi Tomizuka},
title = {Lecture Notes for UC Berkeley Advanced Control Systems II (ME233)},
howpublished = {Available at \url{http://www.me.berkeley.edu/ME233/sp14}},
month = may,
year = 2014
}

Contents
A1 Syllabus, Spring 2014
0 Introduction
1 Dynamic Programming
3 Probability Theory
4 Least squares (LS) estimation
5 Stochastic state estimation (Kalman Filter)
6 Linear Quadratic Gaussian (LQG) Control
7 Principles of Feedback Design
8 Discretization and Implementation of Continuous-time Design
9 LQG/Loop Transfer Recovery (LTR)
10 LQ with Frequency Shaped Cost Function (FSLQ)
11 Feedforward Control: Zero Phase Error Tracking
12 Preview Control
13 Internal Model Principle and Repetitive Control
14 Disturbance Observer
15 System Identification and Recursive
16 Stability of Parameter Adaptation Algorithms
17 PAA with Parallel Predictors
18 Parameter Convergence in PAAs
19 Adaptive Control based on Pole Assignment

 University of California at Berkeley

 Department of Mechanical Engineering

ME 233: Advanced Control Systems II Spring 2014

ME233 discusses advanced control methodologies and their applications to engineering systems.

Methodologies include but are not limited to: Linear Quadratic Optimal Control, Kalman Filter,

Discretization, Linear Quadratic Gaussian Problem, Loop Transfer Recovery, System Identification, Adaptive

Control and Model Reference Adaptive Systems, Self Tuning Regulators, Repetitive Control, and Disturbance

Observers.

Instructor: Xu Chen, maxchen@berkeley.edu

 Office: 5112 Etcheverry Hall

 Office Hour: Tu, Th 1:00pm – 2:30pm in 5112 Etcheverry Hall

Teaching Assistant: Changliu Liu, changliuliu@berkeley.edu

 Office Hour: M, W 10:00am – 11:00am in 136 Hesse Hall

Lectures: Tu, Th 8:00 am - 9:30 pm in Rm. 3113 Etcheverry Hall

Discussion: Fri. 10am-11am in Rm 1165 Etcheverry Hall

Prerequisites: ME C 232 (syllabus on course website) or its equivalence

Course website: http://www.me.berkeley.edu/ME233/sp14/ and bCourses.berkeley.edu

Remark: lecture videos are webcasted to Youtube and iTunes-U (links on the course website)

Grading: Two Midterm Exams (open one-page summary sheet for each exam) 2*20 %

 Final Examination (open notes) 40 %

 Homework (see policy on course website) 20 %

Class Notes: ME233 Class Notes by M. Tomizuka (Parts I and II)

 They can be purchased at Copy Central, 48 Shattuck Square, Berkeley

Tentative Schedule (Subject to change):

Week Days Topics

1 1/21, 1/23 Dynamic Programming, Discrete Time LQ problem, Review of Probability Theory:

 Sample Space, Random Variable, Probability Distribution and Density Functions.

2 1/28, 1/30 Review of Probability Theory: Random Process, Correlation Function, Spectral

Density

3 2/4, 2/6 Principle of Least Squares estimation; Stochastic State Estimation (Kalman Filter).

4 2/11, 2/13 Stochastic Estimation (continuation)

5 2/18, 2/20 Linear Stochastic Control (Linear Quadratic Gaussian (LQG) Problem); Singular

values; Introduction to linear multivariable control.

6 2/25, 2/27 Linear multivariable control; Loop Transfer Recovery

7 3/4, 3/6 Frequency-shaped LQ; in-class Midterm I on 3/4/2014

8 3/11, 3/13 Feedforward and preview control; Internal Model Principle and Repetitive Control.

9 3/18, 3/20 Disturbance Observer

 3/25, 3/27 SPRING RECESS

10 4/1, 4/3 System Identification and Adaptive Control

11 4/8, 4/10 Parameter Estimation Algorithms

12 4/15, 4/17 Stability analysis of adaptive systems; in-class Midterm II on 4/15/2014

 13 4/22, 4/24 Parallel Adaptation Algorithms; Parameter Convergence

 14 4/29, 5/1 Direct and Indirect Adaptive Control; Adaptive Prediction

Final Examination: May 15 (Th) 2014, 7-10 pm

Please notify the instructor in writing by the second week of the semester, if you have any potential

conflict(s) about the class schedule, or if you need special accommodations such as: disability-related

accommodations, emergency medical information you wish to discuss with the instructor, or special

arrangements in case the building must be evacuated.

ME 233, UC Berkeley, Spring 2014 Xu Chen

Introduction

Big picture
Syllabus

Requirements

Big picture
ME 233 talks about advanced and practical control theories, including but not
limited to:

I dynamic programming
I optimal estimation (Kalman Filter) and stochastic control
I SISO and MIMO feedback design principles
I digital control: implementation and design
I feedforward design techniques: preview control, zero phase error

tracking, etc
I feedback design techniques: LQG/LTR, internal model principle,

repetitive control, disturbance observer
I system identification
I adaptive control
I ...

Introduction ME233 0-1

Teaching staff and class notes

I instructor:
I Xu Chen, 2013 UC Berkeley Ph.D., maxchen@berkeley.edu
I office hour: Tu Thur 1pm-2:30pm at 5112 Etcheverry Hall

I teaching assistant:
I Changliu Liu, changliuliu@berkeley.edu
I office hour: M, W 10:00am – 11:00am in 136 Hesse Hall

I class notes:
I ME233 Class Notes by M. Tomizuka (Parts I and II); Both can
be purchased at Copy Central, 48 Shattuck Square, Berkeley

Introduction ME233 0-2

Requirements and evaluations

I website (case sensitive):
I www.me.berkeley.edu/ME233/sp14
I bcourses.berkeley.edu

I prerequisites: ME C 232 or its equivalence
I lectures: Tu Thur 8-9:30am, 3113 Etcheverry Hall
I discussions: Fri. 10-11am, 1165 Etcheverry Hall
I homework (20%)
I two in-class midterms (20% each): Mar. 4, 2014 and Apr. 15,

2014; one-page handwritten summary sheets allowed
I one final exam (40%): May 15 2014 (Th), 7 pm -10 pm; open

notes

Introduction ME233 0-3

Prerequisites (ME 232 table of contents)

I Laplace and Z transformations
I Models and Modeling of linear dynamical systems: transfer

functions, state space models
I Solutions of linear state equations

I Stability: poles, eigenvalues, Lyapunov stability
I Controllability and observability
I State and output feedbacks, pole assignment via state feedback
I State estimation and observer, observer state feedback control
I Linear Quadratic (LQ) Optimal Control, LQR properties, Riccati

equation

Introduction ME233 0-4

Remark

ME233 will be webcasted:
I Berkeley’s YouTube channel

(http://www.youtube.com/ucberkeley)
I iTunes U (http://itunes.berkeley.edu/)
I webcast.berkeley (http://webcast.berkeley.edu)

links will be posted on course website when available

Introduction ME233 0-5

References (also on course website)

I Probability
I Bertsekas, Introduction to Probability, Athena Scientific
I Yates and Goodman, Probability and Stochastic Processes, second edition, Willey

I Linear Quadratic Optimal Control
I Anderson and Moore, Optimal Control: Linear Quadratic Methods, Dover Books on Engineering (paperback),

2007. A PDF can be downloaded from: http://users.rsise.anu.edu.au/%7Ejohn/papers/index.html
I Lewis and Syrmos, Vassilis L., Optimal Control, Wiley-IEEE, 1995
I Bryson and Ho, Applied Optimal Control: Optimization, Estimation, and Control, Wiley

I Stochastic Control Theory and Optimal Filtering
I Brown and Hwang, Introduction to Random Signals and Applied Kalman Filtering, Third Edition, Willey
I Lewis and Xie and Popa, Optimal and Robust Estimation, Second Edition CRC
I Grewal and Andrews, Kalman Filter, Theory and Practice, Prentice Hall
I Anderson, and Moore, Optimal Filtering, Dover Books on Engineering (paperback), New York, 2005. A PDF

can be downloaded from: http://users.rsise.anu.edu.au/%7Ejohn/papers/index.html
I Astrom, Introduction to Stochastic Control Theory, Dover Books on Engineering (paperback), New York, 2006

I Adaptive Control
I Astrom and Wittenmark, Adaptive Control, Addison Wesley, 2nd Ed., 1995
I Goodwin and Sin, Adaptive Filtering Prediction and Control, Prentice Hall, 1984

I Krstic, Kanellakopoulos, and Kokotovic, Nonlinear and Adaptive Control Design, Willey

Introduction ME233 0-6

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 1: Dynamic Programming

General problem
Multivariable derivative

Discrete-time LQ

Dynamic programming (DP)
introduction:

I history: developed in the 1950’s by Richard Bellman
I “programming”: ~“planning” (has nothing to do with

computers)

I a useful concept with lots of applications

I IEEE Global History Network: “A breakthrough which set the
stage for the application of functional equation techniques in a
wide spectrum of fields. . . ”

Lecture 1: Dynamic Programming ME233 1-1

Essentials of dynamic programming
I key idea: solve a complex and difficult problem via solving a

collection of sub problems

Example (Path planning)
goal: obtain minimum cost path from S to E

S

A

C D

B

E

1

6

3
2 1

2

4 1

I observation: if node C is on the optimal path, the then path
from node C to node E must be optimal as well

Lecture 1: Dynamic Programming ME233 1-2

Essentials of dynamic programming
I key idea: solve a complex and difficult problem via solving a

collection of sub problems

Example (Path planning)
goal: obtain minimum cost path from S to E

S

A

C D

B

E

1

6

3
2 1

2

4 1

I observation: if node C is on the optimal path, the then path
from node C to node E must be optimal as well

Lecture 1: Dynamic Programming ME233 1-2

Essentials of dynamic programming

S

A

C D

B

E

1

6

3
2 1

2

4 1 dist (E),minimum cost S → E

I solution:
backward analysis

dist (E) =min{dist (B)+2,dist (D)+1}
dist (B) = dist (A)+6
dist (D) = min{dist (B)+1,dist (C)+3}
dist (C) = 2
dist (A) =min{1,dist (C)+4}

forward computation

dist (C) = 2
dist (A) = 1
dist (B) = 1+6= 7
dist (D) = 5
dist (E) = 6

Lecture 1: Dynamic Programming ME233 1-3

Essentials of dynamic programming

S

A

C D

B

E

1

6

3
2 1

2

4 1 dist (E),minimum cost S → E

I solution:
backward analysis

dist (E) =min{dist (B)+2,dist (D)+1}
dist (B) = dist (A)+6
dist (D) = min{dist (B)+1,dist (C)+3}
dist (C) = 2
dist (A) =min{1,dist (C)+4}

forward computation

dist (C) = 2
dist (A) = 1
dist (B) = 1+6= 7
dist (D) = 5
dist (E) = 6

Lecture 1: Dynamic Programming ME233 1-3

Essentials of dynamic programming

S

A

C D

B

E

1

6

3
2 1

2

4 1

I summary (Bellman’s principle of optimality): “From any point
on an optimal trajectory, the remaining trajectory is optimal for
the corresponding problem initiated at that point.”

Lecture 1: Dynamic Programming ME233 1-4

General optimal control problems
I general discrete-time plant:

x (k +1) = f (x (k) ,u (k) ,k)
state constraint: x (k) ∈ X ⊂ Rn

input constraint: u (k) ∈ U ⊂ Rm

I performance index:

J = S (x (N))+
N−1
∑
k=0

L(x (k) ,u (k) ,k)

S & L–real, scalar-valued functions; N–final time (optimization horizon)

I goal: obtain the optimal control sequence

{uo (0) ,uo (1) , . . . ,uo (N−1)}
Lecture 1: Dynamic Programming ME233 1-5

Dynamic programming for optimal control
I define: Uk , {u (k) ,u (k +1) , . . . ,u (N−1)}
I optimal cost to go at time k :

Jo
k (x (k)),min

Uk

{
S (x (N))+

N−1
∑
j=k

L(x (j) ,u (j) , j)
}

=min
u(k)

min
Uk+1

{
L(x (k) ,u (k) ,k)+

[
S (x (N))+

N−1
∑

j=k+1
L(x (j) ,u (j) , j)

]}

=min
u(k)

{
L(x (k) ,u (k) ,k)+min

Uk+1

[
S (x (N))+

N−1
∑

j=k+1
L(x (j) ,u (j) , j)

]}

=min
u(k)

{
L(x (k) ,u (k) ,k)+Jo

k+1 (x (k +1))
}

(1)

I boundary condition: Jo
N (x (N)) = S (x (N))

I The problem can now be solved by solving a sequence of
problems Jo

N−1, Jo
N−2, . . . ,Jo

1 , Jo.
Lecture 1: Dynamic Programming ME233 1-6

Solving discrete-time finite-horizon LQ via DP
I system dynamics:

x (k +1) = A(k)x (k)+B (k)u (k) , x (k0) = xo (2)

I performance index:

J =
1
2xT (N)Sx (N)+

1
2

N−1
∑

k=k0

{
xT (k)Q (k)x (k)+uT (k)R (k)u (k)

}

Q (k) = QT (k)� 0, S = ST � 0, R (k) = RT (k)� 0

I optimal cost to go:

Jo
k (x (k))=min

u(k)

{
1
2xT (k)Q (k)x (k)+ 1

2uT (k)R (k)u (k)+Jo
k+1 (x (k +1))

}

with boundary condition: Jo
N (x (N)) = 1

2xT (N)Sx (N)

Lecture 1: Dynamic Programming ME233 1-7

Facts about quadratic functions

I consider
f (u) = 1

2uT Mu+pT u+q, M = MT (3)

I optimality (maximum when M is negative definite; minimum
when M is positive definite) is achieved when

∂ f
∂u = Mu+p = 0⇒ uo =−M−1p (4)

I and the optimal cost is

f o = f (uo) =−1
2pT M−1p+q (5)

Lecture 1: Dynamic Programming ME233 1-8

From Jo
N to Jo

N−1 in discrete-time LQ
I by definition:

Jo
N−1 (x (N−1)) = min

u(N−1)

{
1
2xT (N)Sx (N)

+
1
2
[
xT (N−1)Q (N−1)x (N−1)+uT (N−1)R (N−1)u (N−1)

]}

I using the system dynamics (2) gives

Jo
N−1 (x (N−1)) = 1

2 min
u(N−1)

{xT (N−1)Q (N−1)x (N−1)

+uT (N−1)R (N−1)u (N−1)+[A(N−1)x (N−1)+B (N−1)u (N−1)]T

×S [A(N−1)x (N−1)+B (N−1)u (N−1)]}

I optimal control by letting ∂JN−1/∂u (N−1) = 0:

uo (N−1)=−
[
R (N−1)+BT (N−1)SB (N−1)

]−1
BT (N−1)SA(N−1)

︸ ︷︷ ︸
state feedback gain: K(N−1)

x (N−1)

Lecture 1: Dynamic Programming ME233 1-9

?Optimality at N and N−1
at time N : optimal cost is

Jo
N (x (N)) =

1
2xT (N)Sx (N), 1

2xT (N)P (N)x (N)

at time N−1:

Jo
N−1 (x (N−1)) = 1

2 min
u(N−1)

{xT (N−1)Q (N−1)x (N−1)

+uT (N−1)R (N−1)u (N−1)+[A(N−1)x (N−1)+B (N−1)u (N−1)]T

×S [A(N−1)x (N−1)+B (N−1)u (N−1)]}
optimal cost to go [by using (5)] is

Jo
N−1 (x (N−1)) = 1

2xT (N−1)
{

Q (N−1)+AT (N−1)SA(N−1)

−(. . .)T
[
R (N−1)+BT (N−1)SB (N−1)

]−1
BT (N−1)SA(N−1)

}
x (N−1)

, 1
2xT (N−1)P (N−1)x (N−1)

Lecture 1: Dynamic Programming ME233 1-10

Summary: from N to N−1
at N :

Jo
N (x (N)) =

1
2xT (N)Sx (N) =

1
2xT (N)P (N)x (N)

at N−1:

Jo
N−1 (x (N−1)) = 1

2xT (N−1)P (N−1)x (N−1)

with (S has been replaced with P (N) here)

P (N−1) = Q (N−1)+AT (N−1)P (N)A(N−1)

−(. . .)T
[
R (N−1)+BT (N−1)P (N)B (N−1)

]−1
BT (N−1)P (N)A(N−1)

and state-feedback law

uo (N−1) =−
[
R (N−1)+BT (N−1)P (N)B (N−1)

]−1

×BT (N−1)P (N)A(N−1)x (N−1)
Lecture 1: Dynamic Programming ME233 1-11

Induction from k +1 to k
I assume at k +1:

Jo
k+1 (x (k +1)) = 1

2xT (k +1)P (k +1)x (k +1)

I analogous as the case from N to N−1, we can get, at k :

Jo
k (x (k)) =

1
2xT (k)P (k)x (k)

with Riccati equation

P (k) = AT (k)P (k +1)A(k)+Q (k)

−AT (k)P (k +1)B (k)
[
R (k)+BT (k)P (k +1)B (k)

]−1
BT (k)P (k +1)A(k)

and state-feedback law

uo (k) =−
[
R (k)+BT (k)P (k +1)B (k)

]−1
BT (k)P (k +1)A(k)x (k)

Lecture 1: Dynamic Programming ME233 1-12

Implementation
I optimal state-feedback control law:

uo (k) =−
[
R (k)+BT (k)P (k +1)B (k)

]−1
BT (k)P (k +1)A(k)x (k)

I Riccati equation:

P (k) = AT (k)P (k +1)A(k)+Q (k)

−AT (k)P (k +1)B (k)
[
R (k)+BT (k)P (k +1)B (k)

]−1
BT (k)P (k +1)A(k)

with the boundary condition P (N) = S.
I uo(k) depends on

I the state vector x (k)
I system matrices A(k) and B (k) and the cost matrix R (k)
I P(k +1), which depends on Q (k +2), A(k +1), B (k +1), and

P (k +2)...
I iterating gives: u(0) depends on {A(k) ,B (k) ,R (k) ,Q (k +1)}N−1

k=0
In practice, P (k) can be computed offline since they do not require
information of x (k).

Lecture 1: Dynamic Programming ME233 1-13

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 3: Review of Probability Theory

Connection with control systems
Random variable, distribution
Multiple random variables

Random process, filtering a random process

Big picture
why are we learning this:

We have been very familiar with deterministic systems:

x (k +1) = Ax (k) + Bu (k)

In practice, we commonly have:

x (k +1) = Ax (k) + Bu (k) + Bww (k)

where w (k) is the noise term that we have been neglecting. With
the introduction of w (k), we need to equip ourselves with some
additional tool sets to understand and analyze the problem.

Lecture 3: Review of Probability Theory ME233 3-1

Sample space, events and probability axioms
I experiment: a situation whose outcome depends on chance
I trial: each time we do an experiment we call that a trial

Example (Throwing a fair dice)
possible outcomes in one trail: getting a ONE, getting a TWO, ...

I sample space Ω: includes all the possible outcomes

I probability: discusses how likely things, or more formally, events,
happen

I an event Si : includes some (maybe 1, maybe more, maybe none)
outcomes of the sample space. e.g., the event that it won’t rain
tomorrow; the event that getting odd numbers when throwing a
dice

Lecture 3: Review of Probability Theory ME233 3-2

Sample space, events and probability axioms
probability axioms

I Pr{Sj} ≥ 0
I Pr{Ω}= 1
I if Si ∩Sj = ∅ (empty set), then Pr{Si ∪Sj}= Pr{Si}+Pr{Sj}

Example (Throwing a fair dice)
the sample space:

Ω = {getting a ONE︸ ︷︷ ︸
ω1

, getting a TWO︸ ︷︷ ︸
ω2

, . . . , getting a SIX︸ ︷︷ ︸
ω6

}

the event S1 of observing an even number:

S1 = {ω2,ω4,ω6}

Pr{S1}=
1
6 +

1
6 +

1
6 =

1
2

Lecture 3: Review of Probability Theory ME233 3-3

Random variables
to better measure probabilities, we introduce random variables (r.v.’s)

I r.v.: a real valued function X (ω) defined on Ω; ∀x ∈ R there
defined the (probability) cumulative distribution function (cdf)

F (x) = Pr{X ≤ x}

I cdf F (x): non-decreasing, 0≤ F (x)≤ 1, F (−∞) = 0, F (∞) = 1

Example (Throwing a fair dice)
can define X : the obtained number of the dice

X (ω1) = 1, X (ω2) = 2, X (ω3) = 3, X (ω4) = 4, . . .

can also define X : indicator of whether the obtained number is even

X (ω1) = X (ω3) = X (ω5) = 0, X (ω2) = X (ω4) = X (ω6) = 1
Lecture 3: Review of Probability Theory ME233 3-4

Probability density and moments of distributions
I probability density function (pdf):

p (x) =
dF (x)

dx

Pr(a < X ≤ b) =
∫ b

a
p (x)dx , a < b

sometimes we write pX (x) to emphasize that it is for the r.v. X
I mean, or expected value (first moment):

mX = E [X] =
∫ ∞

−∞
xpX (x)dx

I variance (second moment):

Var [X] = E
[

(X −mX)2
]

=
∫ ∞

−∞
(x −mX)2 pX (x)dx

I standard deviation (std): σ =
√

Var [X]
I exercise: prove that Var [X] = E

[
X 2]− (E [X])2

Lecture 3: Review of Probability Theory ME233 3-5

Example distributions
uniform distribution

I a r.v. uniformly distributed between xmin and xmax
I probability density function:

p (x) =
1

xmax− xmin

p
X
(x)

1
xmax¡xmin

xxmaxxmin

Matlab function: rand

I cumulative distribution function:

F (x) =
x − xmin

xmax− xmin
, xmin ≤ x ≤ xmax

I mean and variance:

E [X] =
1
2 (xmax + xmin) , Var [X] =

(xmax− xmin)2

12
Lecture 3: Review of Probability Theory ME233 3-6

Example distributions
Gaussian/normal distribution

I importance: sum of independent r.v.s → a Gaussian distribution
I probability density function:

p (x) =
1

σX
√
2π

exp
(
−(x −mX)2

2σ2
X

) 1

σ
X

√

2π

0.607

σ
X

√

2π

m
X
− σ

X m
X
+ σ

Xm
X

I pdf fully characterized by mX and σX . Hence a normal
distribution is usually denoted as N (mX ,σX)

I nice properties: if X is Gaussian and Y is a linear function of X ,
then Y is Gaussian

Lecture 3: Review of Probability Theory ME233 3-7

Example distributions
Gaussian/normal distribution
Central Limit Theorem: if X1, X2, ... are independent identically
distributed random variables with mean mX and variance σ2

X , then

Zn =
∑n

k=1 (Xk −mX)√nσ2
X

converges in distribution to a normal random variable X ∼ N (0,1)
example: sum of uniformly distributed random variables in [0,1]
X1 = rand(1,1e5);
X2 = rand(1,1e5);
X3 = rand(1,1e5);
Z = X1 + X2;
[fz,x] = hist(Z,100);
w_fz = x(end)/length(fz);
fz = fz/sum(fz)/w_fz;
figure, bar(x,fz)
xlabel ’x’; ylabel ’p_Z(x))’;
Y = X1 + X2 + X3;
% ...

Lecture 3: Review of Probability Theory ME233 3-8

Multiple random variables
joint probability
for the same sample space Ω, multiple r.v.’s can be defined

I joint probability: Pr(X = x ,Y = y)
I joint cdf:

F (x ,y) = Pr(X ≤ x ,Y ≤ y)

I joint pdf: p (x ,y) = ∂ 2
∂x∂y F (x ,y)

I covariance:
Cov (X ,Y) = ΣXY = E [(X −mX)(Y −mY)] = E [XY]−E [X]E [Y]

=
∫ ∞

−∞

∫ ∞

−∞
(x −mX)(y −mY)p (x ,y)dxdy

I uncorrelated: ΣXY = 0
I independent random variables satisfy:

F (x ,y) = Pr(X ≤ x ,Y ≤ y) = Pr(X ≤ x)Pr(Y ≤ y) = FX (x)FY (y)

p (x ,y) = pX (x)pY (y)

Lecture 3: Review of Probability Theory ME233 3-9

Multiple random variables
more about correlation
correlation coefficient:

ρ (X ,Y) =
Cov (X ,Y)√
Var (X)Var (Y)

X and Y are uncorrelated if ρ (X ,Y) = 0
I independent⇒uncorrelated; uncorrelated;independent
I uncorrelated indicates Cov (X ,Y) = E [XY]−E [X]E [Y] = 0,

which is weaker than X and Y being independent

Example
X–uniformly distributed on [−1,1]. Construct Y : if X ≤ 0 then
Y =−X ; if X > 0 then Y = X . X and Y are uncorrelated due to

I E [X] = 0, E [Y] = 1
2

I E [XY] = 0
however X and Y are clearly dependent

Lecture 3: Review of Probability Theory ME233 3-10

Multiple random variables
random vector

I vector of r.v.’s:
Z =

[
X
Y

]

I mean:
mZ =

[
mX
mY

]

I covariance matrix:

Σ = E
[

(Z −mZ)(Z −mZ)T
]

=

[
ΣXX ΣXY
ΣYX ΣYY

]

=
∫ ∞

−∞

∫ ∞

−∞

[
(X −mX)2 (X −mX)(Y −mY)

(Y −mY)(X −mX) (Y −mY)2

]
p (x ,y)dxdy

Lecture 3: Review of Probability Theory ME233 3-11

Conditional distributions
I joint pdf to single pdf:

pX (x) =
∫ ∞

−∞
p (x ,y)dy

I conditional pdf:

pX (x |y1) = pX (x |Y = y1) =
p (x ,y1)

pY (y1)

I conditional mean:

E [X |y1] =
∫ ∞

−∞
xpX (x |y1)dx

I note: independent⇒pX (x |y1) = pX (x)
I properties of conditional mean:

E
y

[E [X |y]] = E [X]

Lecture 3: Review of Probability Theory ME233 3-12

Multiple random variables
Gaussian random vectors
Gaussian r.v. is particularly important and interesting as its pdf is
mathematically sound
Special case: two independent Gaussian r.v. X1 and X2

p (x1,x2) = pX1 (x1)pX2 (x2) =
1

σX1

√
2π

e−
(

x1−mX1

)2
/
(
2σ2

X1

)
1

σX2

√
2π

e−
(

x2−mX2

)2
/
(
2σ2

X2

)

=
1

σX1σX2
(√

2π
)2 exp

{
−1
2

[
x1−mX1
x2−mX2

]T [σ2
X1

0
0 σ2

X2

]−1 [x1−mX1
x2−mX2

]}

We can use the random vector notation: X = [X1,X2]T

Σ =

[
σ2

X1
0

0 σ2
X2

]

and write

pX (x) =
1

(√
2π
)2√detΣ

exp
{
−1
2 [X −mX]T Σ−1 [X −mX]

}

Lecture 3: Review of Probability Theory ME233 3-13

General Gaussian random vectors
pdf for a n-dimensional jointly distributed Gaussian random vector X :

pX (x) =
1(√

2π
)n√detΣ

exp
{
−1
2 [X −mX]T Σ−1 [X −mX]

}
(1)

joint pdf for 2 Gaussian random vectors X (n-dimensional) and Y
(m-dimensional):

p (x ,y) =
1

(√
2π
)n+m√detΣ

exp
{
−1
2

[
x −mX
y −mY

]T
Σ−1

[
x −mX
y −mY

]}

(2)

Σ =

[
ΣXX ΣXY
ΣYX ΣYY

]

where ΣXY is the cross covariance (matrix) between X and Y

ΣXY = E
[
(X −mX)(Y −mY)T

]
= E

[
(Y −mY)(X −mX)T

]T
= ΣT

YX

Lecture 3: Review of Probability Theory ME233 3-14

General Gaussian random vectors
conditional mean and covariance
important facts about conditional mean and covariance:

mX |y = mX + ΣXY Σ−1
YY [y −mY]

ΣX |y = ΣXX −ΣXY Σ−1
YY ΣYX

proof uses p (x ,y) = p (x |y)p (y), (1), and (2)
I getting detΣ and the inverse Σ−1: do a transformation

[
I −ΣXY Σ−1YY
0 I

][
ΣXX ΣXY
ΣYX ΣYY

][
I 0

−Σ−1YY ΣYX I

]

=

[
ΣXX −ΣXY Σ−1YY ΣYX 0

0 ΣYY

]
(3)

hence
detΣ = detΣYY det

(
ΣXX −ΣXY Σ−1

YY ΣYX
)

(4)
Lecture 3: Review of Probability Theory ME233 3-15

General Gaussian random vectors
inverse of the covariance matrix
computing the inverse Σ−1:
–(3) gives

Σ−1 =

[
ΣXX ΣXY
ΣYX ΣYY

]−1

=

[
I 0

−Σ−1YY ΣYX I

][
ΣXX −ΣXY Σ−1YY ΣYX 0

0 ΣYY

]−1 [I −ΣXY Σ−1YY
0 I

]

–hence in (2):
[

x −mX
y −mY

]T
Σ−1

[
x −mX
y −mY

]

=

[
?

]T [
ΣXX −ΣXY Σ−1YY ΣYX 0

0 ΣYY

]−1 [x −
(
mX + ΣXY Σ−1YY [y −mY]

)

y −mY

]

︸ ︷︷ ︸
[?]

(5)

Lecture 3: Review of Probability Theory ME233 3-16

General Gaussian random vectors
p (x ,y) = p (x |y)p (y)⇒ p (x |y) = p (x ,y)/p (y)

I using (4) and (5) in (2), we get

p (x |y) =
p (x ,y)

p (y)
=

1
(√

2π
)n√det

(
ΣXX −ΣXY Σ−1

YY ΣYX
)

︸ ︷︷ ︸
[??]

× exp
{
−1
2

[
. . .

]T
[??]−1

[
x −

(
mX + ΣXY Σ−1

YY [y −mY]
)]
}

hence X |y is also Gaussian, with

mX |y = mX + ΣXY Σ−1
YY [y −mY]

ΣX |y = ΣXX −ΣXY Σ−1
YY ΣYX

Lecture 3: Review of Probability Theory ME233 3-17

Random process
I discrete-time random process: a random variable evolving with

time {x (k), k = 1,2, . . .}
I a stack of random vectors: x (k) = [x (1) ,x (2) , . . .]T

1 2 3 4 5 6 . . . k

x(k) in experiment ω1

x(k) in ω2

x(k) in ω3

.........
Lecture 3: Review of Probability Theory ME233 3-18

Random process

x (k) = [x (1) ,x (2) , . . .]T :
I complete probabilistic properties defined by the joint pdf

p (x (1) ,x (2) , . . .), which is usually difficult to get
I usually sufficient to know the mean E [x (k)] = mx (k) and

auto-covariance:

E [(x (j)−mx (j))(x (k)−mx (k))] = Σxx (j ,k) (6)

I sometimes Σxx (j ,k) is also written as Xxx (j ,k)

Lecture 3: Review of Probability Theory ME233 3-19

Random process
let x (k) be a 1-d random process

I time average of x (k):

x (k) = lim
N→∞

1
2N +1

N
∑

j=−N
x (j)

I ensemble average:
E [x (k)] = mx(k)

I ergodic random process: for all moments of the distribution, the
ensemble averages equal the time averages

E [x (k)] = x (k), Σxx (j ,k) = [x (j)−mx] [x (k)−mx], . . .

I ergodicity: not easy to test but many processes in practice are
ergodic; extremely important as large samples can be expensive
to collect in practice

I one necessary condition for ergodicity is stationarity
Lecture 3: Review of Probability Theory ME233 3-20

Random process
stationarity: tells whether the statistics characteristics changes w.r.t. time

I stationary in the strict sense: probability distribution does not
change w.r.t. time

Pr{x (k1)≤ x1, . . . ,x (kn)≤ xn}= Pr{x (k1 + l)≤ x1, . . . ,x (kn + l)≤ xn}
I stationary in the week/wide sense: mean does not dependent on time

E [x (k)] = mx = costant

and the auto-covariance (6) depends only on the time difference
l = j−k

I can hence write

E [(x (k)−mx)(x (k + l)−mx)] = Σxx (l) = Xxx (l)

I for stationary and ergodic random processes:

Σxx (l) = E [(x (k)−mx)(x (k + l)−mx)] = (x (k)−mx)(x (k + l)−mx)

Lecture 3: Review of Probability Theory ME233 3-21

Random process
covariance and correlation for stationary ergodic processes

I we will assume stationarity and ergodicity unless otherwise stated
I auto-correlation: Rxx (l) = E [x (k)x (k + l)].

I cross-covariance:

Σxy (l) = Xxy (l) = E [(x (k)−mx)(y (k + l)−my)]

I property (using ergodicity):

Σxy (l) = Xxy (l) = (x (k)−mx)(y (k + l)−my)

= (y (k + l)−my)(x (k)−mx) = Xyx (−l) = Σyx (−l)

Lecture 3: Review of Probability Theory ME233 3-22

Random process
white noise

I white noise: a purely random process with x (k) not correlated
with x (j) at all if k 6= j :

Xxx (0) = σ2
xx , Xxx (l) = 0 ∀l 6= 0

I non-stationary zero mean white noise:

E [x (k)x (j)] = Q (k)δkj , δkj =

{
1 , k = j
0 , k 6= j

Lecture 3: Review of Probability Theory ME233 3-23

Random process
auto-covariance and spectral density

I spectral density: the Fourier transform of auto-covariance

Φxx (ω) =
∞

∑
l=−∞

Xxx (l)e−jω l , Xxx (l) =
1
2π

∫ π

−π
ejω l Φxx (ω)dω

I cross spectral density:

Φxy (ω) =
∞

∑
l=−∞

Xxy (l)e−jω l , Xxy (l) =
1
2π

∫ π

−π
ejω l Φxy (ω)dω

properties:
I the variance of x is the area under the spectral density curve

Var [x] = E
[

(x −E [x])2
]

= Xxx (0) =
1
2π

∫ π

−π
Φxy (ω)dω

I Xxx (0)≥ |Xxx (l)| , ∀l
Lecture 3: Review of Probability Theory ME233 3-24

Filtering a random process
passing a random process u (k) through an LTI system (convolution)
generates another random process:

y (k) = g (k)∗u (k) =
∞

∑
i=−∞

g (i)u (k− i)

I if u is zero mean and ergodic, then

Xuy (l) = u (k)
∞

∑
i=−∞

u (k + l− i)g (i)

=
∞

∑
i=−∞

u (k)u (k + l− i)g (i) =
∞

∑
i=−∞

Xuu (l− i)g (i) = g (l)∗Xuu (l)

similarly
Xyy (l) =

∞

∑
i=−∞

Xyu (l− i)g (i) = g (l)∗Xyu (l)

I in pictures:

Xuu (l) // G (z) // Xuy (l) ; Xyu (l) // G (z) // Xyy (l)
Lecture 3: Review of Probability Theory ME233 3-25

Filtering a random process
input-output spectral density relation
for a general LTI system

u (k) // G(z) = bnzn+bn−1zn−1+···+b0
zn+an−1zn−1+···+a0

// y (k)

Y (z) = G (z)U (z)⇔ Y
(
ejω)= G

(
ejω)U

(
ejω)

I auto-covariance relation in the last slide:

Xuu (l) // G (z) // Xuy (l) ; Xyu (l) // G (z) // Xyy (l)

Xyu (l) = Xuy (−l) = g (−l)∗Xuu (−l) = g (−l)∗Xuu (l)
hence

Φyy (ω) = G
(
ejω)G

(
e−jω)Φuu (ω) =

∣∣G
(
ejω)∣∣2 Φuu (ω)

Lecture 3: Review of Probability Theory ME233 3-26

Filtering a random process
MIMO case:

I if u and y are vectors, G (z) becomes a transfer function matrix
I dimensions play important roles:

Xuy (l) = E
[

(u (k)−mu)(y (k + l)−my)T
]

= Xyu (−l)T

Xuu (l) // G (z) // Xuy (l) ; Xyu (l) // G (z) // Xyy (l)

Xyy (l) = g (l)∗Xyu (l) = g (l)∗XT
uy (−l)

= g (l)∗ [g (−l)∗Xuu (−l)]T

Φyy
(
ejω)= G

(
ejω) ·Φuu

(
ejω)GT (e−jω)

Lecture 3: Review of Probability Theory ME233 3-27

Filtering a random process in state space
consider: w (k)–zero mean, white, E[w(k)w(k)T]=W (k) and

x (k +1) = A(k)x (k) + Bw (k)w (k) (7)

assume random initial state x (0) (uncorrelated to w (k)):

E [x (0)] = mx0 , E
[
(x (0)−mx0)(x (0)−mx0)T

]
= X0

I mean of state vector x (k):

mx (k +1) = A(k)mx (k) , mx (0) = mx0 (8)

I covariance X(k)=Xxx (k,k): (7)-(8)⇒

X (k +1) = A(k)X (k)AT (k) + Bw (k)W (k)BT
w (k) , X (0) = Xo

I intuition: covariance is a “second-moment” statistical property
Lecture 3: Review of Probability Theory ME233 3-28

Filtering a random process in state space
dynamics of the mean:

mx (k +1) = A(k)mx (k) , mx (0) = mx0

dynamics of the covariance:

X (k +1) = A(k)X (k)AT (k) + Bw (k)W (k)BT
w (k) , X (0) = Xo

I (steady state) if A(k) = A and is stable, Bw (k) = Bw , and w (k)
is stationary W (k) = W , then

mx (k)→ 0, X (k)→ a steady state Xss

Xss = AXssAT + BwWBT
w : discrete-time Lyapunov Eq. (9)

Xss (l) = E
[
x (k)xT (k + l)

]
= Xss

(
AT
)l

Xss (−l) = Xss (l)T = AlXss

Lecture 3: Review of Probability Theory ME233 3-29

Filtering a random process in state space

Example
first-order system

x (k +1) = ax (x)+
√

1−a2w (k) , E [w (k)] = 0, E [w (k)w (j)] = W δkj

with |a|< 1 and x (0) uncorrelated with w (k).
steady-state variance equation (9) becomes

Xss = a2Xss +
(
1−a2)W ⇒ Xss = W

and
X (l) = X (−l) = alXss = alW

Lecture 3: Review of Probability Theory ME233 3-30

Filtering a random process in state space
Example

x (k +1) = ax (x)+
√

1−a2w (k) , E [w (k)] = 0, E [w (k)w (j)] = W δkj

X (l) = X (−l) = alXss = alW
x(l)

l

increasing α

Lecture 3: Review of Probability Theory ME233 3-31

Filtering a random process
continuous-time case
similar results hold in the continuous-time case:

u (t) // G(s) // y (t)

I spectral density (SISO case):
Φyy (jω) = G (jω)G (−jω)Φuu (jω) = |G (jω)|2 Φuu (jω)

I mean and covariance dynamics:
dx (t)

dt = Ax (t) + Bw w (t) , E [w (t)] = 0, Cov [w (t)] = W
dmx (t)

dt = Amx (t) , mx (0) = mx0

dX (t)

dt = AX + XAT + Bw WBT
w

I steady state: Xss (τ) = XsseAT τ ; Xss (−τ) = eAτXss where
AXss + XssAT =−Bw WBT

w : continuout-time Lyapunov Eq.
Lecture 3: Review of Probability Theory ME233 3-32

Appendix: Lyapunov equations
I discrete-time case:

AT PA−P =−Q
has the following unique solution iff λi (A)λj (A) 6= 1 for all
i , j = 1, . . . ,n:

P =
∞

∑
k=0

(
AT
)k

QAk

I continuous-time case:

AT P + PA =−Q

has the following unique solution iff λi (A) + λ̄j (A) 6= 0 for all
i , j = 1, . . . ,n:

P =
∫ ∞

0
eAT tQeAtdt

Lecture 3: Review of Probability Theory ME233 3-33

Summary

1. Big picture

2. Basic concepts: sample space, events, probability axioms, random
variable, pdf, cdf, probability distributions

3. Multiple random variables
random vector, joint probability and distribution, conditional
probability
Gaussian case

4. Random process

Lecture 3: Review of Probability Theory ME233 3-34

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 4: Least Squares (LS) Estimation

Background and general solution
Solution in the Gaussian case

Properties
Example

Big picture
general least squares estimation:

I given: jointly distributed x (n-dimensional) & y (m-dimensional)
I goal: find the optimal estimate x̂ that minimizes

E
[
||x − x̂ ||2

∣∣y = y1
]
= E

[
(x − x̂)T (x − x̂)

∣∣∣y = y1
]

I solution: consider
J (z) = E

[
||x − z ||2

∣∣y = y1
]
= E

[
xT x

∣∣∣y = y1
]
−2zT E [x |y = y1]+ zT z

which is quadratic in z . For optimal cost,
∂

∂z J(z) = 0⇒ z = E [x |y = y1], x̂

hence x̂ = E [x |y = y1] =
∫ ∞

−∞
xpx |y (x |y1)dx

Jmin = J (x̂) = Tr
{
E
[
(x − x̂)(x − x̂)T |y = y1

]}

Lecture 4: Least Squares (LS) Estimation ME233 4-1

Big picture
general least squares estimation:

x̂ = E [x |y = y1] =
∫ ∞

−∞
xpx |y (x |y1)dx

achieves the minimization of

E
[
||x − x̂ ||2

∣∣y = y1
]

solution concepts:
I the solution holds for any probability distribution in y
I for each y1, E [x |y = y1] is different
I if no specific value of y is given, x̂ is a function of the random

vector/variable y , written as

x̂ = E [x |y]
Lecture 4: Least Squares (LS) Estimation ME233 4-2

Least square estimation in the Gaussian case
Why Gaussian?

I Gaussian is common in practice:
I macroscopic random phenomena = superposition of microscopic
random effects (Central limit theorem)

I Gaussian distribution has nice properties that make it
mathematically feasible to solve many practical problems:

I pdf is solely determined by the mean and the
variance/covariance

I linear functions of a Gaussian random process are still Gaussian
I the output of an LTI system is a Gaussian random process if the
input is Gaussian

I if two jointly Gaussian distributed random variables are
uncorrelated, then they are independent

I X1 and X2 jointly Gaussian⇒X1|X2 and X2|X1 are also Gaussian

Lecture 4: Least Squares (LS) Estimation ME233 4-3

Least square estimation in the Gaussian case
Why Gaussian?

Gaussian and white:
I they are different concepts
I there can be Gaussian white noise, Poisson white noise, etc
I Gaussian white noise is used a lot since it is a good

approximation to many practical noises

Lecture 4: Least Squares (LS) Estimation ME233 4-4

Least square estimation in the Gaussian case
the solution
problem (re-stated): x , y–Gaussian distributed

minimize E
[
||x − x̂ ||2

∣∣y
]

solution: x̂ = E [x |y] = E [x]+XxyX−1yy (y −E [y])
properties:

I the estimation is unbiased: E [x̂] = E [x]
I y is Gaussian⇒x̂ is Gaussian; and x − x̂ is also Gaussian
I covariance of x̂ :
E
[
(x̂ −E [x̂]) (x̂ −E [x̂])T

]
=E

{
(y −E [y])

[
Xxy X−1

yy (y −E [y])
]T}

=Xxy X−1
yy Xyx

I estimation error x̃ , x − x̂ : zero mean and

Cov [x̃] = E
[
(x −E [x |y]) (x −E [x |y])T

]

︸ ︷︷ ︸
conditional covariance

= Xxx −Xxy X−1
yy Xyx

Lecture 4: Least Squares (LS) Estimation ME233 4-5

Least square estimation in the Gaussian case

x̂ = E [x |y] = E [x]+XxyX−1yy (y −E [y])

E [x |y] is a better estimate than E [x]:
I the estimation is unbiased: E [x̂] = E [x]
I estimation error x̃ , x − x̂ : zero mean and

Cov [x − x̂] = Xxx −XxyX−1yy Xyx � Cov [x −E [X]]

Lecture 4: Least Squares (LS) Estimation ME233 4-6

Properties of least square estimate (Gaussian case)
two random vectors x and y

Property 1:
(i) the estimation error x̃ = x − x̂ is uncorrelated with y
(ii) x̃ and x̂ are orthogonal:

E
[
(x − x̂)T x̂

]
= 0

proof of (i):

E
[
x̃ (y −my)

T
]
= E

[(
x −E [x]−XxyX−1yy (y −my)

)
(y −my)

T
]

= Xxy −XxyX−1yy Xyy = 0

Lecture 4: Least Squares (LS) Estimation ME233 4-7

Properties of least square estimate (Gaussian case)
two random vectors x and y

proof of (ii): E
[
x̃T x̂

]
= E

[
(x − x̂)T

(
E [x]+XxyX−1yy (y −my)

)]
=

E
[
x̃T]E [x]+E

[
(x − x̂)T XxyX−1yy (y −my)

]
where E

[
x̃T]= 0 and

E
[
(x − x̂)T XxyX−1yy (y −my)

]
=Tr

{
E
[
XxyX−1yy (y −my)(x − x̂)T

]}

= Tr
{

XxyX−1yy E
[
(y −my)(x − x̂)T

]}
= 0 because of (i)

I note: Tr{BA}= Tr{AB}. Consider, e.g. A = [a,b] , B =

[
c
d

]

Lecture 4: Least Squares (LS) Estimation ME233 4-8

Properties of least square estimate (Gaussian case)
two random vectors x and y
Property 1 (re-stated):
(i) the estimation error x̃ = x − x̂ is uncorrelated with y
(ii) x̃ and x̂ are orthogonal:

E
[
(x − x̂)T x̂

]
= 0

I intuition: least square estimation is a projection

x̃ = x − x̂x

x̂y

Lecture 4: Least Squares (LS) Estimation ME233 4-9

Properties of least square estimate (Gaussian case)
three random vectors x y and z , where y and z are uncorrelated
Property 2: let y and z be Gaussian and uncorrelated, then
(i) the optimal estimate of x is

E [x |y ,z] = E [x]+
first improvement︷ ︸︸ ︷
(E [x |y]−E [x])+

second improvement︷ ︸︸ ︷
(E [x |z]−E [x])

= E [x |y]+ (E [x |z]−E [x])

Alternatively, let x̂|y , E [x |y] , x̃|y , x −E [x |y] = x − x̂|y , then

E [x |y ,z] = E [x |y]+E
[
x̃|y |z

]

(ii) the estimation error covariance is
Xxx −Xxy X−1

yy Xyx −XxzX−1
zz Xzx = Xx̃ x̃ −XxzX−1

zz Xzx = Xx̃ x̃ −Xx̃zX−1
zz Xzx̃

where Xx̃ x̃ = E
[
x̃|y x̃T

|y

]
and Xx̃ z = E

[
x̃|y (z−mz)

T
]

Lecture 4: Least Squares (LS) Estimation ME233 4-10

Properties of least square estimate (Gaussian case)
three random vectors x y and z , where y and z are uncorrelated

proof of (i): let w = [y ,z]T

E [x |w] = E [x]+
[

Xxy Xxz
][Xyy Xyz

Xzy Xzz

]−1[y −E [y]
z−E [z]

]

Using Xyz = 0 yields

E [x |w] = E [x]+XxyX−1yy (y −E [y])︸ ︷︷ ︸
E[x |y]−E[x]

+XxzX−1zz (z−E [z])︸ ︷︷ ︸
E[x |z]−E[x]

= E [x |y]+E
[(

x̂|y + x̃|y
)
|z
]
−E [x]

= E [x |y]+E
[
x̃|y |z

]

where E
[
x̂|y |z

]
= E [E [x |y] |z] = E [x] as y and z are independent

Lecture 4: Least Squares (LS) Estimation ME233 4-11

Properties of least square estimate (Gaussian case)
three random vectors x y and z , where y and z are uncorrelated

proof of (ii): let w = [y ,z]T , the estimation error covariance is

Xxx −XxwX−1wwXwx = Xxx −XxyX−1yy Xyx −XxzX−1zz Xzx

additionally

Xxz = E
[
(x −E [x]) (z−E [z])T

]
= E

[(
x̂|y + x̃|y −E [x]

)
(z−E [z])T

]

= E
[(

x̂|y −E [x]
)
(z−E [z])T

]
+E

[
x̃|y (z−E [z])T

]

but x̂|y −E [x] is a linear function of y , which is uncorrelated with z ,
hence E

[(
x̂|y −E [x]

)
(z−E [z])T

]
= 0 and Xxz = Xx̃|y z

Lecture 4: Least Squares (LS) Estimation ME233 4-12

Properties of least square estimate (Gaussian case)
three random vectors x y and z , where y and z are uncorrelated
Property 2 (re-stated): let y and z be Gaussian and uncorrelated
(i) the optimal estimate of x is

E [x |y ,z] = E [x |y]+E
[
x̃|y |z

]

(ii) the estimation error covariance is
Xx̃ x̃ −Xx̃ zX−1zz Xzx̃

I intuition:

z

xE
[
x̃|y
∣∣z
] x̃|y

x̂|yy

Lecture 4: Least Squares (LS) Estimation ME233 4-13

Properties of least square estimate (Gaussian case)
three random vectors x y and z , where y and z are correlated
Property 3: let y and z be Gaussian and correlated, then
(i) the optimal estimate of x is

E [x |y ,z] = E [x |y]+E
[
x̃|y |z̃|y

]

where z̃|y = z− ẑ|y = z−E [z |y] and x̃|y = x − x̂|y = x −E [x |y]
(ii) the estimation error covariance is

Xx̃|y x̃|y −Xx̃|y z̃|y X−1z̃|y z̃|y Xz̃|y x̃|y

I intuition:

z̃|y

E
[
x̃|y
∣∣z̃|y
]

z
x x̃|y

x̂|yy

Lecture 4: Least Squares (LS) Estimation ME233 4-14

Application of the three properties

Consider
noise

+��// System
+
//◦ // y (k)

Given [y (0) ,y (1) , . . . ,y (k)]T , we want to estimate the state x (k)
I the properties give a recursive way to compute

x̂ (k) |{y (0) ,y (1) , . . . ,y (k)}

Lecture 4: Least Squares (LS) Estimation ME233 4-15

Example

Consider estimating the velocity x of a motor, with

E [x] = mx = 10 rad/s
Var [x] = 2 rad2/s2

There are two (tachometer) sensors available:
I y1 = x + v1: E [v1] = 0, E

[
v2
1
]
= 1 rad2/s2

I y2 = x + v2: E [v2] = 0, E
[
v2
2
]
= 1 rad2/s2

where v1 and v2 are independent, Gaussian, E [v1v2] = 0 and x is
independent of vi , E [(x −E [x])vi] = 0

Lecture 4: Least Squares (LS) Estimation ME233 4-16

Example

I best estimate of x using only y1:

Xxy1 = E [(x −mx)(y1−my1)] = E [(x −mx)(x −mx + v1)]
= Xxx +E [(x −mx)v1] = 2

Xy1y1 = E [(y1−my1)(y1−my1)] = E [(x −mx + v1)(x −mx + v1)]
= Xxx +E

[
v2
1
]
= 3

x̂|y1 = E [x]+Xxy1X−1y1y1 (y1−E [y1]) = 10+ 2
3 (y1−10)

I similarly, best estimate of x using only y2: x̂|y2 = 10+ 2
3 (y2−10)

Lecture 4: Least Squares (LS) Estimation ME233 4-17

Example

I best estimate of x using y1 and y2 (direct approach): let
y = [y1,y2]T

Xxy = E
[
(x −mx)

[
y1−my1
y2−my2

]T]
= [2,2]

Xyy = E
[[

y1−my1
y2−my2

][
y1−my1 y2−my2

]]
=

[
3 2
2 3

]

x̂|y =E [x]+XxyX−1yy (y −my)= 10+[2,2]
[
3 2
2 3

]−1[y1−10
y2−10

]

I note: X−1yy is expensive to compute at high dimensions

Lecture 4: Least Squares (LS) Estimation ME233 4-18

Example
I best estimate of x using y1 and y2 (alternative approach using

Property 3):
E [x |y1,y2] = E [x |y1]+E

[
x̃|y1 |ỹ2|y1

]

which involves just the scalar computations:
E [x |y1] = 10+ 2

3 (y1−10) , x̃|y1 = x −E [x |y1] =
1
3 (x −10)+ 2

3 v1

ỹ2|y1 = y2−E [y2|y1] = y2−
[
E [y2]+Xy2y1

1
Xy1y1

(y1−my1)

]
= (y2−10)− 2

3 (y1−10)

Xx̃|y1 ỹ2|y1
= E

[(1
3 (x −10)+ 2

3 v1

)(
(y2−10)− 2

3 (y1−10)
)T]

=
1
9 Var [x]+ 4

9 Var [v1] =
2
3

Xỹ2|y1 ỹ2|y1
=

1
9 Var [x]+Var [v2]+

4
9 Var [v1] =

5
3

E
[
x̃|y1 |ỹ2|y1

]
= E

[
x̃|y1

]
+Xx̃|y1 ỹ2|y1

1
Xỹ2|y1 ỹ2|y1

[
ỹ2|y1 −E

[
ỹ2|y1

]]

= 10+ 2
5 (y1−10)+ 2

5 (y2−10)

Lecture 4: Least Squares (LS) Estimation ME233 4-19

Summary

1. Big picture
x̂ = E [x |y] minimizes J = E

[
||x − x̂ ||2

∣∣y
]

2. Solution in the Gaussian case
Why Gaussian?
x̂ = E [x |y] = E [x]+XxyX−1yy (y −E [y])

3. Properties of least square estimate (Gaussian case)
two random vectors x and y
three random vectors x y and z : y and z are uncorrelated
three random vectors x y and z : y and z are correlated

Lecture 4: Least Squares (LS) Estimation ME233 4-20

* Appendix: trace of a matrix
I the trace of a n×n matrix is given by Tr (A) = ∑n

i=1 aii
I trace is the matrix inner product:

〈A,B〉= Tr
(

AT B
)
= Tr

(
BT A

)
= 〈B,A〉 (1)

I take a three-column example: write the matrices in the column
vector form B = [b1,b2,b3] , A = [a1,a2,a3], then,

AT B =




aT
1 b1 ∗ ∗
∗ aT

2 b2 ∗
∗ ∗ aT

3 b3


 (2)

Tr
(

AT B
)
= aT

1 b1+aT
2 b2+aT

3 b3 =




a1
a2
a3




T

·




b1
b2
b3


 (3)

which is the inner product of the two long stacked vectors.
I we frequently use the inner-product equality 〈A,B〉= 〈B,A〉

Lecture 4: Least Squares (LS) Estimation ME233 4-21

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 5: Stochastic State Estimation
(Kalman Filter)

Big picture
Problem statement

Discrete-time Kalman Filter
Properties

Continuous-time Kalman Filter
Properties
Example

Big picture
why are we learning this?

I state estimation in deterministic case:

Plant: x (k +1) = Ax (k)+Bu (k) , y (k) = Cx (k)
Observer: x̂ (k +1) = Ax̂ (k)+Bu (k)+L(y (k)−Cx̂ (k))

I L designed based on the error (e (k) = x (k)− x̂ (k)) dynamics:

e (k +1) = (A−LC)e (k) (1)

to reach fast convergence of limk→∞ e (k) = 0
I L is not optimal when there is noise in the plant; actually

limk→∞ e (k) = 0 isn’t even a valid goal when there is noise
I Kalman Filter provides optimal state estimation under input and

output noises
Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-1

Problem statement

plant: x (k +1) = A(k)x (k)+B (k)u (k)+Bw (k)w (k)
y (k) = C (k)x (k)+ v (k)

I w (k)–s-dimensional input noise; v (k)–r -dimensional
measurement noise; x (0)–unknown initial state

I assumptions: x (0), w (k), and v (k) are independent and
Gaussian distributed; w (k) and v (k) are white:

E [x (0)] = xo, E
[
(x (0)−xo)(x (0)−xo)T

]
= X0

E [w (k)] = 0, E [v (k)] = 0, E
[
w (k)vT (j)

]
= 0 ∀k, j

E
[
w (k)wT (j)

]
= W (k)δkj , E

[
v (k)vT (j)

]
= V (k)δkj

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-2

Problem statement

I goal:

minimize E
[
||x (k)− x̂ (k) ||2

∣∣
Yj

]
, Yj = {y (0) ,y (1) , . . . ,y (j)}

I solution:
x̂ (k) = E [x (k) |Yj]

I three classes of problems:
I k > j : prediction problem
I k = j : filtering problem
I k < j : smoothing problem

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-3

History

Rudolf Kalman:
I obtained B.S. in 1953 and M.S. in 1954 from MIT, and Ph.D. in

1957 from Columbia University, all in Electrical Engineering
I developed and implemented Kalman Filter in 1960, during the

Apollo program, and furthermore in various famous programs
including the NASA Space Shuttle, Navy submarines, etc.

I was awarded the National Medal of Science on Oct. 7, 2009
from U.S. president Barack Obama

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-4

Useful facts
assume x is Gaussian distributed

I if y = Ax +B then



Xxy = E
[
(x −E [x]) (y −E [y])T

]
= XxxAT

Xyy = E
[
(y −E [y]) (y −E [y])T

]
= AXxxAT (2)

I if y = Ax +B and y ′ = A′x +B ′ then

Xyy ′ = AXxx
(

A′
)T

, Xy ′y = A′XxxAT (3)
I if y = Ax +Bv ; v is Gaussian and independent of x , then

Xyy = AXxxAT +BXvvBT (4)
I if y = Ax +Bv , y ′ = A′x +B ′v ; v is Gaussian and dependent of

x , then
Xyy ′ = AXxx

(
A′
)T

+ AXxv
(

B ′
)T

+ BXvx
(

A′
)T

+ BXvv
(

B ′
)T

(5)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-5

Derivation of Kalman Filter
I goal:

minimize E
[
||x (k)− x̂ (k) ||2

∣∣
Yk

]
, Yk = {y (0) ,y (1) , . . . ,y (k)}

I the best estimate is the conditional expectation

E [x (k) |Yk] = E [x (k)|{Yk−1,y (k)}]
= E [x (k) |Yk−1]+E

[
x̃ (k) |Yk−1

∣∣ ỹ (k) |Yk−1

]

I introduce some notations:
a priori estimation x̂ (k|k−1) = E [x (k) |Yk−1] = x̂ (k) |y(0),...y(k−1)

a posteriori estimation x̂ (k|k) = E [x (k) |Yk] = x̂ (k) |y(0),...y(k)
a priori covariance M (k) = E

[
x̃ (k) |Yk−1 x̃T (k) |Yk−1

]

a posteriori covariance Z (k) = E
[
x̃ (k) |Yk x̃T (k) |Yk

]

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-6

Derivation of Kalman Filter
KF gain update
to get E

[
x̃ (k) |Yk−1

∣∣ ỹ (k) |Yk−1

]
in

E [x (k) |Yk] = E [x (k) |Yk−1]+E
[
x̃ (k) |Yk−1

∣∣ ỹ (k) |Yk−1

]

we need Xx̃(k)|Yk−1 ỹ(k)|Yk−1
and X−1

ỹ(k)|Yk−1 ỹ(k)|Yk−1

y (k) = C (k)x (k)+ v (k) gives

ŷ (k) |Yk−1 = C (k) x̂ (k|k−1)+ v̂ (k) |Yk−1 = C (k) x̂ (k|k−1)
⇒ ỹ (k) |Yk−1 = C (k) x̃ (k|k−1)+ v (k)

hence

Xx̃(k)|Yk−1 ỹ(k)|Yk−1
= M (k)CT (k) (6)

Xỹ(k)|Yk−1 ỹ(k)|Yk−1
= C (k)M (k)CT (k)+V (k) (7)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-7

Derivation of Kalman Filter
KF gain update

ỹ (k) |Yk−1 = C (k) x̃ (k|k−1)+ v (k)
unbiased estimation: E [x̂ (k|k−1)] = E [x]⇒

E
[
ỹ (k) |Yk−1

]
= E

[
x̃ (k) |Yk−1

]
+E

[
v (k) |Yk−1

]
= 0

thus

E
[
x̃ (k) |Yk−1

∣∣ ỹ (k) |Yk−1

]

=
���

���
��:0

E
[
x̃ (k) |Yk−1

]
+Xx̃(k)|Yk−1 ỹ(k)|Yk−1

X−1
ỹ(k)|Yk−1 ỹ(k)|Yk−1

(
ỹ (k) |Yk−1−0

)

= M (k)CT (k)
[
C (k)M (k)CT (k)+V (k)

]−1 (
y (k)− ŷ (k) |Yk−1

)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-8

Derivation of Kalman Filter
KF gain update

E [x (k) |Yk] = E [x (k) |Yk−1]+E
[
x̃ (k) |Yk−1

∣∣ ỹ (k) |Yk−1

]

now becomes

x̂ (k|k) = x̂ (k|k−1)

+M (k)CT
(

CM (k)CT +V (k)
)−1

︸ ︷︷ ︸
F (k)

(y (k)−Cx̂ (k|k−1))

namely
{

x̂ (k|k) = x̂ (k|k−1)+F (k)(y (k)−C (k) x̂ (k|k−1))
F (k) = M (k)CT (k)

(
C (k)M (k)CT (k)+V (k)

)−1 (8)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-9

Derivation of Kalman Filter
KF covariance update

now for the variance update:

E
[
x̃ (k) |Yk x̃ (k)T |Yk

]
= E

[
x̃ (k) |{Yk−1,y(k)}x̃ (k)

T |{Yk−1,y(k)}
]

=E
[
x̃ (k) |Yk−1 x̃ (k)T |Yk−1

]

−Xx̃(k)|Yk−1 ỹ(k)|Yk−1
X−1

ỹ(k)|Yk−1 ỹ(k)|Yk−1
Xỹ(k)|Yk−1 x̃(k)|Yk−1

or, using the introduced notations,

Z (k) = M (k)−M (k)CT (k)
(

C (k)M (k)CT (k) + V (k)
)−1

C (k)M (k)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-10

Derivation of Kalman Filter
KF covariance update

the connection between Z (k) and M (k):

x (k) = A(k−1)x (k−1) + B (k−1)u (k−1) + Bw (k−1)w (k−1)

⇒ x̂ (k|k−1) = A(k−1) x̂ (k−1|k−1) + B (k−1)u (k−1)

⇒ x̃ (k|k−1) = A(k−1) x̃ (k−1|k−1) + Bw (k−1)w (k−1)

thus M (k) = Cov [x̃ (k|k−1)] is [using uesful fact (4)]

M (k) = A(k−1)Z (k−1)AT (k−1) + Bw (k−1)W (k−1)BT
w (k−1)

with M (0) = E
[
x̃ (0|−1) x̃ (0|−1)T

]
= X0

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-11

The full set of KF equations

x̂(k|k) = x̂(k|k−1) + F (k)

ey (k)︷ ︸︸ ︷
[y(k)−C (k) x̂(k|k−1)]

x̂(k|k−1) = A(k−1) x̂(k−1|k−1) + B (k−1)u(k−1)

F (k) = M(k)CT (k)
[
C (k)M(k)CT (k) + V (k)

]−1

M(k) = A(k−1)Z (k−1)AT (k−1) + Bw (k−1)W (k−1)BT
w (k−1)

Z (k) = M (k)−M (k)CT (k) ...

×
(

C (k)M (k)CT (k) + V (k)
)−1

C (k)M (k)

with initial conditions x̂ (0|−1) = xo and M (0) = X0.

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-12

The full set of KF equations
in a shifted index:
x̂(k +1|k +1) = x̂(k +1|k) + F (k +1) [y(k +1)−C (k +1) x̂(k +1|k)]

x̂(k +1|k) = A(k) x̂(k|k) + B (k)u(k)

F (k +1) = M(k +1)CT (k +1)
[
C (k +1)M(k +1)CT (k +1) + V (k +1)

]−1

M(k +1) = A(k)Z (k)AT (k) + Bw (k)W (k)BT
w (k) (9)

Z (k +1) = M (k +1)−M (k +1)CT (k +1) ... (10)

×
(

C (k +1)M (k +1)CT (k +1) + V (k +1)
)−1

C (k +1)M (k +1)

combining (9) and (10) gives the Riccati equation:

M (k +1) = A(k)M (k)AT (k) + Bw (k)W (k)BT
w (k)

−A(k)M (k)CT (k)
[
C (k)M (k)CT (k) + V (k)

]−1
C (k)M (k)AT (k)

(11)
Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-13

The full set of KF equations
Several remarks

I F (k), M (k), and Z (k) can be obtained offline first
I Kalman Filter (KF) is linear, and optimal for Gaussian. More

advanced nonlinear estimation won’t improve the results here.

I KF works for time-varying systems
I the block diagram of KF is:

y(k)
+//◦

��
C (k)

−OO

F (k)

+��u(k) // B (k) +//◦ // z−1I x̂(k|k−1)

OO

+
//◦ x̂(k|k) //

+
OO

A(k)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-14

Steady-state KF
assumptions:

I system is time-invariant: A, B, Bw , and C are constant;
I noise is stationary: V � 0 and W � 0 do not depend on time.

KF equations become:

x̂(k +1|k +1) = x̂(k +1|k) + F (k +1) [y(k +1)−Cx̂(k +1|k)]

= Ax̂(k|k) + Bu(k) + F (k +1) [y(k +1)−Cx̂(k +1|k)]

F (k +1) = M(k +1)CT
[
CM(k +1)CT + V

]−1

M(k +1) = AZ (k)AT + Bw WBT
w ; M(0) = X0

Z (k +1) = M(k +1)−M(k +1)CT
[
CM(k +1)CT + V

]−1
CM(k +1)

with Riccati equation (RE):

M(k +1) = AM(k)AT + Bw WBT
w −AM(k)CT

[
CM(k)CT + V

]−1
CM(k)AT

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-15

Steady-state KF

if
I (A,C) is observable or detectable
I (A,Bw) is controllable (disturbable) or stabilizable

then M (k) in the RE converges to some steady-state value Ms
and KF can be implemented by

x̂(k +1|k +1) = x̂(k +1|k)+Fs [y(k +1)−Cx̂(k +1|k)]
x̂(k +1|k) = Ax̂(k|k)+Bu(k)

Fs = MsCT
[
CMsCT +V

]−1

Ms is the positive definite solution of the algebraic Riccati equation:

Ms = AMsAT +BwWBT
w −AMsCT

[
CMsCT +V

]−1
CMsAT

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-16

Duality with LQ
The steady-state condition is obtained by comparing the RE in LQ and KF
discrete-time LQ:

P(k) = AT P(k +1)A−AT P(k +1)B[R + BT P(k +1)B]−1BT P(k +1)A + Q

discrete-time KF (11):

M(k +1) = AM(k)AT −AM(k)CT
[
CM(k)CT + V

]−1
CM(k)AT + Bw WBT

w

discrete-time LQ discrete-time KF
A AT

B CT

C Bw
R V

Q = CT C BwWBT
w

P M
backward recursion forward recursion

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-17

Duality with LQ
discrete-time LQ discrete-time KF

A AT

B CT

C Bw
Q = CT C BwWBT

w

steady-state conditions for discrete-time LQ:
I (A,B) controllable or stabilizable
I (A,C) observable or detectable

steady-state conditions for discrete-time KF:
I
(
AT ,CT) controllable or stabilizable⇔(A,C) observable or
detectable

I
(
AT ,BT

w
)
observable or detectable⇔(A,Bw) controllable or

stabilizable
Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-18

Duality with LQ
discrete-time LQ discrete-time KF

A AT

B CT

C Bw
R V

Q = CT C Bw WBT
w

P M
backward recursion forward recursion

I LQ: stable closed-loop “A” matrix is
A−BKs = A−B[R +BT PsB]−1BT PsA

I KF: stable KF “A” matrix is
x̂(k +1|k) = Ax̂(k|k)+Bu (k)

= Ax̂(k|k−1)+AFs [y (k)−Cx̂ (x |k−1)]+Bu (k)

=

[
A−AMsCT

(
CMsCT +V

)−1
C
]
x̂(k|k−1)+ . . .

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-19

Purpose of each condition

I (A,C) observable or detectable: assures the existence of the
steady-state Riccati solution

I (A,Bw) controllable or stabilizable: assures that the steady-state
solution is positive definite and that the KF dynamics is stable

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-20

Remark
I KF: stable KF “A” matrix is

x̂(k +1|k) =
[
A−AMsCT

(
CMsCT +V

)−1
C
]

x̂(k|k−1)+ . . .

= (A−AFsC)x̂(k|k−1)+ . . .

in the form of x̂ (k|k) dynamics:

x̂(k +1|k +1) = x̂(k +1|k)+Fs [y(k +1)−Cx̂(k +1|k)]
= (A−FsCA)x̂(k|k)+(I−FsC)Bu(k)+Fsy(k +1)

=

[
A−MsCT

(
CMsCT +V

)−1
CA
]

x̂(k|k)+ . . .

I can show that eig (A−AFsC) = eig (A−FsCA)
hint: det(I +MN) = det(I +NM)⇒ det

[
I−z−1A(I−FsC)

]
= det

[
I− (I−FsC)z−1A

]

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-21

Remark
intuition of guaranteed KF stability: ARE ⇒ Lyapunov equation

Ms = AMsAT +Bw WBT
w −AMsCT

[
CMsCT +V

]−1
CMsAT

= AMsAT +Bw WBT
w −AMsCT

[
CMsCT +V

]−1

︸ ︷︷ ︸
Fs

[
CMsCT +V

][
CMsCT +V

]−1
CMs

︸ ︷︷ ︸
F Ts

AT

= (A−AFsC)Ms (A−AFsC)T +2AFsCMsAT −AFsCMsCT F T
s AT

+Bw WBT
w −AFs

[
CMsCT +V

]
F T

s AT

= (A−AFsC)Ms (A−AFsC)T +AFsVF T
s AT +Bw WBT

w

⇐⇒ (A−AFsC)Ms (A−AFsC)T −Ms =−AFsVF T
s AT −BwWBT

w

which is a Lyapunov equation with the right hand side being negative
semidefinite and Ms � 0.

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-22

Return difference equation
KF dynamics

x̂(k +1|k +1) = (A−FsCA)x̂(k|k)+(I−FsC)Bu(k)+Fsy(k +1)
= Ax̂(k|k)−FsCAx̂(k|k)+(I−FsC)Bu(k)+Fsy(k +1)

[zI−A] x̂ (k|k) = Fsy(k +1)+(I−FsC)Bu(k)−FsCAx̂(k|k)
+//◦ ∼ // Fs // (zI−A)−1 x̂(k|k) // CA //
−
OO

let G(z) = C(zI−A)−1Bw
ARE ⇒ return difference equation (RDE) (see ME232 reader)
[
I + CA(zI−A)−1Fs

]
(V +CMsCT)

[
I + CA(z−1I−A)−1Fs

]T
= V +G(z)WGT (z−1)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-23

Symmetric root locus for KF
I KF eigenvalues:

det
[
I +CA(zI−A)−1Fs

]
= det

[
I +(zI−A)−1FsCA

]

=
det(zI−A+FsCA)

det(zI−A) , β (z)
φ (z)

I taking determinants in RDE gives

β (z)β (z−1) = φ(z)φ(z−1)
det
(
V +G(z)WGT (z−1)

)

det
(
V +CMCT)

I single-output case: KF poles come from β (z)β (z−1) = 0, i.e.

det
(

V +G(z)WGT (z−1)
)
= V

(
1+G(z)W

V GT (z−1)

)
= 0

I W /V → 0: KF poles → stable poles of G (z)GT (z−1)

I W /V → ∞: KF poles → stable zeros of G (z)GT (z−1)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-24

Continuous-time KF
summary of solutions

system: ẋ (t) = Ax (t)+Bu (t)+Bww (t)
y (t) = Cx (t)+ v (t)

assumptions: same as discrete-time KF
aim: minimize J = ||x (t)− x̂ (t) ||22

∣∣
{y(τ):0≤τ≤t}

continuous-time KF:

dx̂ (t|t)
dt = Ax̂ (t|t)+Bu (t)+F (t) [y (t)−Cx̂ (t|t)] , x̂ (0|0) = x0

F (t) = M (t)CT V−1

dM (t)

dt = AM (t)+M (t)AT +Bw WBT
w −M (t)CT V−1CM (t) , M (0) = X0

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-25

Continuous-time KF: steady state
assumptions: (A,C) observable or detectable;

(A,Bw) controllable or stabilizable

asymptotically stable steady-state KF:

dx̂ (t|t)
dt = Ax̂ (t|t)+Bu (t)+Fs [y (t)−Cx̂ (t|t)]

Fs = MsCT V−1

AMs +MsAT +BwWBT
w −MsCT V−1CMs = 0

duality with LQ:

Continuous-Time LQ
AT Ps +PsA+Q−PsBR−1BT Ps = 0

K = R−1BT Ps

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-26

Continuous-time KF: return difference equality
analogy to LQ gives the return difference equality:
[
I + C (sI−A)−1 Fs

]
V
[
I + F T

s (−sI−A)−T CT
]

= V + G (s)WGT (−s)

where G (s) = C (sI−A)−1 Bw , hence:
[
I + C (jωI−A)−1 Fs

]
V
[
I + C (−jωI−A)−1 Fs

]T
= V +G (jω)WGT (−jω)

observation 1: dx̂(t|t)
dt = Ax̂ (t|t)+Bu (t)+Fs [y (t)−Cx̂ (t|t)]︸ ︷︷ ︸

ey (t)

y
+//◦ ey // Fs // (sI−A)−1 x̂ // C //
−
OO

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-27

Continuous-time KF: properties
observation 1:

y
+//◦ ey // Fs // (sI−A)−1 x̂ // C //
−
OO

I transfer function from y to ey :
[
I +C (jω I−A)−1 Fs

]−1

I spectral density relation:

Φey ey (ω) =
[
I + C (jωI−A)−1 Fs

]−1
Φyy (ω)

{[
I + C (−jωI−A)−1 Fs

]−1
}T

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-28

Continuous-time KF: properties
observation 2:
{

ẋ (t) = Ax (t) + Bu (t) + Bw w (t)

y (t) = Cx (t) + v (t)
⇒Φyy (ω) = G (jω)WGT (−jω)+V

from observations 1 and 2:
[
I + C (jωI−A)−1 Fs

]
V
[
I + C (−jωI−A)−1 Fs

]T
= V +G (jω)WGT (−jω)

thus says

Φey ey (ω) =
[
I + C (jωI−A)−1 Fs

]−1
Φyy (ω)

{[
I + C (−jωI−A)−1 Fs

]−1
}T

= V

namely, the estimation error is white!
Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-29

Continuous-time KF: symmetric root locus

taking determinants of RDE gives:

det
[
I +C (sI−A)−1 Fs

]
detV det

[
I +C (−sI−A)−1 Fs

]T

= det
[
V +G (s)WGT (−s)

]

for single-output systems:

det
[
I + C (sI−A)−1 Fs

]
det
[
I + C (−sI−A)−1 Fs

]T
= 1+G (s)

W
V GT (−s)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-30

Continuous-time KF: symmetric root locus
the left hand side of

det
[
I + C (sI−A)−1 Fs

]
det
[
I + C (−sI−A)−1 Fs

]T
= 1+G (s)

W
V GT (−s)

determines the KF eigenvalues:

det
[
I + C (sI−A)−1 Fs

]
= det

[
I + (sI−A)−1 FsC

]

= det
[
(sI−A)−1

]
det [sI−A + FsC]

=
det [sI− (A−FsC)]

det(sI−A)

hence looking at 1+G (s) W
V GT (−s), we have:

I W /V → 0: KF poles → stable poles of G (s)GT (−s)
I W /V → ∞: KF poles → stable zeros of G (s)GT (−s)

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-31

Summary
1. Big picture

2. Problem statement

3. Discrete-time KF
Gain update
Covariance update
Steady-state KF
Duality with LQ

4. Continuous-time KF
Solution
Steady-state solution and conditions
Properties: return difference equality, symmetric root locus...

Lecture 5: Stochastic State Estimation (Kalman Filter) ME233 5-32

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 6: Linear Quadratic Gaussian (LQG)
Control

Big picture
LQ when there is Gaussian noise

LQG
Steady-state LQG

Big picture
in deterministic control design:

I state feedback: arbitrary pole placement for controllable systems
I observer provides (when system is observable) state estimation

when not all states are available
I separation principle for observer state feedback control

we have now learned:
I LQ: optimal state feedback which minimizes a quadratic cost

about the states
I KF: provides optimal state estimation

in stochastic control:
I the above two give the linear quadratic Gaussian (LQG)

controller

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-1

Big picture
plant:

x (k +1) = Ax (k)+Bu (k)+Bww (k)
y (k) = Cx (k)+ v (k)

assumptions:
I w (k) and v (k) are independent, zero mean, white Gaussian

random processes, with

E[w(k)wT (k)] = W , E[v(k)vT (k)] = V

I x (0) is a Gaussian random vector independent of w (k) and
v (k), with

E[x(0)] = x0, E[(x(0)− x0)(x(0)− x0)
T] = X0

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-2

LQ when there is noise
Assume all states are accessible in the plant

x (k +1) = Ax (k)+Bu (k)+Bww (k)

The original LQ cost

2J = xT (N)Sx (N)+
N−1
∑
j=0

{
xT (j)Qx (j)+uT (j)Ru (j)

}

is no longer valid due to the noise term w (k).
Instead, consider a stochastic performance index:

J = E
{x(0),w(0),...,w(N−1)}

{
xT (N)Sx(N)+

N−1
∑
j=0

[xT (j)Qx(j)+uT (j)Ru(j)]
}

with S � 0, Q � 0, R � 0
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-3

LQ with noise and exactly known states
solution via stochastic dynamic programming:
Define “cost to go”:

Jk (x (k)), E
W+

k

{
xT (N)Sx(N)+

N−1
∑
j=k

[xT (j)Qx(j)+uT (j)Ru(j)]
}
,

W+
k = {w(k), . . . ,w(N−1)}

We look for the optima under control U+
k = {u (k) , . . . ,u (N−1)}:

Jo
k (x (k)) =min

U+
k

Jk (x (k))

I the ultimate optimal cost is

Jo = E
x(0)

[
min
U+

0

J0 (x (0))
]

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-4

LQ with noise and exactly known states
solution via stochastic dynamic programming:
iteration on optimal cost to go:

Jo
k (x (k)) = min

U+
k

E
W+

k

{
xT (N)Sx(N)+xT (k)Qx(k)+uT (k)Ru(k)+

N−1
∑

j=k+1
[xT (j)Qx(j)+uT (j)Ru(j)]

}

= min
U+

k+1
min
u(k)

E
W+

k

{
xT (N)Sx(N)+xT (k)Qx(k)+uT (k)Ru(k)+

N−1
∑

j=k+1
[xT (j)Qx(j)+uT (j)Ru(j)]

}
(1)

= min
U+

k+1
min
u(k)



xT (k)Qx(k)+uT (k)Ru(k)+ E

W+
k

[
xT (N)Sx(N)+

N−1
∑

j=k+1
[xT (j)Qx(j)+uT (j)Ru(j)]

]
 (2)

= min
u(k)



xT (k)Qx(k)+uT (k)Ru(k)+ min

U+
k+1

E
w(k)

E
W+

k+1

[
xT (N)Sx(N)+

N−1
∑

j=k+1
[xT (j)Qx(j)+uT (j)Ru(j)]

]
 (3)

= min
u(k)



xT (k)Qx(k)+uT (k)Ru(k)+ E

w(k)
min

Uk+1
E

W+
k+1

[
xT (N)Sx(N)+

N−1
∑

j=k+1
[xT (j)Qx(j)+uT (j)Ru(j)]

]
 (4)

= min
u(k)

{
xT (k)Qx(k)+uT (k)Ru(k)+ E

w(k)

[
Jo

k+1 (x (k +1))
]
}

(5)

I (1) to (2): x (k) does not depend on w (k), w (k +1),...,
w (N−1)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-5

LQ with noise and exactly known states
solution via stochastic dynamic programming: induction

Jo
k (x (k)) = min

u(k)

{
xT (k)Qx(k)+uT (k)Ru(k)+ E

w(k)

[
Jo

k+1 (x (k +1))
]}

at time N : Jo
N (x (N)) = xT (N)Sx (N)

assume at time k +1:

Jo
k+1 (x (k +1)) = xT (k +1)P (k +1)x (k +1)︸ ︷︷ ︸

cost in a standard LQ

+ b (k +1)︸ ︷︷ ︸
due to noise

then at time k :
Jo

k (x (k)) = min
u(k)

(
xT (k)Qx(k)+uT (k)Ru(k)+ E

w(k)

[
xT (k +1)P (k +1)x (k +1)+b (k +1)

])

next: use system dynamics x (k +1) = Ax (k)+Bu (k)+Bww (k)...
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-6

LQ with noise and exactly known states
after some algebra:

Jo
k (x (k)) = E

w(k)
min
u(k)
{xT (k)

[
Q+AT P (k +1)A

]
x(k)

+uT (k)
[
R +BT P (k +1)B

]
u(k)+2xT (k)AT P (k +1)Bu (k)+2xT (k)AT P (k +1)Bw w (k)

+2uT (k)BT P (k +1)Bw w (k)+w (k)T BT
w P (k +1)Bw w (k)+b (k +1)}

w (k) is white and zero mean ⇒:

E
w(k)

{
2xT (k)AT P (k +1)Bw w (k)+2uT (k)BT P (k +1)Bw w (k)

}
= 0

E
w(k)

{
w(k)T BT

w P(k+1)Bw w(k)
}
equals

Tr
{

E
w(k)

[
BT

w P (k +1)Bw w (k)w (k)T
]}

= Tr
[
BT

w P (k +1)Bw W
]

other terms: not random w.r.t. w (k); can be taken outside of Ew(k)
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-7

LQ with noise and exactly known states

therefore

Jo
k (x (k)) =min

u(k)
{xT (k)

[
Q+AT P (k +1)A

]
x(k)

+uT (k)
[
R +BT P (k +1)B

]
u(k)+2xT (k)AT P (k +1)Bu (k)}

+Tr
[
BT

w P (k +1)BwW
]
+b (k +1)

note: the term inside the minimization is a quadratic (actually
convex) function of u (k). Optimization is easily done.

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-8

Recall: facts of quadratic functions

I consider
f (u) = 1

2uT Mu+pT u+q, M = MT (6)

I optimality (maximum when M is negative definite; minimum
when M is positive definite) is achieved when

∂ f
∂uo = Muo +p = 0⇒ uo =−M−1p (7)

I and the optimal cost is

f o = f (uo) =−1
2pT M−1p+q (8)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-9

LQ with noise and exactly known states

Jo
k (x (k))=min

u(k)

{
uT (k)

[
R +BT P (k +1)B

]
u(k)+2xT (k)AT P (k +1)Bu (k)

+ xT (k)
[
Q+AT P (k +1)A

]
x(k)

}
+Tr

[
BT

w P (k +1)Bw W
]
+b (k +1)

I optimal control law [by using (7)]:

uo (k) =−
[
R +BT P (k +1)B

]−1
BT P (k +1)Ax (k)

I optimal cost [by using (8)]:

Jo
k (x (k))=

{
−xT (k)AT P (k +1)B

[
R +BT P (k +1)B

]−1
BT P (k +1)Ax (k)

+ xT (k)
[
Q+AT P (k +1)A

]
x (k)

}
+Tr

[
BT

w P (k +1)Bw W
]
+b (k +1)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-10

LQ with noise and exactly known states
Riccati equation:
the optimal cost

Jo
k (x (k))=

{
−xT (k)AT P (k +1)B

[
R +BT P (k +1)B

]−1
BT P (k +1)Ax (k)

+ xT (k)
[
Q+AT P (k +1)A

]
x (k)

}
+Tr

[
BT

w P (k +1)Bw W
]
+b (k +1)

can be written as

Jo
k (x (k)) = xT (k)P (k)x (k)+b (k)

with the Riccati equation

P (k) = AT P (k +1)A−AT P (k +1)B
[
R +BT P (k +1)B

]−1
BT P (k +1)A+Q

and b (k) = Tr
[
BT

w P (k +1)BwW
]
+b (k +1)

boundary conditions: P (N) = S and b (N) = 0
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-11

LQ with noise and exactly known states
observations:

I optimal control law and Riccati equation are the same as those
in the regular LQ problem

I addition cost is due to Bww (k):

b (k) = Tr
[
BT

w P (k +1)BwW
]
+b (k +1) , b (N) = 0

I the final optimal cost is

Jo (x (0)) = E
x(0)

[
xT (0)P (0)x (0)+b (0)

]

= E
x(0)

[
(xo + x (0)− xo)

T P (0)(xo + x (0)− xo)+b (0)
]

= xT
o P (0)xo +Tr (P (0)Xo)+b (0) (9)

where
b (0) =

N−1
∑
j=0

Tr
[
BT

w P (j +1)BwW
]

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-12

LQG: LQ with noise and inexactly known states
notice that

I not all states may be available and there is usually output noise:

x (k +1) = Ax (k)+Bu (k)+Bww (k)
y (k) = Cx (k)+ v (k)

I when u is a function of y , the cost has to also consider the
randomness from V+

k = {v (k) , . . . ,v (N−1)}

J = E
x(0),W+

0 ,V+
0

{
xT (N)Sx(N)+

N−1
∑
j=0

[xT (j)Qx(j)+uT (j)Ru(j)]
}

(10)
these motivate the linear quadratic Gaussian (LQG) control problem

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-13

LQG solution

only y (k) is accessible instead of x (k), some connection has to be
built to connect the cost to Yk = {y (0) , . . . ,y (k)}:

E
[
xT (k)Qx (k)

]

=E
{

E
[

xT (k)Qx (k)
∣∣∣Yk

]}

=E
{

E
[
(x (k)− x̂ (k|k)+ x̂ (k|k))T Q (x (k)− x̂ (k|k)+ x̂ (k|k))

∣∣∣Yk
]}

=E
{

E
[
(x (k)− x̂ (k|k))T Q (x (k)− x̂ (k|k))

∣∣∣Yk + x̂T (k|k)Qx̂ (k|k)
∣∣∣Yk

+2(x (k)− x̂ (k|k))T Qx̂ (k|k)
∣∣∣Yk

]}
(11)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-14

LQG solution
but E [x (k) |Yk] = x̂ (k|k) and x̂ (k|k) is orthogonal to x̃ (k|k) (property
of least square estimation), so

E
{

E
[
(x (k)− x̂ (k|k))T Qx̂ (k|k)

∣∣∣Yk
]}

= E
[
(x (k)− x̂ (k|k))T Qx̂ (k|k)

]

= TrE
[
Qx̂ (k|k) x̃T (k|k)

]
= 0

yielding

E
[
xT (k)Qx (k)

]

=E
{

E
[
(x (k)− x̂ (k|k))T Q (x (k)− x̂ (k|k))

∣∣∣Yk + x̂T (k|k)Qx̂ (k|k)
∣∣∣Yk

]}

=E
[

x̂T (k|k)Qx̂ (k|k)
∣∣∣Yk

]

+E
{

E
[

Tr
{

Q (x (k)− x̂ (k|k))(x (k)− x̂ (k|k))T
}∣∣∣Yk

]}

=E
[
x̂T (k|k)Qx̂ (k|k)

]
+Tr{QZ (k)}

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-15

LQG solution

the LQG cost (10) is thus

J =

Ĵ︷ ︸︸ ︷

E
{

x̂T (N|N)Sx̂(N|N)+
N−1
∑
j=0

[x̂T (j |j)Qx̂(j |j)+uT (j)Ru(j)]
}

+Tr{SZ (N)}+
N−1
∑
j=0

Tr{QZ (j)}
︸ ︷︷ ︸

independent of the control input

hence
min

{u(0),...,u(N−1)}
J ⇐⇒ min

{u(0),...,u(N−1)}
Ĵ

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-16

LQG is equivalent to an LQ with exactly know
states
consider the equivalent problem to minimize:

Ĵ = E
{

x̂T (N|N)Sx̂(N|N)+
N−1
∑
j=0

[x̂T (j |j)Qx̂(j |j)+uT (j)Ru(j)]
}

I x̂ (k|k) is fully accessible, with the dynamics:

x̂ (k +1|k +1) = x̂ (k +1|k)+F (k +1)ey (k +1)
= Ax̂ (k|k)+Bu (k)+F (k +1)ey (k +1)

I from KF results, ey (k +1) is white, Gaussian with covariance:

V +CM (k +1)CT

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-17

LQG is equivalent to LQ with exactly know states
LQ with exactly known states:

J = E
{

xT (N)Sx(N)+
N−1
∑
j=0

[xT (j)Qx(j)+uT (j)Ru(j)]
}

x (k +1) = Ax (k)+Bu (k)+Bw w (k)

uo (k) =−
[
R +BT P (k +1)B

]−1
BT P (k +1)Ax (k)

LQG:
Ĵ = E

{
x̂T (N|N)Sx̂(N|N)+

N−1
∑
j=0

[x̂T (j |j)Qx̂(j |j)+uT (j)Ru(j)]
}

x̂ (k +1|k +1) = Ax̂ (k|k)+Bu (k)+F (k +1)ey (k +1)
the solution of LQG is thus:

uo (k) =−
[
R +BT P (k +1)B

]−1
BT P (k +1)Ax̂ (k|k) (12)

P (k) = AT P (k +1)A−AT P (k +1)B
[
R +BT P (k +1)B

]−1
BT P (k +1)A+Q

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-18

Optimal cost of LQG control
I LQ with known states (see (9)):

x (k +1) = Ax (k)+Bu (k)+Bww (k)

Jo = xT
o P (0)xo +Tr (P (0)Xo)+

N−1
∑
j=0

Tr
[
BT

w P (j +1)BwW
]

︸ ︷︷ ︸
b(0)

I LQG:
x̂ (k +1|k +1) = Ax̂ (k|k)+Bu (k)+F (k +1)ey (k +1)

Ĵo = xT
o P(0)xo +Tr[P(0)Z (0)]

+∑N−1
j=0 Tr

{
F T (j +1)P(j +1)F (j +1)[V +CM(k +1)CT]

}
(13)

Jo = Ĵo +
N−1
∑
j=0

Tr{QZ (j)}+Tr{SZ (N)}
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-19

Separation theorem in LQG
KF: an (optimal) observer
LQ: an (optimal) state feedback control
Separation theorem in observer state feedback holds–the closed-loop
dynamics contains two separated parts: LQ dynamics plus KF
dynamics

w(k)
��

Bw
+��

v(k)

+��++3◦ +3 LQG K (k) u(k) // B +//◦ // zI // C +
//◦ // y(k)

��

+
OO

A oo

•

− KS

KF
x̂(k|k) oo

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-20

Stationary LQG problem

Assumptions: system is time invariant; weighting matrices in
performance index is time-invariant; noises are white, Gaussian, wide
sense stationary.
Equivalent problem: minimize

J ′ = lim
N→∞

J
N = lim

N→∞
E
{

xT (N)Sx(N)

N +
1
N

N−1
∑
j=0

[xT (j)Qx(j)+uT (j)Ru(j)]
}

= E
[
xT (k)Qx(k)+uT (k)Ru(k)

]

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-21

Solution of stationary LQG problem
x (k +1) = Ax (k)+Bu (k)+Bw w (k)

y (k) = Cx (k)+ v (k)

J ′ = E
[
xT (k)Qx(k)+uT (k)Ru(k)

]

the solution is u =−Ks x̂ (k|k): steady-state LQ + steady-state KF

Ks =
[
R +BT PsB

]−1
BT PsA

Ps = AT PsA−AT PsB
[
R +BT PsB

]−1
BT PsA+Q

Fs = MsCT
[
CMsCT +V

]−1

Ms = AMsAT −AMsCT
[
CMsCT +V

]−1
CMsAT +Bw WBT

w

stability and convergence conditions of the Riccati equations:
I (A,Bw) and (A,B): controllable or stabilizable
I (A,Cq) and (A,C): observable or detectable (Q = CT

q Cq)
Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-22

Solution of stationary LQG problem

I stability conditions: guaranteed closed-loop stability and KF
stability

I separation theorem: closed-loop eigenvalues come from
I the n eigenvalues of LQ state feedback: A−BKs
I the n eigenvalues of KF: A−AFsC (or equivalently A−FSCA)

I optimal cost:

Jo
∞ = Tr

[
Ps
(

BKsZsAT +BwWBT
w
)]

(14)

I exercise: prove (14)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-23

Continuous-time LQG
I plant:

ẋ(t) = Ax(t)+Bu(t)+Bww(t)
y(t) = Cx(t)+ v(t)

I assumptions: w (t) and v (t) are Gaussian and white; x (0) is
Gaussian

I cost:

J =E
{

xT (tf)Sx (tf)+
∫ tf

t0

[
xT (t)Q (t)x (t)+uT (t)R (t)u (t)

]
dt
}

where S � 0 , Q (t)� 0, and R (t)� 0 and the expectation is
taken over all random quantities {x (0) ,w (t) ,v (t)}

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-24

Continuous-time LQG solution
I Continuous-time LQ:

u(t) =−R−1BT P(t)x̂(t|t) (15)

dP
dt = AT P +PA−PBR−1BT P +Q, P(tf) = S (16)

I Continuous-time KF:

dx̂(t|t)
dt = Ax̂(t|t)+Bu(t)+F (t)(y(t)−Cx̂(t|t)) (17)

F (t) = M(t)CT V−1, x̂(t0|t0) = xo (18)

dM
dt = AM +MAT −MCT V−1CM +BwWBT

W , M(t0) = Xo (19)

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-25

Summary

1. Big picture

2. Stochastic control with exactly known state

3. Stochastic control with inexactly known state

4. Steady-state LQG

5. Continuous-time LQG problem

Lecture 6: Linear Quadratic Gaussian (LQG) Control ME233 6-26

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 7: Principles of Feedback Design

MIMO closed-loop analysis
Robust stability

MIMO feedback design

Big picture

I we are pretty familiar with SISO feedback system design and
analysis

I state-space designs (LQ, KF, LQG,...): time-domain; good
mathematical formulation and solutions based on rigorous linear
algebra

I frequency-domain and transfer-function analysis: builds
intuition; good for properties such as stability robustness

Lecture 7: Principles of Feedback Design ME233 7-1

MIMO closed-loop analysis
signals and transfer functions are vectors and matrices now:

I r (reference) and y (plant output): m-dimensional
I Gp (s): p by m transfer function matrix

E (s) = R (s)− (H (s)Yo (s)+V (s))
= R (s)−{H (s)Gp (s)Gc (s)E (s)+H (s)Gd (s)D (s)+V (s)} (1)

D(s)
// Gd (s)

+ ��
R(s)

+//◦ E(s) // Gc (s) // Gp (s)
+
//◦ Yo(s) //

−OO

◦ H (s)
+Y (s)oo

+

V (s)

OO

Lecture 7: Principles of Feedback Design ME233 7-2

MIMO closed-loop analysis
(1) gives

E (s) = (Im + Gopen (s))−1 R (s)

− (Im + Gopen (s))−1 H (s)Gd (s)D (s)− (Im + Gopen (s))−1 V (s)

where the loop transfer function
Gopen (s) = H (s)Gp (s)Gc (s)

We want to minimize E ∗ (s) , R (s)−Y (k) = E (s) + V (s)

E ∗ (s) = (Im + Gopen (s))−1R (s)

−(Im + Gopen (s))−1 H (s)Gd (s)D (s)+(Im + Gopen (s))−1 Gopen (s)V (s)

Sensitivity and complementary sensitivity functions:
S (s) , (Im + Gopen (s))−1

T (s) , (Im + Gopen (s))−1 Gopen (s)

Lecture 7: Principles of Feedback Design ME233 7-3

Fundamental limitations in feedback design

E ∗ (s) = S (s)R (s) + T (s)V (s)−S (s)H (s)Gd (s)D (s)

Y (s) = R (s)−E ∗ (s) = T (s)R (s) + . . .

I sensitivity function S (s): explains disturbance-rejection ability
I complementary sensitivity function T (s): explains reference

tracking and sensor-noise rejection abilities
I fundamental constraint of feedback design:

S (s) + T (s) = Im
equivalently

S (jω) + T (jω) = Im
I cannot do well in all aspects: e.g., if S (jω)≈ 0 (good

disturbance rejection), T (jω) will be close to identity (bad
sensor-noise rejection)

Lecture 7: Principles of Feedback Design ME233 7-4

Goals of SISO control design
single-input single-output (SISO) control design:

S (jω) =
1

1+ Gopen (jω)
, T (jω) =

Gopen (jω)

1+ Gopen (jω)

I goals:
1. nominal stability
2. stability robustness
3. command following and disturbance rejection
4. sensor-noise rejection

I feedback achieves: 1 (Nyquist theorem), 2 (sufficient (gain and
phase) margins), and

I 3: small S (jω) at relevant frequencies (usually low frequency)
I 4: small T (jω) at relevant frequencies (usually high frequency)

I additional control design for meeting the performance goals:
feedforward, predictive, preview controls, etc

Lecture 7: Principles of Feedback Design ME233 7-5

SISO loop shaping

typical loop shape (magnitude response of Gopen):

ω

Gain

0dB

|Gopen(jω)|

Low freq. boundary

Crossover freq. High freq. boundary

Lecture 7: Principles of Feedback Design ME233 7-6

SISO loop shaping: stability robustness
the idea of stability margins:

Re

Im

−1 α

a 1
a = Gain margin

α = Phase margin

Gopen(jω)

Lecture 7: Principles of Feedback Design ME233 7-7

SISO loop shaping: stability robustness
the idea of stability margins:

ω

Phase

ω

Gain

0dB

−180◦

ωg (Gain crossover freq.)

ωp(Phase crossover freq.)

Gain margin

Phase margin

Lecture 7: Principles of Feedback Design ME233 7-8

SISO loop shaping: stability robustness

Gopen (jω) should be sufficiently far away
from (−1,0) for robust stability.
Commonly there are uncertainties and the
actual case is

G̃open (s) = Gopen (s) [1+ ∆(s)]

e.g. ignored actuator dynamics in a posi-
tioning system:

G̃open (s) = Gopen (s)
1

Tas +1 = Gopen (s)

[
1− Tas

Tas +1

]

∆(jω) =− Tajω
Tajω +1

Re

Im

−1 α

a

Gopen(jω)

Lecture 7: Principles of Feedback Design ME233 7-9

SISO loop shaping: stability robustness

Re

Im
−1

Gopen(jω)

G̃open(jω)

d(jω)
∆(jω)Gopen(jω)

if nominal stability holds, robust stability needs

|∆(jω)Gopen (jω)|=
∣∣∣G̃open (jω)−Gopen (jω)

∣∣∣<
|d(jω)|︷ ︸︸ ︷

|1+ Gopen (jω)|

⇔
∣∣∣∣∆(jω)

Gopen (jω)

1+ Gopen (jω)

∣∣∣∣< 1⇔ |∆(jω)T (jω)|< 1, ∀ω

Lecture 7: Principles of Feedback Design ME233 7-10

SISO loop shaping: stability robustness
if |Gopen (jω)| � 1 then

∣∣∣∣∆(jω)
Gopen (jω)

1+ Gopen (jω)

∣∣∣∣< 1

approximately means

|Gopen (jω)|< 1
|∆(jω)|

ω

Gain

0dB |T (jω)| 1
|4 (jω)||T (jω)| ≈ |Gopen(jω)| at high freq.

Lecture 7: Principles of Feedback Design ME233 7-11

MIMO Nyquist criterion

r +//◦ e // Gopen // y−OO

I assume Gopen is m×m and realized by

dx (t)

dt = Ax (t) + Be (t) , x ∈ Rm×1

y (t) = Cx (t)

I the closed-loop dynamics is
{

dx(t)
dt = (A−BC)x (t) + Br (t)

y (t) = Cx (t)
(2)

Lecture 7: Principles of Feedback Design ME233 7-12

MIMO Nyquist criterion
(2) gives the closed-loop transfer function

Gclosed (s) = C (sI−A + BC)−1 B

I closed-loop stability depends on the eigenvalues eig (A−BC),
which come from

φclosed (s) = det(sI−A + BC) = det
{

(sI−A)
[
I + (sI−A)−1 BC

]}

= det(sI−A)det
(

I + C (sI−A)−1 B
)

= det(sI−A)︸ ︷︷ ︸
open loop φopen(s)

det(I + Gopen (s))

I hence
φclosed (s)

φopen (s)
= det(I + Gopen (s))

Lecture 7: Principles of Feedback Design ME233 7-13

MIMO Nyquist criterion

φclosed (s)

φopen (s)
= det(I + Gopen (s)) =

∏n1
j=1 (s−pcl)

∏n2
i=1 (s−pol)

I evaluate det(I + Gopen (s)) along the D
contour (R → ∞)

I Z closed-loop “unstable” eigen values in
∏n1

j=1 (s−pcl) contribute to 2πZ net
increase in phase

I P open-loop “unstable” eigen values in
∏n2

j=1 (s−pol) contribute to −2πP net
increase in phase

I stable eigen values do not contribute to net
phase change

R

Re

Im

Lecture 7: Principles of Feedback Design ME233 7-14

MIMO Nyquist criterion
the number of counter clockwise encirclements of the origin by
det(I + Gopen (s)) is:

N(0,det(I + Gopen (s)) ,D) = P−Z

stability condition: Z = 0

Theorem (Multivariable Nyquist Stability Criterion)
the closed-loop system is asymptotically stable if and only if

N(0,det(I + Gopen (s)) ,D) = P

i.e., the number of counterclockwise encirclements of the origin by
det(I + Gopen (s)) along the D contour equals the number of
open-loop unstable eigen values (of the A matrix).

Lecture 7: Principles of Feedback Design ME233 7-15

MIMO robust stability
Given the nominal model Gopen, let the actual open loop be
perturbed to

G̃open (jω) = Gopen (jω) [I + ∆(jω)]

where ∆(jω) is the uncertainty (bounded by σ (∆(jω))≤ σ̄)

// ∆

+��r +//◦ e ◦
+

// Gopen // y−OO

I what properties should the nominal system possess in order to
have robust stability?

Lecture 7: Principles of Feedback Design ME233 7-16

MIMO robust stability
I obviously need a stable nominal system to start with:

N(0,det(I + Gopen (s)) ,D) = P
I for robust stability, we need

N(0,det(I + Gopen (s)(1+ ∆(s))) ,D) = P for all possible ∆

I under nominal stability, we need the boundary condition
det(I + Gopen (jω)(1+ ∆(jω))) 6= 0

Re

Im

Figure: Example Nyquist plot
for robust stability analysis

Lecture 7: Principles of Feedback Design ME233 7-17

MIMO robust stability
I note the determinant equivalence:

det(I + Gopen (jω)(1+ ∆(jω))) = det(I + Gopen (jω))

×det
[
I + (I + Gopen (jω))−1 Gopen (jω)∆(jω)

]

I as the system is open-loop asymptotically stable, no poles are on
the imaginary, i.e.,

det(I + Gopen (jω)) 6= 0

I hence det(I + Gopen (jω)(1+ ∆(jω))) 6= 0⇐⇒

det


I + (I + Gopen (jω))−1 Gopen (jω)︸ ︷︷ ︸

T (jω)

∆(jω)


 6= 0 (3)

Lecture 7: Principles of Feedback Design ME233 7-18

MIMO robust stability
I intuitively, (3) means T (jω)∆(jω) should be “smaller than” I
I mathematically, (3) will be violated if ∃ x 6= 0 that achieves

[I + T (jω)∆(jω)]x = 0
⇔ T (jω)∆(jω)x =−x (4)

which will make the singular value

σmax [T (jω)∆(jω)] =max
v 6=0
||T (jω)∆(jω)v ||2

||v ||2
≥ ||T (jω)∆(jω)x ||2

||x ||2
I as this cannot happen, we must have

σmax [T (jω)∆(jω)] < 1

It turns out this is both necessary and sufficient if ∆(jω) is
unstructured (can ’attack’ from any directions). Message: we
can design Gopen such that σmax [∆(jω)] < σmin

[
T−1 (jω)

]
.

Lecture 7: Principles of Feedback Design ME233 7-19

Summary

1. Big picture

2. MIMO closed-loop analysis

3. Loop shaping
SISO case

4. MIMO stability and robust stability
MIMO Nyquist criterion
MIMO robust stability

Lecture 7: Principles of Feedback Design ME233 7-20

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 8: Discretization and Implementation
of Continuous-time Design

Big picture
Discrete-time frequency response

Discretization of continuous-time design
Aliasing and anti-aliasing

Big picture
why are we learning this:

I nowadays controllers are implemented in discrete-time domain
I implementation media: digital signal processor,

field-programmable gate array (FPGA), etc
I either: controller is designed in continuous-time domain and

implemented digitally
I or: controller is designed directly in discrete-time domain

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-1

Frequency response of LTI SISO digital systems
a sin(ωTsk) // G (z) // b sin(ωTsk+φ) at steady state

I sampling time: Ts
I φ

(
ejωTs

)
: phase difference between the output and the input

I M
(
ejωTs

)
= b/a: magnitude difference

continuous-time frequency response:

G (jω) = G (s)|s=jω = |G (jω)|ej∠G(jω)

discrete-time frequency response:

G
(

ejωTs
)
= G (z)|z=ejωTs =

∣∣∣G
(

ejωTs
)∣∣∣ej∠G(ejωTs)

= M
(

ejωTs
)

ejφ(ejωTs)

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-2

Sampling
sufficient samples must be collected (i.e., fast enough sampling
frequency) to recover the frequency of a continuous-time sinusoidal
signal (with frequency ω in rad/sec)

Figure: Sampling example (source: Wikipedia.org)

I the sampling frequency = 2π
Ts

I Shannon’s sampling theorem: the Nyquist frequency (, π
Ts
)

must satisfy
− π

Ts
< ω <

π
Ts

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-3

Approximation of continuous-time controllers
bilinear transform
formula:

s = 2
Ts

z−1
z +1 z =

1+ Ts
2 s

1− Ts
2 s

(1)

intuition:
z = esTs =

esTs/2

e−sTs/2 ≈
1+ Ts

2 s
1− Ts

2 s
implementation: start with G (s), obtain the discrete implementation

Gd (z) = G (s)|s= 2
Ts

z−1
z+1

(2)

Bilinear transformation maps the closed left half s-plane to the closed
unit ball in z-plane
Stability reservation: G (s) stable ⇐⇒ Gd (z) stable

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-4

Approximation of continuous-time controllers
history

Bilinear transform is also known as Tustin transform.
Arnold Tustin (16 July 1899 – 9 January 1994):

I British engineer, Professor at University of Birmingham and at
Imperial College London

I served in the Royal Engineers in World War I
I worked a lot on electrical machines

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-5

Approximation of continuous-time controllers
frequency mismatch in bilinear transform

2
Ts

z−1
z +1

∣∣∣∣
z=ejωTs

=
2

Ts

ejωTS/2
(

ejωTS/2− e−jωTS/2
)

ejωTS/2 (ejωTS/2 + e−jωTS/2) = j

ωv︷ ︸︸ ︷
2

Ts
tan
(

ωTs
2

)

G (s)|s=jω is the true frequency response at ω ; yet bilinear
implementation gives,

Gd
(

ejωTs
)
= G (s)|s=jωv 6= G (s)|s=jω

ωv

ω

0

π/T Tangent line at ω = ωv = 0

45◦

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-6

Approximation of continuous-time controllers
bilinear transform with prewarping
goal: extend bilinear transformation such that

Gd (z)|z=ejωTs = G (s)|s=jω

at a particular frequency ωp
solution:

s = p z−1
z +1 , z =

1+ 1
p s

1− 1
p s

, p =
ωp

tan
(

ωpTs
2

)

which gives Gd (z) = G (s)|s= ωp
tan(ωpT

2)

z−1
z+1

and
ωp

tan
(

ωpTs
2

) z−1
z +1

∣∣∣∣∣∣
z=ejωpTs

= j ωp

������tan
(

ωpTs
2

)
�������
tan
(

ωpTs
2

)

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-7

Approximation of continuous-time controllers
bilinear transform with prewarping

choosing a prewarping frequency ωp:
I must be below the Nyquist frequency:

0< ωp <
π
Ts

I standard bilinear transform corresponds to the case where ωp = 0
I the best choice of ωp depends on the important features in

control design
example choices of ωp:

I at the cross-over frequency (which helps preserve phase margin)
I at the frequency of a critical notch for compensating system

resonances

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-8

Sampling and aliasing
sampling maps the continuous-time frequency

− π
Ts

< ω <
π
Ts

onto the unit circle

Real

Imaginary

π/Ts

−π/Ts

s−plane

Real

Imaginary
z−plane

−1 1

Sampling

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-9

Sampling and aliasing
sampling also maps the continuous-time frequencies π

Ts
< ω < 3 π

Ts
,

3 π
Ts

< ω < 5 π
Ts
, etc, onto the unit circle

Real

Imaginary

π/Ts

3π/Ts

−π/Ts

s−plane

Real

Imaginary

z−plane

−1 1

Sampling

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-10

Sampling and aliasing
Example (Sampling and Aliasing)
Ts=1/60 sec (Nyquist frequency 30 Hz).
a continuous-time 10-Hz signal [10 Hz↔ 2π×10 rad/sec ∈(−π/Ts ,π/Ts)]

y1 (t) = sin(2π×10t)

is sampled to
y1 (k) = sin

(
2π× 10

60k
)
= sin

(
2π× 1

6k
)

a 70-Hz signal [2π×70 rad/sec ∈(π/Ts ,3π/Ts)]
y2 (t) = sin(2π×70t)

is sampled to
y2 (k) = sin

(
2π× 70

60k
)
= sin

(
2π× 1

6k
)
≡ y1 (k)!

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-11

Anti-aliasing

need to avoid the negative influence of aliasing beyond the Nyquist
frequencies

I sample faster: make π/Ts large; the sampling frequency should
be high enough for good control design

I anti-aliasing: perform a low-pass filter to filter out the signals
|ω|> π/Ts

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-12

Summary

1. Big picture

2. Discrete-time frequency response

3. Approximation of continuous-time controllers

4. Sampling and aliasing

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-13

Sampling example
I continuous-time signal

y (t) =
{

e−at , t ≥ 0
0, t < 0

, a > 0

L {y (t)}= 1
s +a

I discrete-time sampled signal

y (k) =
{

e−aTsk , k ≥ 0
0, k < 0

Z {y (k)}= 1
1− z−1e−aTs

I sampling maps the continuous-time pole si =−a to the
discrete-time pole zi = e−aTs , via the mapping

zi = esi Ts

Lecture 8: Discretization and Implementation of Continuous-time Design ME233 8-14

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 9: LQG/Loop Transfer Recovery (LTR)

Big picture
Loop transfer recovery
Target feedback loop

Fictitious KF

Big picture
Where are we now?

I LQ: optimal control, guaranteed robust stability under basic
assumptions in stationary case

I KF: optimal state estimation, good properties from the duality
between LQ and KF

I LQG: LQ+KF with separation theorem
I frequency-domain feedback design principles and

implementations
Stability robustness of LQG was discussed in one of the homework
problems: the nice robust stability in LQ (good gain and phase
margins) is lost in LQG.
LQG/LTR is one combined scheme that uses many of the concepts
learned so far.

Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-1

Continuous-time stationary LQG solution

◦ // LQG gain K u(t) // Plant
y(t)

��

− OO

Kalman Filter
x̂(t|t) oo

u (t) =−Kx̂ (t|t)

dx̂(t|t)

dt = Ax̂(t|t) +Bu(t) +F (y(t)−Cx̂(t|t))

= (A−BK −FC)x̂(t|t) +Fy(t)

⇐⇒ ◦ −y(t) // Gc
u(t) // Plant

y(t)
− OO

Gc(s) = K (sI−A+BK +FC)−1F (1)
Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-2

Loop transfer recovery (LTR)
◦ // Gc (s) // G (s)− OO

Theorem (Loop Transfer Recovery (LTR))
If a m×m dimensional G(s) has only minimum phase transmission
zeros, then the open-loop transfer function
G (s)Gc(s) =

[
C (sI−A)−1B

][
K (sI−A+BK +FC)−1F

]

ρ→0−−−→ C(sI−A)−1F (2)

K and ρ are from the LQ [(A,B) controllable, (A,C) observable]
J =

∫ ∞

0

(
xT (t)CTCx(t) + ρuT (t)Nu(t)

)
dt (3)

ẋ(t) = Ax(t) +Bu(t) (4)
Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-3

Loop transfer recovery (LTR)
+//◦ // Gc (s) // G (s) = C (sI−A)−1B //
−OO

converges, as ρ → 0, to the target feedback loop

+//◦ // C (sI−A)−1F //
−OO

key concepts:
I regard LQG as an output feedback controller
I will design F such that C (sI−A)−1F has a good loop shape
I not a conventional optimal control problem
I not even a stochastic control design method

Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-4

Selection of F for the target feedback loop
standard KF procedure: given noise properties (W , V , etc), KF gain
F comes from RE

fictitious KF for target feedback loop design: want to have good
behavior in +//◦ // C (sI−A)−1F //

−OO

select W and V to get a desired F (hence a fictitious KF problem):

ẋ(t) = Ax(t) +Lw(t), E [w(t)wT (t + τ)] = Iδ (τ)

y(t) = Cx(t) + v(t), E [v(t)vT (t + τ)] = µ Iδ (τ)

which gives

F =
1
µ
MCT , AM +MTA+LLT − 1

µ
MCTCM = 0, M � 0 (5)

Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-5

The target feedback loop from fictitious KF

ẋ(t) = Ax(t) +Lw(t), E [w(t)wT (t + τ)] = Iδ (τ)

y(t) = Cx(t) + v(t), E [v(t)vT (t + τ)] = µ Iδ (τ)

Return difference equation for the fictitious KF is

[Im +GF (s)] [Im +GF (−s)]T = Im +
1
µ

[CΦ(s)L] [CΦ(−s)L]T

where GF (s) = C (sI−A)−1F and Φ(s) = (sI−A)−1. Then

σ [Im +GF (jω)] =

√
λ
{

[Im +GF (jω)] [Im +GF (−jω)]T
}

=

√
1+

1
µ
{σ [CΦ(jω)L]}2 ≥ 1

Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-6

The (nice) target feedback loop from fictitious KF

σ [Im +GF (jω)] =

√
λ
{

[Im +GF (jω)] [Im +GF (−jω)]T
}

=

√
1+

1
µ
{σ [CΦ(jω)L]}2 ≥ 1

gives:
I σmaxS(jω) = σmax[I +GF (jω)]−1 ≤ 1, namely

no disturbance amplification at any frequency

I σmaxT (jω) = σmax[I−S (jω)]≤ 2, hence,

guaranteed closed loop stable if σmax∆(jω) < 1/2

Lecture 9: LQG/Loop Transfer Recovery (LTR) ME233 9-7

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 10: LQ with Frequency Shaped Cost
Function (FSLQ)

Background
Parseval’s Theorem

Frequency-shaped LQ cost function
Transformation to a standard LQ

Big picture
why are we learning this:

I in standard LQ, Q and R are constant matrices in the cost
function

J =
∫ ∞

0

(
xT (t)Qx(t)+ρuT (t)Ru(t)

)
dt (1)

I how can we introduce more design freedom for Q and R?

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-1

Connection between time and frequency domains
Theorem (Parseval’s Theorem)
For a square integrable signal f (t) defined on [0,∞)

∫ ∞

0
f T (t) f (t)dt = 1

2π

∫ ∞

−∞
FT (−jω)F (jω)dω

1D case:
∫ ∞

0
|f (t)|2 dt = 1

2π

∫ ∞

−∞
|F (jω)|2 dω

Intuition: energy in time-domain equals energy in frequency domain
For the general case, f (t) can be acausal. We have

∫ ∞

−∞
f T (t) f (t)dt = 1

2π

∫ ∞

−∞
FT (−jω)F (jω)dω

Discrete-time version:
∞

∑
k=−∞

f T (k) f (k) = 1
2π

∫ ∞

−∞
FT (e−jω)F

(
ejω)dω

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-2

History

Marc-Antoine Parseval (1755-1836):
I French mathematician
I published just five (but important) mathematical publications in

total (source: Wikipedia.org)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-3

Frequency-domain LQ cost function

From Parseval’s Theorem, the LQ cost in frequency domain is

J =
∫ ∞

0

(
xT (t)Qx(t)+ρuT (t)Ru(t)

)
dt (2)

=
1
2π

∫ ∞

−∞

(
XT (−jω)QX (jω)+ρUT (−jω)RU(jω)

)
dω (3)

Frequency-shaped LQ expands Q and R to frequency-dependent
functions:

J =
1
2π

∫ ∞

−∞

(
XT (−jω)Q (jω)X (jω)+ρUT (−jω)R (jω)U(jω)

)
dω

(4)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-4

Frequency-domain LQ cost function
Let

Q (jω) = QT
f (−jω)Qf (jω)� 0, Xf (jω) = Qf (jω)X (jω)

R (jω) = RT
f (−jω)Rf (jω)� 0, Uf (jω) = Rf (jω)U (jω)

(4) becomes

J =
1
2π

∫ ∞

−∞

(
XT

f (−jω)Xf (jω)+ρUT
f (−jω)Uf (jω)

)
dω

which is equivalent to (using Parseval’s Theorem again)

J =
∫ ∞

0

(
xT

f (t)xf (t)+ρuT
f (t)uf (t)

)
dt (5)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-5

Frequency-domain LQ cost function
Summarizing, we have:

I plant: {
ẋ (t) = Ax (t)+Bu (t)
y (t) = Cx (t)

(6)

I new cost:

J =
∫ ∞

0

(
xT

f (t)xf (t)+ρuT
f (t)uf (t)

)
dt (7)

I filtered states and inputs:

x (t) // Qf (s) // xf (t) , u (t) // Rf (s) // uf (t)

We just need to translate the problem to a standard one [which we
know (very well) how to solve]

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-6

Frequency-domain weighting filters
state filtering

x (t) // Qf (s) // xf (t)

I a MIMO process in general: if x (t) ∈ Rn and xf (t) ∈ Rq, then
Qf (s) is a q×n transfer function matrix

I Qf (s): state filter; designer’s choice; can be selected to meet
the desired control action and the performance requirements

I write Qf (s) = C1 (sI−A1)
−1B1 +D1 in the general state-space

realization: {
ż1(t) = A1z1(t)+B1x(t)
xf (t) = C1z1(t)+D1x(t)

(8)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-7

Frequency-domain weighting filters
input filtering

u (t) // Rf (s) // uf (t)

I Rf (s): input filter; designer’s choice; can be selected to meet
the robustness requirements

I write Rf (s) = C2 (sI−A2)
−1B2 +D2 in the general state-space

realization: {
ż2(t) = A2z2(t)+B2u(t)
uf (t) = C2z2(t)+D2u(t)

(9)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-8

Back to time-domain design
Combining (6), (8) and (9) gives the enlarged system

d
dt




x(t)
z1(t)
z2(t)




︸ ︷︷ ︸
xe(t)

=




A 0 0
B1 A1 0
0 0 A2




︸ ︷︷ ︸
Ae




x(t)
z1(t)
z2(t)


+




B
0
B2




︸ ︷︷ ︸
Be

u(t)

and

xf (t) = [D1 C1 0]︸ ︷︷ ︸
Ce




x(t)
z1(t)
z2(t)




uf (t) = [0 0 C2]xe (t)+D2u(t)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-9

Summary of solution
With the enlarged system, the cost

J =
∫ ∞

0

(
xT

f (t)xf (t)+ρuT
f (t)uf (t)

)
dt (10)

translates to
J =

∫ ∞

0

(
xT

e (t)Qexe(t)+2uT (t)
[
0 0 ρDT

2 C2
]

︸ ︷︷ ︸
Ne

xe(t)+uT (t)ρDT
2 D2︸ ︷︷ ︸
Re

u(t)
)

dt

Qe =




DT
1 D1 DT

1 C1 0
CT

1 D1 CT
1 C1 0

0 0 ρCT
2 C2




I solution (see appendix for more details):
u (t) =−R−1

e (BT
e Pe +Ne)xe (t) =−Kx (t)−K1z1 (t)−K2z2 (t)

I algebraic Riccati equation:
AT

e Pe +PeAe− (BT
e Pe +Ne)

TR−1
e (BT

e Pe +Ne)+Qe = 0
Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-10

Implementation
structure of the FSLQ system:

+//◦+//◦+//◦ // B // (sI−A)−1 x //
−OO

+ ��

D2 oo

◦ufoo C2+
oo oo (sI−A2)

−1z2 B2oo oo

−OO

K2 oo

−OO

K1 oo

◦xfoo +oo C1 oo (sI−A1)
−1

z1
B1oo oo

+
OO

D1 oo

K oo

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-11

Appendix: general LQ solution
Consider LQ problems with cost

J =
∫ ∞

0


xT (t)CTC︸ ︷︷ ︸

Q
x (t)+2uT (t)Nx (t)+uT (t)Ru (t)


dt (11)

and system dynamics

ẋ (t) = Ax (t)+Bu (t)

I assume (A,B) is controllable/stabilizable and (A,C) is
observable/detectable

I the solution of the problem is

u (t) =−R−1(BTP+N)x (t)

ATP+PA− (BTP+N)TR−1(BTP+N)+Q = 0
Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-12

Appendix: general LQ solution
Intuition: under the assumptions, we know we can stabilize the
system and drive x (t) to zero. Consider Lyapunov function
V (t) = xT (t)Px (t), P = PT � 0

��
��*0

V (∞)−V (0) =
∫ ∞

0
V̇ (t)dt

=
∫ ∞

0

(
xT (t)

(
PA+ATP

)
x (t)+2xT (t)PBu (t)

)
dt

Adding (11) on both sides yields
V (∞)−V (0)+J =

∫ ∞

0

(
xT (t)

(
Q+PA+AT P

)
x (t)+2xT (t)

(
PB +NT

)
u (t)+uT (t)Ru (t)

)
dt
(12)

I to minimize the cost, we are going to re-organize the terms in
(12) into some “squared” terms

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-13

Appendix: general LQ solution
“completing the squares”:

2xT (t)
(

PB +NT
)

u (t)+uT (t)Ru (t)=
∥∥∥R1/2u (t)+R−1/2

(
BT P +N

)
x (t)

∥∥∥
2

2

−xT (t)
(

PB +NT
)

R−1
(

BT P +N
)

x (t)

hence (12) is actually

��
�*0

V (∞)−V (0)+J

=
∫ ∞

0

[
xT (t)

(
Q+PA+AT P−

(
PB +NT

)
R−1

(
BT P +N

))
x (t)

+
∥∥∥R1/2u (t)+R−1/2

(
BT P +N

)
x (t)

∥∥∥
2

2

]
dt

hence Jmin = V (0) = xT (0)Px (0) is achieved when

Q+PA+ATP−
(
PB+NT

)
R−1

(
BTP+N

)
= 0

and u (t) =−R−1
(
BTP+N

)
x (t)

Lecture 10: LQ with Frequency Shaped Cost Function (FSLQ) ME233 10-14

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 11: Feedforward Control
Zero Phase Error Tracking

Big picture
Stable pole-zero cancellation

Phase error
Zero phase error tracking

Big picture
why are we learning this:

r(k) + //◦− // Feedback C // P
y(k) //OO

ks Gclosed(z−1) +3

I two basic control problems: tracking (the reference) and
regulation (against disturbances)

I feedback control has performance limitations
I For tracking r (k), ideally we want

Gclosed
(
z−1)= 1

which is not attainable by feedback. We thus need
feedforward control.

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-1

Big picture
r(k) + //◦− // Feedback C // P

y(k) //OO

ks Gclosed(z−1) +3

I notation:
Gclosed

(
z−1)= z−dBc

(
z−1)

Ac (z−1)

where

Bc
(
z−1)= bc0 +bc1z−1 + · · ·+bcmz−m, bco 6= 0

Ac
(
z−1)= 1+ac1z−1 + · · ·+acnz−n

I z−1: one-step delay operator. z−1r (k) = r (k−1)
Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-2

Big picture
r(k) + //◦− // Feedback C // P

y(k) //OO

ks Gclosed(z−1) +3

one naive approach: to let y (k) track yd (k), we can do

r (k) = G−1
closed

(
z−1)yd (k) =

zdAc
(
z−1)

Bc (z−1)
yd (k) =

Ac
(
z−1)

Bc (z−1)
yd (k +d) (1)

I causality: (1) requires knowledge of yd (k) for at least d steps
ahead (usually not an issue)

I stability: poles of G−1
closed

(
z−1), i.e., zeros of Gclosed

(
z−1),

must be all stable (usually an issue)
I robustness: the model Gclosed

(
z−1) needs to be accurate

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-3

The cancellable parts in Gclosed
(
z−1
)

yd (k) // Feedforward // Gclosed(z−1) =
z−dBc(z−1)

Ac(z−1)
// y(k)

I Gclosed(z−1) is always stable ⇒ Ac
(
z−1) can be fully canceled

I Bc
(
z−1) may contain uncancellable parts (zeros on or outside

the unit circle)
I partition Gclosed(z−1) as

Gclosed(z−1) =
z−dBc(z−1)

Ac(z−1)
=

z−d
cancellable︷ ︸︸ ︷
B+

c (z−1)

uncancellable︷ ︸︸ ︷
B−c (z−1)

Ac(z−1)
(2)

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-4

Stable pole-zero cancellation

yd (k) // Feedforward // Gclosed(z−1) =
z−dBc(z−1)

Ac(z−1)
// y(k)

feedforward via stable pole-zero cancellation:

Gspz
(
z−1)= zdAc

(
z−1)

B+
c (z−1)

1
B−c (1)

(3)

where B−c (1) = B−c
(
z−1)∣∣

z−1=1
I B−c (1) makes the overall DC gain from yd (k) to y (k) to be one:

Gyd→y
(
z−1)= Gspz

(
z−1)Gclosed

(
z−1)= B−c (z−1)

B−c (1)
I example: B−c

(
z−1)= 1+ z−1, B−c (1) = 2, then

Gyd→y
(
z−1)= 1+ z−1

2 : a moving-average low-pass filter
Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-5

Stable pole-zero cancellation
properties of Gyd→y

(
z−1)= 1+z−1

2 :

I there is always a phase error in tracking
I example: if yd (k) = αk (a ramp signal)

y (k) = Gyd→y
(
z−1)yd (k) = αk− α

2
which is always delayed by a factor of α/2

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-6

Zero Phase Error Tracking (ZPET)

yd (k) // Feedforward // Gclosed(z−1) =
z−dB+

c (z−1)B−c (z−1)
Ac(z−1)

y(k)//

Zero Phase Error Tracking (ZPET): extend (3) by adding a B−c (z)
part

GZPET(z−1) =
zdAc(z−1)

B+
c (z−1)

B−c (z)
B−c (1)2

(4)

where B−c (z) = b−c0 +b−c1z + · · ·+b−cszs if
B−c (z−1) = b−c0 +b−c1z−1 + · · ·+b−csz−s

I overall dynamics between y (k) and yd (k):

Gyd→y
(
z−1)= Gclosed

(
z−1)GZPET

(
z−1)= B−c (z)B−c (z−1)

[
B−c (1)

]2 (5)

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-7

Zero Phase Error Tracking (ZPET)
understanding (5):

I the frequency response always has zero phase error:
B−c
(
ejω)= B−c (e−jω) (a complex conjugate pair)

I B−c (1)2 normalizes Gyd → y to have unity DC gain:

Gyd→y
(
e−jω)∣∣

ω=0 =
B−c (ejω)

∣∣
ω=0 B−c (e−jω)

∣∣
ω=0[

B−c (1)
]2 =

�
�
�
�
��>

1
[B−c (1)]2
[
B−c (1)

]2

I example: B−c
(
z−1)= 1+ z−1, then

Gyd→y
(
z−1)= (1+ z)

(
1+ z−1)

4
I if yd (k) = αk , then y (k) = αk!
I fact: ZPET provides perfect tracking to step and ramp signals

at steady state (see ME 233 course reader)
Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-8

Zero Phase Error Tracking (ZPET)
Example: B−c

(
z−1)= 1+2z−1

Gyd→y
(
z−1)= (1+2z)(1+2z−1)

9 =
2z +5+2z−1

9

Figure: Bode Plot of 2z+5+2z−1
9

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-9

Implementation

yd (k) // GZPET
(
z−1) r(k) // Gclosed(z−1) =

z−dB+
c (z−1)B−c (z−1)
Ac(z−1)

y(k)//

r (k) =
[

zdAc(z−1)

B+
c (z−1)

B−c (z)
B−c (1)2

]
yd (k)

I zd is not causal ⇒ do instead

r (k) =
[

Ac(z−1)

B+
c (z−1)

B−c (z)
B−c (1)2

]
yd (k +d)

I B−c (z) = b−c0+b−c1z + · · ·+b−cszs is also not causal ⇒ do instead

r (k) =
[

Ac(z−1)

B+
c (z−1)

z−sB−c (z)
B−c (1)2

]
yd (k +d + s)

I at time k , requires yd (k +d + s): d + s steps preview of the
desired output

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-10

Implementation
Example:

Gclosed(z−1) =
z−1(1+2z−1)

3
I without feedforward control:

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-11

Implementation
Example:

Gclosed(z−1) =
z−1(1+2z−1)

3
I with ZPET feedforward:

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-12

Implementation
ZPET extensions:

I standard form:

GZPET(z−1) =
zdAc(z−1)

B+
c (z−1)

B−c (z)
B−c (1)2

I extended bandwidth (ref: B. Haack and M. Tomizuka, “The
effect of adding zeros to feedforward controllers,” ASME J. Dyn.
Syst. Meas. Control, vol. 113, pp. 6-10, 1991):

GZPET(z−1) =
zdAc(z−1)

B+
c (z−1)

B−c (z)
B−c (1)2

(
z−1−b

)
(z−b)

(1−b)2
, 0< b < 1

I remark:
(
z−1−b

)
(z−b)/(1−b)2 , 0< b < 1 is a high-pass

filter with unity DC gain

Lecture 11: Feedforward Control,Zero Phase Error Tracking ME233 11-13

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 12: Preview Control

Big picture
Problem formulation
Relationship to LQ

Solution

Review: optimal tracking
We consider controlling the system

x (k +1) = Ax (k)+Bu (k) (1)
y (k) = Cx (k)

where
x ∈ Rn, u ∈ Rm, y ∈ Rr

Optimal tracking with full reference information (homework 1):

min
U0

J :=
1
2 [yd (N)−y(N)]T S [yd (N)−y(N)]

+
1
2

N−1
∑
k=0

(
[yd (k)−y(k)]T Qy [yd (k)−y(k)] + u(k)T Ru(k)

)
(2)

uo(k) = −
[
R + BT P(k + 1)B

]−1
BT
[
P(k + 1)Ax(k) + bT (k + 1)

]
(3)

Jo
k (x(k)) =

1
2xT (k)P(k)x(k) + b(k)x(k) + c(k) (4)

Lecture 12: Preview Control ME233 12-1

Overview of preview control
Preview control considers the same cost-function structure, with:

I a Np-step preview window: the desired output signals in this
window are known

I post preview window: after the preview window we assume we
no longer know the desired output (due to, e.g., limited vision in
the example of vehicle driving), but we assume the reference is
generated from some models.

I e.g. (deterministic model)
yd (k +Np + l) = yd (k +Np) , l > 0 (5)

I or (stochastic model):
xd (k +1) = Adxd (k)+Bdwd (k) (6)

yd (k) = Cdxd (k)
where wd(k) is white and Gaussian distributed. Note: if Ad = I ,
Bd = 0, Cd = I , xd(k +Np) = yd(k +Np), then (6)⇔(5).

Lecture 12: Preview Control ME233 12-2

Structuring the future knowledge
Knowledge of the future trajectory can be built into



yd (k + 1)
yd (k + 2)

...
yd (k + Np)

xd (k + Np + 1)




︸ ︷︷ ︸
Yd (k+1)

=




0 I 0 . . . 0

0 0 I
... 0
0 . . . 0 0 Cd
0 . . . 0 0 Ad




︸ ︷︷ ︸
AYd




yd (k)
yd (k + 1)

...
yd (k + Np−1)

xd (k + Np)




︸ ︷︷ ︸
Yd (k)

+




0
0
...
0

Bd




︸ ︷︷ ︸
BYd

wd (k + Np)︸ ︷︷ ︸
w̄d (k)

(7)

Lecture 12: Preview Control ME233 12-3

The cost function
At time k

Jk =
1

1+N E
{
(y (N +k)− yd (N +k))T Sy (y (N +k)− yd (N +k))

+
N−1
∑
j=0

[
(y (j +k)− yd (j +k))T Qy (y (j +k)− yd (j +k))

+ u (j +k)T Ru (j +k)
]}

(8)

I a moving horizon cost
I only u(k) is applied to the plant after we find a solution to

minimize Jk .
I in deterministic formulation, we remove the expectation sign. In

stochastic formulation, expectation is taken with respect to
{wd (k +Np) ,wd (k +Np +1) , . . . ,wd (k +N−1)}

for the minimization of Jk .
Lecture 12: Preview Control ME233 12-4

Augmenting the system

Augmenting the plant with the reference model yields
[

x (k + 1)
Yd (k + 1)

]
=

[
A 0
0 AYd

]

︸ ︷︷ ︸
Ae

[
x (k)

Yd (k)

]

︸ ︷︷ ︸
xe(k)

+

[
B
0

]

︸ ︷︷ ︸
Be

u (k) +

[
0

BYd

]

︸ ︷︷ ︸
Bw ,e

w̄d (k)

(9)
and

y (j +k)− yd (j +k) = Cx (k + j)− [I ,0, . . . ,0]Yd (k + j)
= [C ,−I ,0, . . . ,0]︸ ︷︷ ︸

Ce

xe (k + j)

Lecture 12: Preview Control ME233 12-5

Translation to a standard LQ
y (j +k)− yd (j +k) = [C ,−I ,0, . . . ,0]︸ ︷︷ ︸

Ce

xe (k + j)

Hence
Jk =

1
1 + N E

{
(y (N + k)−yd (N + k))T Sy (y (N + k)−yd (N + k))

+
N−1
∑
j=0

[
(y (j + k)−yd (j + k))T Qy (y (j + k)−yd (j + k)) + u (j + k)T Ru (j + k)

]}

is nothing but

Jk =
1

1 + N E
{

xe (N + k)T CT
e Sy Cexe (N + k)

+
N−1
∑
j=0

[
xe (j + k)T CT

e Qy Cexe (j + k) + u (j + k)T Ru (j + k)
]}

(10)

Lecture 12: Preview Control ME233 12-6

Solution of the preview control problem
The equivalent formulation

xe (k + 1) = Aexe (k) + Beu (k) + Bw ,ew̄d (k)

Jk =
1

1 + N E
{

xe (N + k)T CT
e Sy Cexe (N + k)

+
N−1
∑
j=0

[
xe (j + k)T CT

e Qy Cexe (j + k) + u (j + k)T Ru (j + k)
]}

is a standard LQ (deterministic formulation) or a standard LQG
problem with exactly known state (stochastic formulation). Hence

uo (k) =−
[
BT

e P (k + 1)Be + R
]−1

BT
e P(k + 1)Aexe (k)

P (k) =−AT
e P (k + 1)Be

[
BT

e P (k + 1)Be + R
]−1

BT
e P (k + 1)Ae

+ AT
e P (k + 1)Ae + CT

e Qy Ce

where P (k +N) = CT
e SyCe

Lecture 12: Preview Control ME233 12-7

Remark
Let uo (k) = Kexe (k) =

[
Ke1(k) Ke2(k)

]
xe (k), the closed-loop

matrix is

Ae−BeKe(k) =
[

A 0
0 AYd

]
−
[

B
0

][
Ke1(k) Ke2(k)

]

=

[
A−BKe1(k) −BKe2(k)

0 AYd

]

I the closed-loop eigenvalue from AYd will not be changed.
I The Riccati equation may look ill conditioned if AYd contains

marginally stable eigenvalues. This, however, does not cause a
problem. For additional details, see the course reader or come to
the instructor’s office hour .

Lecture 12: Preview Control ME233 12-8

Summary

1. Big picture

2. Formulation of the optimal control problem

3. Translation to a standard LQ

Lecture 12: Preview Control ME233 12-9

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 13: Internal Model Principle and
Repetitive Control

Big picture
review of integral control in PID design
example:

+

D(s)
��0 //◦E(s) // C (s)

+
//◦ // P (s) // Y (s)−OO

where

P (s) =
1

ms +b , C (s) = kp +ki
1
s +kds, kp,ki ,kd > 0

I the integral action in PID control perfectly rejects
(asymptotically) constant disturbances (D (s) = do/s):

E (s) =
−P (s)

1+P (s)C (s)
D (s) =

−do
(m+kd)s2 + (kp +b)s +ki

⇒e (t)→ 0
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-1

Big picture
review of integral control in PID design

+

D(s)
��0 //◦E(s) // C (s)

+
//◦ // P (s) // Y (s)−OO

the “structure” of the reference/disturbance is built into the integral
controller:

I controller:

C (s) = kp +ki
1
s +kds =

1
s
(
kds2 +kps +ki

)

I constant disturbance:

d (t) = do ⇔L {d (t)}=
1
s do

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-2

General case: internal model principle (IMP)

Theorem (Internal Model Principle)

+

D(s)=Bd (s)
Ad (s)

��R(s)
+ //◦E(s) // C (s) = Bc(s)

Ac(s) +
//◦ // P (s) =

Bp(s)
Ap(s)

// Y (s)−OO

Assume Bp (s) = 0 and Ad (s) = 0 do not have common roots.
If the closed loop is asymptotically stable,
and Ac (s) can be factorized as Ac (s) = Ad (s)A′c (s),
then the disturbance is asymptotically rejected.

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-3

General case: internal model principle (IMP)

+

D(s)=Bd (s)
Ad (s)

��R(s)
+ //◦E(s) // C (s) = Bc(s)

Ac(s) +
//◦ // P (s) =

Bp(s)
Ap(s)

// Y (s)−OO

Proof: The steady-state error response to the disturbance is

E (s) =
−P (s)

1+P (s)C (s)
D (s) =

−Bp (s)Ac (s)

Ap (s)Ac (s) +Bp (s)Bc (s)

Bd (s)

Ad (s)

=
−Bp (s)A′c (s)Bd (s)

Ap (s)Ac (s) +Bp (s)Bc (s)

where all roots of Ap (s)Ac (s) +Bp (s)Bc (s) = 0 are on the left half
plane. Hence e (t)→ 0

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-4

Internal model principle
discrete-time case:

Theorem (Discrete-time IMP)

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
Ac(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Assume Bp
(
z−1)= 0 and Ad

(
z−1)= 0 do not have common zeros.

If the closed loop is asymptotically stable,
and Ac

(
z−1) can be factorized as Ac

(
z−1)= Ad

(
z−1)A′c

(
z−1),

then the disturbance is asymptotically rejected.

Proof: analogous to the continuous-time case.

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-5

Internal model principle
the disturbance structure:

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
Ac(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

example disturbance structures:

d (k) Ad (z−1)
constant do 1− z−1

cos(ω0k) and sin(ω0k) 1−2z−1 cos(ω0) + z−2

shifted ramp signal d (k) = αk + β 1−2z−1 + z−2

periodic: d (k) = d (k−N) 1− z−N

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-6

Internal model principle

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

observations:
I the controller contains a “counter disturbance” generator
I high-gain control: the open-loop frequency response

P
(
e−jω)C

(
e−jω)=

e−djωBp
(
e−jω)Bc

(
e−jω)

Ap (e−jω)A′c (e−jω)Ad (e−jω)

is large at frequencies where Ad (e−jω) = 0
I D

(
z−1)= Bd

(
z−1)/Ad

(
z−1) means d (k) is the impulse

response of Bd
(
z−1)/Ad

(
z−1):

Ad
(
z−1)d (k) = Bd

(
z−1)δ (k)

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-7

Outline

1. Big Picture
review of integral control in PID design

2. Internal Model Principle
theorems
typical disturbance structures

3. Repetitive Control
use of internal model principle
design by pole placement
design by stable pole-zero cancellation

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-8

Repetitive control
Repetitive control focus on attenuating periodic disturbances with

Ad
(
z−1)= 1− z−N

Control structure:

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

It remains to design Bc
(
z−1) and A′c

(
z−1). We discuss two

methods:
I pole placement
I (partial) cancellation of plant dynamics: prototype repetitive

control
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-9

1, Pole placement: prerequisite
Theorem
Consider G (z) = β (z)

α(z) = β1zn−1+β2zn−2+···+βn
zn+α1zn−1+···+αn

. α (z) and β (z) are
coprime (no common roots) iff S (Sylvester matrix) is nonsingular:

S =




1 0 . . . 0 β1 0 0

α1 1 β2 β1
.

... 0
...

... α1 1 βn−1
. 0

αn−1 α1 βn
. β1

αn
. 0 βn

. . . β2

0 αn
.

...
... αn−1

... . . . βn βn−1
0 . . . 0 αn 0 0 βn




(2n−1)×(2n−1)

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-10

1, Pole placement: prerequisite

Example:

G (z) =
β1zn−1 + β2zn−2 + · · ·+ βn
zn + α1zn−1 + · · ·+ αn

=
zn−1 + α1zn−2 + · · ·+ αn−1

zn + α1zn−1 + · · ·+ αn−1z +0

i.e.

β1 = 1
βi = αi−1 ∀i ≥ 2
αn = 0

α (z) and β (z) are not coprime, and S is clearly singular.

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-11

1, Pole placement: big picture

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Disturbance model: Ad
(
z−1)= 1− z−N

Pole placement assigns the closed-loop characteristic equation:

z−dBp
(
z−1)Bc

(
z−1)+Ap

(
z−1)A′c

(
z−1)Ad

(
z−1)

= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q
︸ ︷︷ ︸

η(z−1)

which is in the structure of a Diophantine equation.
Design procedure: specify the desired closed-loop dynamics η

(
z−1);

match coefficients of z−i on both sides to get Bc
(
z−1) and A′c

(
z−1).

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-12

1, Pole placement: big picture

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Diophantine equation in Pole placement:

z−dBp
(
z−1)Bc

(
z−1)+Ap

(
z−1)A′c

(
z−1)Ad

(
z−1)

= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q
︸ ︷︷ ︸

η(z−1)

Questions:
I what are the constraints for choosing η

(
z−1)?

I how to guarantee unique solution in Diophantine equation?
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-13

Design and analysis procedure

General procedure of control design:
I Problem definition
I Control design for solution (current stage)
I Prove stability
I Prove stability robustness
I Case study or implementation results

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-14

1, Pole placement: details
Theorem (Diophantine equation)
Given η

(
z−1)= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q

α
(
z−1)= 1+ α1z−1 + · · ·+ αnz−n

β
(
z−1)= β1z−1 + β2z−2 + · · ·+ βnz−n

The Diophantine equation
α
(
z−1)σ

(
z−1)+ β

(
z−1)γ

(
z−1)= η

(
z−1)

can be solved uniquely for σ
(
z−1) and γ

(
z−1)

σ
(
z−1)= 1+ σ1z−1 + · · ·+ σn−1z−(n−1)

γ
(
z−1)= γ0 + γ1z−1 + · · ·+ γn−1z−(n−1)

if the numerators of α
(
z−1) and β

(
z−1) are coprime and

deg
(
η
(
z−1))= q ≤ 2n−1

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-15

1, Pole placement: details
Proof of Diophantine equation Theorem (key ideas):

α
(
z−1)σ

(
z−1)

︸ ︷︷ ︸
unknown

+β
(
z−1)γ

(
z−1)

︸ ︷︷ ︸
unknown

= η
(
z−1)

Matching the coefficients of z−i gives (see one numerical example in
course reader)

S




σ1
σ2
...

σn−1
γ0
...

γn−1




+




α1
α2
...

αn
0
...
0




=




η1
η2
...

ηn−1
ηn
...

η2n−1




The coprime condition assures S is invertible. degη
(
z−1)≤ 2n−1

assures the proper dimension on the right hand side of the equality.
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-16

2, Prototype repetitive control: simple case

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Ad
(
z−1)= 1− z−N

If all poles and zeros of the plant are stable, then prototype
repetitive control uses

C
(
z−1)=

krz−N+dAp
(
z−1)

(
1− z−N)Bp (z−1)

Theorem (Prototype repetitive control)
Under the assumptions above, the closed-loop system is
asymptotically stable for 0< kr < 2

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-17

2, Prototype repetitive control: stability
Proof of Theorem on prototype repetitive control:
From

1+
krz−N+dAp

(
z−1)

(
1− z−N)Bp (z−1)

z−dBp
(
z−1)

Ap (z−1)
= 0

the closed-loop characteristic equation is

Ap
(
z−1)Bp

(
z−1)[1− (1−kr)z−N

]
= 0

I roots of Ap
(
z−1)Bp

(
z−1)= 0 are all stable

I roots of 1− (1−kr)z−N = 0 are

|1−kr |
1
N ej 2π i

N , i = 0,±1, . . . , for 0< kr ≤ 1
|1−kr |

1
N ej(2π i

N + π
N), i = 0,±1, . . . , for 1< kr

which are all inside the unit circle
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-18

2, Prototype repetitive control: stability robustness
Consider the case with plant uncertainty

+

d(k)

��r(k)+//◦ // kr z−N+d Ap(z−1)
(1−z−N)Bp(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

N open-loop poles on the unit circle
Root locus example: N = 4, 1+ ∆

(
z−1)= q/(z−p)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

∀ kr > 0, the closed-
loop system is now
unstable!

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-19

2, Prototype repetitive control: stability robustness

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

To make the controller robust to plant uncertainties, do instead

C
(
z−1)=

krq(z ,z−1)z−N+dAp
(
z−1)

(
1−q(z ,z−1)z−N)Bp (z−1)

(1)

q(z ,z−1) : low-pass filter. e.g. zero-phase low pass
α1z−1 + α0 + α1z

α0 +2α1
which shifts the marginary stable open-loop poles to be inside the
unit circle:

Ap
(
z−1)Bp

(
z−1)[1− (1−kr)q(z ,z−1)z−N

]
= 0

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-20

2, Prototype repetitive control: extension

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

If poles of the plant are stable but NOT all zeros are stable, let
Bp(z−1) = B−p (z−1)B+

p (z−1) [B−p
(
z−1)—the uncancellable part] and

C
(
z−1)=

krz−N+µAp(z−1)B−p (z)z−µ

(1− z−N)B+
p (z−1)z−db

, b > max
ω∈[0,π]

|B−p (ejω)|2 (2)

Similar as before, can show that the closed-loop system is stable
(in-class exercise).

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-21

2, Prototype repetitive control: extension
Exercise: analyze the stability of

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

C
(
z−1)=

krz−N+µAp(z−1)B−p (z)z−µ

(1− z−N)B+
p (z−1)z−db

, b > max
ω∈[0,π]

|B−p (ejω)|2 (3)

Key steps:
∣∣∣∣

B−p (ejω)B−p (e−jω)
b

∣∣∣∣< 1;
∣∣∣∣

kr B−p (ejω)B−p (e−jω)
b −1

∣∣∣∣< 1; all
roots from

z−N
[

kr B−p (z)B−p
(
z−1)

b −1
]
+1 = 0

are inside the unit circle.
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-22

2, Prototype repetitive control: extension

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

Robust version in the presence of plant uncertainties:

C
(
z−1)=

krz−N+µq(z ,z−1)Ap(z−1)B−p (z)z−µ

(1−q(z ,z−1)z−N)B+
p (z−1)z−db

(4)

where

q(z ,z−1) : low-pass filter. e.g. zero-phase low pass
α1z−1 + α0 + α1z

α0 +2α1

and µ is the order of B−p (z)
Lecture 13: Internal Model Principle and Repetitive Control ME233 13-23

Example

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // Plant

y(k) //
−OO

disturbance period: N = 10; nominal plant:

z−dBp
(
z−1)

Ap (z−1)
=

z−1

(1−0.8z−1)(1−0.7z−1)

C
(
z−1)= kr

(
1−0.8z−1)(1−0.7z−1)q(z ,z−1)z−10

z−1 (1−q(z ,z−1)z−10)

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-24

Additional reading

I ME233 course reader
I X. Chen and M. Tomizuka, “An Enhanced Repetitive Control

Algorithm using the Structure of Disturbance Observer,” in
Proceedings of 2012 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, Taiwan, Jul. 11-14, 2012,
pp. 490-495

I X. Chen and M. Tomizuka, “New Repetitive Control with
Improved Steady-state Performance and Accelerated Transient,”
IEEE Transactions on Control Systems Technology, vol. 22, no.
2, pp. 664-675 (12 pages), Mar. 2014

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-25

Summary

1. Big Picture
review of integral control in PID design

2. Internal Model Principle
theorems
typical disturbance structures

3. Repetitive Control
use of internal model principle
design by pole placement
design by stable pole-zero cancellation

Lecture 13: Internal Model Principle and Repetitive Control ME233 13-26

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 14: Disturbance Observer

Big picture

Disturbance and uncertainties in mechanical systems:
I system models are important in design: e.g., in ZPET, observer,

and preview controls
I inevitable to have uncertainty in actual mechanical systems
I system is also subjected to disturbances

Related control design:
I robust control
I adaptive control

Disturbance observer is one example of robust control.

Lecture 14: Disturbance Observer ME233 14-1

Disturbance observer (DOB)
I introduced by Ohnishi (1987) and refined by Umeno and Hori

(1991)
System:

V (s) = Guv (s) [U (s) + D (s)]

Assumptions: u (t)–input; d (t)–disturbance; v (t)–output;
Guv (s)–actual plant dynamics between u and v ; Gn

nv (s)–nominal
model

D(s)

+��U∗(s) +//◦ U(s) +//◦ // Guv (s)
V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)Lecture 14: Disturbance Observer ME233 14-2

DOB intuition
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)if Q (s) = 1, then

U (s) = U∗ (s)−
[

Guv (s)

Gnuv (s)
(U (s) + D (s)) +

1
Gnuv (s)

Ξ(s)−U (s)

]

⇒ U (s) =
Gn

uv (s)

Guv (s)
U∗ (s)−D (s)− 1

Guv (s)
Ξ(s)

V (s) = Gn
uv (s)U∗ (s)−Ξ(s)

i.e., dynamics between U∗ (s) and V (s) follows the nominal model;
and disturbance is rejected

Lecture 14: Disturbance Observer ME233 14-3

DOB intuition
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)

if Q (s) = 1, then

D̂ (s) =

(
Guv (s)

Gnuv (s)
−1
)

U (s) +
1

Gnuv (s)
Ξ(s) +

Guv (s)

Gnuv (s)
D (s)

≈ 1
Guv (s)

Ξ(s) + D (s) if Guv (s) = Gn
uv (s)

i.e., disturbance D (s) is estimated by D̂ (s).
Lecture 14: Disturbance Observer ME233 14-4

DOB details: causality
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)

It is impractical to have Q (s) = 1.
e.g., if Guv (s) = 1/s2, then 1/Gn

uv (s) = s2 (not realizable)
Q (s) should be designed such that Q (s)/Gn

nv (s) is causal. e.g.
(low-pass filter)

Q (s) =
1+ ∑N−r

k=1 ak (τs)k

1+ ∑N
k=1 ak (τs)k , Q (s) =

3τs +1
(τs +1)3 , Q (s) =

6(τs)2 +4τs +1
(τs +1)4

where τ determines the filter bandwidth
Lecture 14: Disturbance Observer ME233 14-5

DOB details: nominal model following
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)

Block diagram analysis gives
V (s) = Go

uv (s)U∗ (s) + Go
dv (s)D (s) + Go

ξv (s)Ξ(s)

where

Go
uv =

GuvGn
uv

Gnuv + (Guv −Gnuv)Q , Go
dv =

GuvGn
uv (1−Q)

Gnuv + (Guv −Gnuv)Q

Go
ξv =− GuvQ

Gnuv + (Guv −Gnuv)Q
Lecture 14: Disturbance Observer ME233 14-6

DOB details: nominal model following
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)

if Q (s)≈ 1, we have disturbance rejection and nominal model
following:

Go
uv ≈ Gn

uv , Go
dv ≈ 0, Go

ξv =−1
if Q (s)≈ 0, DOB is cut off:

Go
uv ≈ Guv , Go

dv ≈ Guv , Go
ξv ≈ 0

Lecture 14: Disturbance Observer ME233 14-7

DOB details: stability robustness
D(s)
+��U∗(s) +//◦ U(s) +//◦ // Guv (s)

V (s)//

+��−//◦
��

1/Gn
uv (s)

+
oo ◦oo

Ξ(s)+
oo

Q(s)

− OO

D̂(s)

Go
uv =

Guv Gn
uv

Gnuv +(Guv −Gnuv)Q , Go
dv =

Guv Gn
uv (1−Q)

Gnuv +(Guv −Gnuv)Q , Go
ξv =− Guv Q

Gnuv +(Guv −Gnuv)Q

closed-loop characteristic equation:
Gn

uv (s) + (Guv (s)−Gn
uv (s))Q (s) = 0

⇔ Gn
uv (s)(1+ ∆(s)Q (s)) = 0, if Guv (s) = Gn

uv (s)(1+ ∆(s))

robust stability condition: stable zeros for Gn
nv (s), plus

||∆(jω)Q (jω) ||< 1, ∀ω
Lecture 14: Disturbance Observer ME233 14-8

Application example

Lecture 14: Disturbance Observer ME233 14-9

Discrete-time case

d(k)

+��u∗(k) +//◦ u(k)

+
//◦ // P(z−1)

y(k)//

z−m −//◦
��

1/Pn(z−1)
+oo

Q(z−1)

−OO

where P
(
z−1)≈ z−mPn

(
z−1)

see more details in, e.g., X. Chen and M. Tomizuka, “Optimal Plant Shaping
for High Bandwidth Disturbance Rejection in Discrete Disturbance Observers,” in
Proceedings of the 2010 American Control Conference, Baltimore, MD, Jun.
30-Jul. 02, 2010, pp. 2641-2646

Lecture 14: Disturbance Observer ME233 14-10

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 15: System Identification and Recursive
Least Squares

Big picture

We have been assuming knwoledge of the plant in controller design.
In practice, plant models come from:

I modeling by physics: Newton’s law, conservation of energy, etc
I (input-output) data-based system identification

The need for system identification and adaptive control come from
I unknown plants
I time-varying plants
I known disturbance structure but unknown disturbance

parameters

Lecture 15: System Identification and Recursive Least Squares ME233 15-1

System modeling
Consider the input-output relationship of a plant:

u (k) // Gp
(
z−1)= z−1B

(
z−1)

A(z−1)
// y (k)

or equivalently

u (k) // B
(
z−1)

A(z−1)
// y (k +1) (1)

where
B(z−1)= b0+b1z−1+· · ·+bmz−m; A(z−1)= 1+a1z−1+· · ·+anz−n

I y (k +1) is a linear combination of y (k), ... , y (k +1−n) and
u (k), ..., u (k−m):

y(k +1) =−
n
∑
i=1

aiy(k +1− i)+
m
∑
i=0

biu(k− i) (2)

Lecture 15: System Identification and Recursive Least Squares ME233 15-2

System modeling

Define parameter vector θ and regressor vector φ (k):

θ , [a1,a2, · · ·an,b0,b1, · · · ,bm]
T

φ (k), [−y(k), · · · ,−y(k +1−n),u(k),u(k−1), · · · ,u(k−m)]T

I (2) can be simply written as:

y (k +1) = θT φ (k) (3)

I φ (k) and y (k +1) are known or measured
I goal: estimate the unknown θ

Lecture 15: System Identification and Recursive Least Squares ME233 15-3

Parameter estimation

Suppose we have an estimate of the parameter vector:

θ̂ , [â1, â2, · · · ân, b̂0, b̂1, · · · , b̂m]
T

At time k , we can do estimation:

ŷ (k +1) = θ̂ T (k)φ (k) (4)

where θ̂ (k), [â1(k), â2(k), · · · ân(k), b̂0(k), b̂1(k), · · · , b̂m(k)]T

Lecture 15: System Identification and Recursive Least Squares ME233 15-4

Parameter identification by least squares (LS)
At time k , the least squares (LS) estimate of θ minimizes:

Jk =
k
∑
i=1

[
y(i)− θ̂ T (k)φ(i−1)

]2
(5)

Solution:

Jk =
k
∑
i=1

(
y (i)2 + θ̂T (k)φ (i−1)φT (i−1) θ̂ (k)−2y (i)φT (i−1) θ̂ (k)

)

Letting ∂Jk/∂ θ̂ (k) = 0 yields

θ̂ (k) =
[

k
∑
i=1

φ (i−1)φT (i−1)
]−1

︸ ︷︷ ︸
F (k)

k
∑
i=1

φ (i−1)y (i) (6)

Lecture 15: System Identification and Recursive Least Squares ME233 15-5

Recursive least squares (RLS)
At time k +1, we know u (k +1) and have one more measurement
y (k +1).
Instead of (5), we can do better by minimizing

Jk+1 =
k+1
∑
i=1

[
y(i)− θ̂T (k +1)φ(i−1)

]2

whose solution is

θ̂ (k +1) =

F (k+1)︷ ︸︸ ︷[
k+1
∑
i=1

φ (i−1)φT (i−1)
]−1 k+1

∑
i=1

φ (i−1)y (i) (7)

recursive least squares (RLS): no need to do the matrix inversion
in (7), θ̂ (k +1) can be obtained by

θ̂ (k +1) = θ̂ (k)+ [correction term] (8)
Lecture 15: System Identification and Recursive Least Squares ME233 15-6

RLS parameter adaptation
Goal: to obtain θ̂ (k +1) = θ̂ (k)+ [correction term] (9)
Derivations:

F (k +1)−1 =
k+1
∑
i=1

φ (i−1)φT (i−1) = F (k)−1+φ (k)φT (k)

θ̂ (k +1) = F (k +1)
k+1
∑
i=1

φ (i−1)y (i)

= F (k +1)
[

k
∑
i=1

φ (i−1)y (i)+φ (k)y (k +1)
]

= F (k +1)
[
F (k)−1 θ̂ (k)+φ (k)y (k +1)

]

= F (k +1)
[(

F (k +1)−1−φ (k)φT (k)
)

θ̂ (k)+φ (k)y (k +1)
]

= θ̂ (k)+F (k +1)φ (k)
[
y (k +1)− θ̂ T (k)φ (k)

]
(10)

Lecture 15: System Identification and Recursive Least Squares ME233 15-7

RLS parameter adaptation

Define

ŷo(k +1) = θ̂T (k)φ(k)
εo(k +1) = y(k +1)− ŷo(k +1)

(10) is equivalent to

θ̂ (k +1) = θ̂ (k)+F (k +1)φ(k)εo(k +1) (11)

Lecture 15: System Identification and Recursive Least Squares ME233 15-8

RLS adaptation gain recursion
F (k +1) is called the adaptation gain, and can be updated by

F (k +1) = F (k)− F (k)φ(k)φT (k)F (k)
1+φT (k)F (k)φ(k) (12)

Proof:
I matrix inversion lemma: if A is nonsingular, B and C have

compatible dimensions, then
(A+BC)−1 = A−1−A−1B

(
CA−1B + I

)−1 CA−1

I note the algebra

F (k +1) =
[

k+1
∑
i=1

φ (i−1)φT (i−1)
]−1

=
[
F (k)−1+φ (k)φT (k)

]−1

= F (k)−F (k)φ (k)
(

φT (k)F (k)φ (k)+1
)−1

φT (k)F (k)

which gives (12)
Lecture 15: System Identification and Recursive Least Squares ME233 15-9

RLS parameter adaptation
An alternative representation of adaptation law (11):

(12)⇒ F (k +1)φ (k) = F (k)φ (k)− F (k)φ(k)φT (k)F (k)
1+φT (k)F (k)φ(k) φ (k)

=
F (k)φ(k)

1+φT (k)F (k)φ(k)
Hence we have the parameter adaptation algorithm (PAA):

θ̂ (k +1) = θ̂ (k)+F (k +1)φ(k)εo(k +1)

= θ̂ (k)+ F (k)φ(k)
1+φT (k)F (k)φ(k)εo(k +1)

F (k +1) = F (k)− F (k)φ(k)φT (k)F (k)
1+φT (k)F (k)φ(k)

Lecture 15: System Identification and Recursive Least Squares ME233 15-10

PAA implementation

I θ̂ (0): initial guess of parameter vector

θ̂ (k +1) = θ̂ (k)+ F (k)φ(k)
1+φT (k)F (k)φ(k)εo(k +1)

I F (0) = σ I : σ is a large number, as F (k) is always
none-increasing

F (k +1) = F (k)− F (k)φ(k)φT (k)F (k)
1+φT (k)F (k)φ(k)

Lecture 15: System Identification and Recursive Least Squares ME233 15-11

RLS parameter adaptation

Up till now we have been using the a priori prediction and a priori
prediction error:

ŷo(k +1) = θ̂T (k)φ(k) : after measurement of y (k)
εo(k +1) = y(k +1)− ŷo(k +1)

Further analysis (e.g., convergence of θ̂ (k)) requires the new
definitions of a posteriori prediction and a posteriori prediction error:

ŷ(k +1) = θ̂ T (k +1)φ(k) : after measurement of y (k +1)
ε(k +1) = y(k +1)− ŷ(k +1)

Lecture 15: System Identification and Recursive Least Squares ME233 15-12

Relationship between ε (k +1) and εo (k +1)
Note that

θ̂(k +1) = θ̂(k)+ F (k)φ(k)
1+φT (k)F (k)φ(k)εo(k +1)

⇒ φT (k) θ̂(k +1)︸ ︷︷ ︸
ŷ(k+1)

= φT (k) θ̂(k)︸ ︷︷ ︸
ŷo(k+1)

+
φT (k)F (k)φ(k)

1+φT (k)F (k)φ(k)εo(k +1)

⇒ y (k +1)− ŷ (k +1)︸ ︷︷ ︸
ε(k+1)

= y (k +1)− ŷo (k +1)︸ ︷︷ ︸
εo(k+1)

− φT (k)F (k)φ(k)
1+φT (k)F (k)φ(k)εo(k +1)

Hence
ε (k +1) = εo (k +1)

1+φT (k)F (k)φ(k) (13)

I note: |ε (k +1)| ≤ |εo (k +1)| (ŷ (k +1) is more accurate than
ŷo (k +1))

Lecture 15: System Identification and Recursive Least Squares ME233 15-13

A posteriori RLS parameter adaptation

With (13), we can write the PAA in the a posteriori form

θ̂ (k +1) = θ̂ (k)+F (k)φ(k)ε(k +1) (14)

which is not implementable but is needed for stability analysis.

Lecture 15: System Identification and Recursive Least Squares ME233 15-14

Forgetting factor
motivation

I previous discussions assume the actual parameter vector θ is
constant

I adaptation gain F (k) keeps decreasing, as

F−1 (k +1) = F−1 (k)+φ (k)φT (k)

I this means adaptation becomes weaker and weaker
I for time-varying parameters, we need a mechanism to “forget”

the “old’ data

Lecture 15: System Identification and Recursive Least Squares ME233 15-15

Forgetting factor
Consider a new cost

Jk =
k
∑
i=1

λ k−i
[
y(i)− θ̂ T (k)φ(i−1)

]2
, 0< λ ≤ 1

I past errors are less weighted:

Jk =
[
y (k)− θ̂ T (k)φ (k−1)

]2
+λ

[
y (k−1)− θ̂ T (k)φ (k−2)

]2

+λ 2
[
y (k−2)− θ̂ T (k)φ (k−3)

]2
+ . . .

I the solution is:

θ̂ (k) =

F (k)︷ ︸︸ ︷[
k
∑
i=1

λ k−iφ (i−1)φT (i−1)
]−1 k

∑
i=1

λ k−iφ (i−1)y (i) (15)

Lecture 15: System Identification and Recursive Least Squares ME233 15-16

Forgetting factor

I in (15), the recursion of the adaptation gain is:

F (k +1)−1 = λF (k)−1 +φ (k)φ (k)T

or, equivalently

F (k +1) = 1
λ

[
F (k)− F (k)φ(k)φT (k)F (k)

λ +φT (k)F (k)φ(k)

]
(16)

Lecture 15: System Identification and Recursive Least Squares ME233 15-17

Forgetting factor
The weighting can be made more flexible:

F (k +1) = 1
λ1 (k)

[
F (k)− F (k)φ(k)φT (k)F (k)

λ1 (k)+φT (k)F (k)φ(k)

]

which corresponds to the cost function

Jk =
[
y (k)− θ̂ T (k)φ (k−1)

]2
+λ1 (k−1)

[
y (k−1)− θ̂ T (k)φ (k−2)

]2

+λ1 (k−1)λ1 (k−2)
[
y (k−2)− θ̂ T (k)φ (k−3)

]2
+ . . .

i.e. (assuming ∏k−1
j=k λ1 (j) = 1)

Jk =
k
∑
i=1

{(
k−1
∏
j=i

λ1 (j)
)[

y(i)− θ̂ T (k)φ(i−1)
]2
}

Lecture 15: System Identification and Recursive Least Squares ME233 15-18

Forgetting factor
The general form of the adaptation gain is:

F (k +1) = 1
λ1(k)


F (k)− F (k)φ(k)φT (k)F (k)

λ1(k)
λ2(k) +φT (k)F (k)φ(k)


 (17)

which comes from:

F (k +1)−1 = λ1 (k)F (k)−1 +λ2 (k)φ (k)φT (k)

with 0< λ1 (k)≤ 1 and 0≤ λ2 (k)≤ 2 (for stability requirements,
will come back to this soon).

λ1 (k) λ2 (k) PAA
1 0 constant adaptation gain
1 1 least square gain
< 1 1 least square gain with forgetting factor

Lecture 15: System Identification and Recursive Least Squares ME233 15-19

*Influence of the initial conditions

If we initialize F (k) and θ̂ (k) at F0 and θ0, we are actually
minimizing

Jk =
(

θ̂ (k)−θ0
)T

F−1
0

(
θ̂ (k)−θ0

)
+

k
∑
i=1

αi
[
y(i)− θ̂T (k)φ(i−1)

]2

where αi is the weighting for the error at time i . The least square
parameter estimate is

θ̂ (k) =
[

F−10 +
k
∑
i=1

αi φ (i−1)φT (i−1)
]−1[

F−10 θ0+
k
∑
i=1

αi φ (i−1)y (i)
]

We see the relative importance of the initial values decays with time.

Lecture 15: System Identification and Recursive Least Squares ME233 15-20

*Influence of the initial conditions

If it is possible to wait a few samples before the adaptation, proper
initial values can be obtained if the recursion is started at time k0
with

F (k0) =

[
k0
∑
i=1

αiφ (i−1)φT (i−1)
]−1

θ̂ (k0) = F (k0)
k0
∑
i=1

αiφ (i−1)y (i)

Lecture 15: System Identification and Recursive Least Squares ME233 15-21

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 16: Stability of Parameter Adaptation
Algorithms

Big picture

I For
θ̂ (k+1) = θ̂ (k)+ [correction term]

we haven’t talked about whether θ̂ (k) will converge to the true
value θ if k → ∞. We haven’t even talked about whether θ̂ (k)
will stay bounded or not!

I Tools of stability evaluation: Lyapunov-based analysis, or
hyperstability theory (topic of this lecture)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-1

Outline

1. Big picture

2. Hyperstability theory
Passivity
Main results
Positive real and strictly positive real
Understanding the hyperstability theorem

3. Procedure of PAA stability analysis by hyperstability theory

4. Appendix
Strictly positive real implies strict passivity

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-2

Hyperstability theory
history

Vasile M. Popov:
I born in 1928, Romania

I retired from University of Florida in 1993
I developed hyperstability theory independently from Lyapnov

theory

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-3

Hyperstability theory
Consider a closed-loop system in Fig. 1

+//◦ u // LTI block //

vw
−OO

Nonlinear block oo

Figure 1: Block diagram for hyperstability analysis

The linear time invariant (LTI) block is realized by
continuous-time case:

ẋ (t) = Ax (t)+Bu (t)
v (t) = Cx (t)+Du (t)

discrete-time case:

x (k+1) = Ax (k)+Bu (k)
v (k) = Cx (k)+Du (k)

Hyperstability discusses conditions for “nice” behaviors in x .
Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-4

Passive systems
Definition (Passive system).
The system v // System // w is called passive if

∫ t1

0
wT (t)v (t)dt ≥−γ2, ∀t1≥ 0 or

k1

∑
k=0

wT (k)v (k)≥−γ2, ∀k1≥ 0

where δ and γ depends on the initial conditions.

I intuition:
∫ t1

0 wT (t)v (t)dt is the work/supply done to the
system. By conservation of energy,

E (t1)≤ E (0)+
∫ t1

0
wT (t)v (t)dt

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-5

Strictly passive systems
If the equality is strict in the passivity definition, with
∫ t1

0
wT (t)v (t)dt ≥−γ2

+δ
∫ t1

0
vT (t)v (t)dt+ ε

∫ t1

0
wT (t)w (t)dt, ∀t1 ≥ 0

or in the discrete-time case

k1

∑
k=0

wT (k)v (k)≥−γ2

+δ
k1

∑
k=0

vT (k)v (k)+ ε
k1

∑
k=0

wT (k)w (k) , ∀k1 ≥ 0

where δ ≥ 0, ε ≥ 0, but not both zero, the system is strictly passive.
Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-6

Passivity of combined systems

Fact (Passivity of connected systems).
If two systems S1 and S2 are both passive, then the following parallel
and feedback combination of S1 and S2 are also passive

// S1

+ ��v ◦ // w

// S2

+
OO

v + //◦ // S1 // w
−
OO

S2 oo

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-7

Hyperstability theory

Definition (Hyperstability).
The feedback system in Fig. 1 is hyperstable if and only if there exist
positive constants δ > 0 and γ > 0 such that

‖x(t)‖< δ [‖x(0)‖+ γ] , ∀t > 0 or ‖x(k)‖< δ [‖x(0)‖+ γ] , ∀k > 0

for all feedback blocks that satisfy the Popov inequality
∫ t1

0
wT (t)v (t)dt ≥−γ2, ∀t1≥ 0 or

k1

∑
k=0

wT (k)v (k)≥−γ2, ∀k1≥ 0

In other words, the LTI block is bounded in states for any initial
conditions for any passive nonlinear blocks.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-8

Hyperstability theory

Definition (Asymptotic hyperstability).
The feedback system below is asymptotically hyperstable if and only
if it is hyperstable and for all bounded w satisfying the Popov
inequality we have

lim
k→∞

x(k) = 0

+//◦−
u // LTI block //

vw

OO

Nonlinear block oo

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-9

Hyperstability theory

Theorem (Hyperstability).
The feedback system in Fig. 1 is hyperstable if and only if the
nonlinear block satisfies Popov inequality (i.e., it is passive) and the
LTI transfer function is positive real.

Theorem (Asymptotical hyperstability).
The feedback system in Fig. 1 is asymptotically hyperstable if and
only if the nonlinear block satisfies Popov inequality and the LTI
transfer function is strictly positive real.

intuition: a strictly passive system in feedback connection with a
passive system gives an asymptotically stable closed loop.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-10

Positive real and strictly positive real
Positive real transfer function (continuous-time case): a SISO
transfer function G (s) is called positive real (PR) if

I G (s) is real for real values of s
I Re{G (s)}> 0 for Re{s}> 0

The above is intuitive but not practical to evaluate. Equivalently,
G (s) is PR if
1. G (s) does not possess any pole in Re{s}> 0 (no unstable poles)
2. any pole on the imaginary axis jω0 does not repeat and the

associated residue (i.e., the coefficient appearing in the partial
fraction expansion) lims→jω0 (s− jω0)G (s) is non-negative

3. ∀ω ∈ R where s = jω is not a pole of G (s),
G (jω)+G (−jω) = 2Re{G (jω)} ≥ 0

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-11

Positive real and strictly positive real
Strictly positive real transfer function (continuous-time case): a SISO
transfer function G (s) is strictly positive real (SPR) if
1. G (s) does not possess any pole in Re{s} ≥ 0

1. ∀ω ∈ R, G (jω)+G (−jω) = 2Re{G (jω)}> 0

Figure: example Nyquist plot of a SPR transfer function

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-12

Positive real and strictly positive real
discrete-time case

A SISO discrete-time transfer function G (z) is positive real (PR) if:
1. it does not possess any pole outside of the unit circle
2. any pole on the unit circle does not repeat and the associated

redsidue is non-negative
3. ∀|ω| ≤ π where z = ejω is not a pole of G (z),

G(e−jω)+G(ejω) = 2Re
{
G(ejω)

}
≥ 0

G (z) is strictly positive real (SPR) if:
1. G(z) does not possess any pole outside of or on the unit circle

on z-plane
2. ∀|ω|< π, G(e−jω)+G(ejω) = 2Re

{
G(ejω)

}
> 0

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-13

Examples of PR and SPR transfer functions

I G (z) = c is SPR if c > 0
I G (z) = 1

z−a , |a|< 1 is asymptotically stable but not PR:

2Re
{

G
(
ejω)}= 1

ejω −a +
1

e−jω −a
= 2 cosω−a

1+a2−2acosω

I G (z) = z
z−a , |a|< 1 is asymptotically stable and SPR

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-14

Strictly positive real implies strict passivity

It turns out [see Appendix (to prove on board at the end of class)]:
Lemma: the LTI system G (s) = C (sI−A)−1B+D (in minimal
realization)

ẋ = Ax +Bu
y = Cx +Du

is
I passive if G (s) is positive real
I strictly passive if G (s) is strictly positive real

Analogous results hold for discrete-time systems.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-15

Outline

1. Big picture

2. Hyperstability theory
Passivity
Main results
Positive real and strictly positive real
Understanding the hyperstability theorem

3. Procedure of PAA stability analysis by hyperstability theory

4. Appendix
Strictly positive real implies strict passivity

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-16

Understanding the hyperstability theorem
Example: consider a mass-spring-damper system

mẍ +bẋ +kx = u⇒

Gu→x (s) =
1

ms2 +bs+k
Gu→v (s) =

s
ms2 +bs+k

with a general nonlinear feedback control law

0
+//◦−

u // Gu→v (s) //

vw

OO

Nonlinear block oo

I
∫ t1

0 u (t)v (t)dt is the total energy supplied to the system
Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-17

Understanding the hyperstability theorem
I if the nonlinear block satisfies the Popov inequality

∫ t1

0
w (t)v (t)dt ≥−γ2

0 , ∀t1 ≥ 0

then from u (t) =−w (t), the energy supplied to the system is
bounded by ∫ t1

0
u (t)v (t)dt ≤ γ2

0

I energy conservation (assuming v (0) = v0 and x (0) = x0):
1
2mv2 +

1
2kx

2− 1
2mv2

0 −
1
2kx

2
0 =

∫ t1

0
u (t)v (t)dt ≤ γ2

0

I define state vector x = [x1,x2]
T , x1 =

√
k
2x , x2 =

√m
2 v , then

||x (t) ||22 ≤ ||x (0) ||22 + γ2
0 ≤ (||x (0) ||2 + γ0)

2

which is a special case in the hyperstability definition
Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-18

Understanding the hyperstability theorem

+//◦−
u // LTI block //

vw
OO

Nonlinear block oo

intuition from the example:
The nonlinear block satisfying Popov inequality assures bounded
supply to the LTI system. Based on energy conservation, the energy
of the LTI system is bounded. If the energy function is positive
definite with respect to the states, then the states will be bounded.
more intuition:
If the LTI system is strictly passive, it consumes energy. The bounded
supply will eventually be all consumed, hence the convergence to zero
for the states.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-19

A remark about hyperstability
An example of a system that is asymptotically hyperstable and stable:

v + //◦ // 1
s+1

// w
−
OO

static gain k (> 0) oo

Stable systems may however be not hyperstable: for instance

v + //◦ // 1
s−1

// w
−
OO

static gain k (> 1) oo

is stable but not hyperstable (1
s−1 is unstable and hence not SPR)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-20

Outline

1. Big picture

2. Hyperstability theory
Passivity
Main results
Positive real and strictly positive real
Understanding the hyperstability theorem

3. Procedure of PAA stability analysis by hyperstability theory

4. Appendix
Strictly positive real implies strict passivity

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-21

PAA stability analysis by hperstability theory

I step 1: translate the adaptation algorithm to a feedback
combination of a LTI block and a nonlinear block, as shown in
Fig. 1

I step 2: verify that the feedback block satisfies the Popov
inequality

I step 3: check that the LTI block is strictly positive real

I step 4: show that the output of the feedback block is bounded.
Then from the definition of asymptotic hyperstability, we
conclude that the state x converges to zero

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-22

Example: hyperstability of RLS with constant
adaptation gain

Recall PAA with recursive least squares:
I a priori parameter update

θ̂ (k+1) = θ̂ (k)+ F (k)φ (k)
1+φT (k)F (k)φ (k)εo (k+1)

I a posteriori parameter update

θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)

We use the a posteriori form to prove that the RLS with
F (k) = F � 0 is always asymptotically hyperstable.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-23

Example cont’d
step 1: transformation to a feedback structure

θ̂ (k+1) = θ̂ (k)+Fφ (k)ε (k+1)

parameter estimation error (vector) θ̃ (k) = θ̂ (k)−θ :

θ̃ (k+1) = θ̃ (k)+Fφ (k)ε (k+1)

a posteriori prediction error ε (k+1) = y (k+1)− θ̂T (k+1)φ (k):

ε (k+1) = θ T φ (k)− θ̂ T (k+1)φ (k)
=−θ̃ T (k+1)φ (k)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-24

Example cont’d
step 1: transformation to a feedback structure
PAA equations:

θ̃ (k+1) = θ̃ (k)+Fφ (k)ε (k+1)
ε (k+1) =−θ̃ T (k+1)φ (k)

equivalent block diagram:

0 +//◦ // 1 // ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1)
F+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-25

Example cont’d
step 2: Popov inequality

for the feedback nonlinear block, need to prove

k1

∑
k=0

θ̃T (k+1)φ (k)ε (k+1)≥−γ2
0 , ∀k1 ≥ 0

θ̃ (k+1)− θ̃ (k) = Fφ (k)ε (k+1) gives

k1

∑
k=0

θ̃T (k+1)φ (k)ε (k+1)

=
k1

∑
k=0

(
θ̃T (k+1)F−1θ̃ (k+1)− θ̃T (k+1)F−1θ̃ (k)

)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-26

Example cont’d
step 2: Popov inequality

“adding and substracting terms” gives

k1

∑
k=0

θ̃T (k+1)φ (k)ε (k+1)

=
k1

∑
k=0

(
θ̃ T (k+1)F−1θ̃ (k+1)− θ̃ T (k+1)F−1θ̃ (k)

)

=
k1

∑
k=0

(
θ̃ T (k+1)F−1θ̃ (k+1)± θ̃T (k)F−1θ̃ (k)

−θ̃T (k+1)F−1θ̃ (k)
)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-27

Example cont’d
step 2: Popov inequality
Combining terms yields

k1

∑
k=0

(
θ̃ T (k +1)F−1θ̃ (k +1)± θ̃ T (k)F−1θ̃ (k)− θ̃ T (k +1)F−1θ̃ (k)

)

=
k1

∑
k=0

1
2
(

θ̃ T (k +1)F−1θ̃ (k +1)− θ̃ T (k)F−1θ̃ (k)
)

+
k1

∑
k=0

1
2
(

θ̃ T (k +1)F−1θ̃ (k +1)−2θ̃ T (k +1)F−1θ̃ (k)+ θ̃ T (k)F−1θ̃ (k)
)

︸ ︷︷ ︸
[F]

I [F] is equivalent to
(

F−1/2θ̃ (k +1)−F−1/2θ̃ (k)
)T (

F−1/2θ̃ (k +1)−F−1/2θ̃ (k)
)
≥ 0

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-28

Example cont’d
step 2: Popov inequality

I the underlined term is also lower bounded:

k1

∑
k=0

1
2
(

θ̃T (k+1)F−1θ̃ (k+1)− θ̃T (k)F−1θ̃ (k)
)

=
1
2 θ̃T (k1 +1)F−1θ̃ (k1 +1)− 1

2 θ̃T (0)F−1θ̃ (0)

≥−1
2 θ̃T (0)F−1θ̃ (0)

hence

k1

∑
k=0

θ̃ T (k+1)φ (k)ε (k+1)≥−1
2 θ̃T (0)F−1θ̃ (0)

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-29

Example cont’d
step 3: SPR condition

0
+//◦ // 1 // ε(k+1)−

w(k)
OO

Nonlinear Block oo

the identity block G
(
z−1)= 1 is always SPR

I from steps 1-3, we conclude the adaptation system is
asymptotically hyperstable

I this means ε (k+1) will be bounded, and if w (k) is further
shown to be bounded, ε (k+1) converge to zero

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-30

Example cont’d
step 4: boundedness of the signal

0 +//◦ // 1 // ε (k+1)−
w(k)

OO

Nonlinear Block oo

I ε (k+1) =−w (k), so w (k) is bounded if ε (k+1) is bounded
I thus hyperstability theorem gives that ε (k+1) converges to zero

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-31

Example cont’d
intuition

0 +//◦ // 1 // ε (k+1)−
w(k)

OO

Nonlinear Block oo

For this simple case, we can intuitively see why ε (k+1)→ 0: Popov
inequality gives ∑k1

k=0 ε (k+1)w (k)≥−γ2
0 ; as w (k) =−ε (k+1), so

k1

∑
k=0

ε2 (k+1)≤ γ2
0

Let k1→ ∞. ε (k+1) must converge to 0 to ensure the boundedness.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-32

One remark

Recall
ε (k+1) = εo (k+1)

1+φT (k)Fφ (k)

I ε (k+1)→ 0 does not necessarily mean εo (k+1)→ 0
I need to show φ (k) is bounded: for instance, the plant needs to

be input-output stable for y (k) to be bounded
I see details in ME 233 course reader

There are different PAAs with different stability and convergence
requirements

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-33

Summary

1. Big picture

2. Hyperstability theory
Passivity
Main results
Positive real and strictly positive real
Understanding the hyperstability theorem

3. Procedure of PAA stability analysis by hyperstability theory

4. Appendix
Strictly positive real implies strict passivity

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-34

Exercise
In the following block diagrams, u and y are respectively the input
and output of the overall system; h (·) is a sector nonlinearity
satisfying

2 |x |< |h (x)|< 5 |x |
Check whether they satisfy the Popov inequality.

u //
∫

// y u //
∫

// h (·) // y

// h (·)

+��u //
∫

+
//◦ y //

u //
∫

// 1
as+1 , a > 0 // y

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-35

*Kalman Yakubovich Popov Lemma

Kalman Yakubovich Popov (KYP) Lemma connects
frequency-domain SPR conditions and time-domain system matrices:
Lemma: Consider G (s) = C (sI−A)−1B+D where (A,B) is
controllable and (A,C) is observable. G (s) is strictly positive real
if and only if there exist matrices P = PT � 0, L, and W , and a
positive constant ε such that

PA+ATP =−LTL− εP
PB = CT −LTW

W TW = D+DT

Proof: see H. Khalil, “Nonlinear Systems”, Prentice Hall

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-36

*Kalman Yakubovich Popov Lemma

Discrete-time version of KYP lemma: replace s with z and replace
the matrix equalities with

ATPA−P =−LTL− εP
BTPA−C =−KTL

D+DT −BTPB = KTK

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-37

*Strictly positive real implies strict passivity

From KYP lemma, the following result can be shown:
Lemma: the LTI system G (s) = C (sI−A)−1B+D (in minimal
realization)

ẋ = Ax +Bu
y = Cx +Du

is
I passive if G (s) is positive real
I strictly passive if G (s) is strictly positive real

Analogous results hold for discrete-time systems.

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-38

*Strictly positive real implies strict passivity
Proof: Consider V = 1

2xTPx :

V (x (T))−V (x (0)) =
∫ T

0
V̇ dt =

∫ T

0

[
1
2xT

(
AT P +PA

)
x +uT BT Px

]
dt

Let u and y be the input and the output of G (s). KYP lemma gives

V (x (T))−V (x (0)) =
∫ T

0

[
−1

2xT
(

LT L+ εP
)

x +uT BT Px
]

dt

∫ T

0
uT ydt =

∫ T

0
uT (Cx +Du)dt =

∫ T

0

[
uT
(

BT P +W T L
)

x +uT Du
]

dt

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT

(
D+DT

)
u
]

dt

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT W T Wu

]
dt

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-39

*Strictly positive real implies strict passivity

hence
∫ T

0
uT ydt−V (x (T))+V (x (0))

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT W T Wu+

1
2xT

(
LT L+ εP

)
x −uT BT Px

]
dt

=
1
2

∫ T

0
(Lx +Wu)T (Lx +Wu)dt + 1

2εxT Px ≥ 1
2εxT Px > 0

Lecture 16: Stability of Parameter Adaptation Algorithms ME233 16-40

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 17: PAA with Parallel Predictors

Big picture: we know now...

u (k) // B
(
z−1)

A(z−1)
// y (k +1)

simply means:

y (k +1) = B
(
z−1)u (k)−

(
A
(
z−1)−1

)
y (k +1)

= θT φ (k)

In RLS:

ŷo (k +1)= θ̂T (k)φ (k)= B̂
(
z−1,k

)
u (k)−

(
Â
(
z−1,k

)
−1
)

y (k +1)

Understanding the notation: if B
(
z−1)= bo +b1z−1 + · · ·+bmz−m,

then B̂
(
z−1,k

)
= b̂o (k)+ b̂1 (k)z−1 + · · ·+ b̂m (k)z−m

Remark: z−1–shift operator; some references use q−1 instead
Lecture 17: PAA with Parallel Predictors ME233 17-1

RLS is a series-parallel adjustable system
RLS in a posteriori form:

ŷ (k +1) = B̂
(
z−1,k +1

)
u (k)−

(
Â
(
z−1,k +1

)
−1
)

y (k +1)

prediction error:

ε (k +1)= y (k +1)− ŷ (k +1)= Â
(
z−1,k +1

)
y (k +1)−B̂

(
z−1,k +1

)
u (k)

// B̂(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

y(k+1) // Â(z−1,k+1)

+
OO

A series-parallel structure: Â
(
z−1,k +1

)
–in series with plant;

B̂
(
z−1,k +1

)
–in parallel with the plant

Lecture 17: PAA with Parallel Predictors ME233 17-2

Observation
If hyperstability holds such that ε (k +1)→ 0, ŷ (k +1)→ y (k +1),
it seems fine to do instead:

ŷ (k +1) = B̂
(
z−1,k +1

)
u (k)−

(
Â
(
z−1,k +1

)
−1
)

ŷ (k +1) (1)

i.e. u (k) // B̂(z
−1,k+1)

Â(z−1,k+1)
// ŷ (k +1)

then we have a parallel structure

// B̂(z
−1,k+1)

Â(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

+
OO

I it turns out this brings certain advantages
Lecture 17: PAA with Parallel Predictors ME233 17-3

Other names

// B̂(z
−1,k+1)

Â(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

+
OO

is also called an output-error method

// B̂(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

y(k+1) // Â(z−1,k+1)

+
OO

is also called an equation-error method

Lecture 17: PAA with Parallel Predictors ME233 17-4

Benefits of parallel algorithms
Intuition: when there is noise,

// B̂(z
−1,k+1)

Â(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

+◦
+

y(k+1)

OO

n(k) +
OO

provides better convergence of θ̂ than
// B̂(z−1,k+1)

− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

+//◦y(k+1) // Â(z−1,k+1)

+
OO

n(k) +
OO

We will talk about the PAA convergence in a few more lectures.
Lecture 17: PAA with Parallel Predictors ME233 17-5

Outline

1. Big picture
Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)

2. RLS-based parallel PAA
Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation
gain

3. Parallel PAAs with relaxed SPR requirements

4. PAAs with time-varying adaptation gains (revisit)

Lecture 17: PAA with Parallel Predictors ME233 17-6

RLS based parallel PAA

// B̂(z
−1,k+1)

Â(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// bo +b1z−1 + · · ·+bmz−m

1+a1z−1 + · · ·+anz−n

+
OO

PAA summary:

I a priori θ̂ (k +1) = θ̂ (k)+ F (k)φ (k)
1+φT (k)F (k)φ (k)εo (k +1)

I a posteriori θ̂ (k +1) = θ̂ (k)+F (k)φ (k)ε (k +1)
F−1 (k +1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k)

φT (k) = [−ŷ (k) ,−ŷ (k−1) , . . . ,−ŷ (k +1−n) ,u (k) , . . . ,u (k−m)]

Lecture 17: PAA with Parallel Predictors ME233 17-7

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
parameter estimation error :

θ̃ (k +1) = θ̃ (k)+F (k)φ (k)ε (k +1)

a posteriori prediction error : y (k +1) = B(z−1)
A(z−1) u (k) gives

B
(
z−1)u (k) = A

(
z−1)y (k +1)

B̂
(
z−1,k +1

)
u (k) = Â

(
z−1,k +1

)
ŷ (k +1)

hence

A
(
z−1)y (k +1)− Â

(
z−1,k +1

)
ŷ (k +1) ±A

(
z−1) ŷ (k +1)

= B
(
z−1)u (k)− B̂

(
z−1,k +1

)
u (k)

i.e. A
(
z−1)ε (k +1) = [B

(
z−1)− B̂

(
z−1,k +1

)
]u (k)

− [A
(
z−1)− Â

(
z−1,k +1

)
]ŷ (k +1)

Lecture 17: PAA with Parallel Predictors ME233 17-8

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
a posteriori prediction error (cont’d):

A
(
z−1)ε (k +1) =

[F]︷ ︸︸ ︷[
B
(
z−1)− B̂

(
z−1,k +1

)]
u (k)

−
[
A
(
z−1)− Â

(
z−1,k +1

)]
ŷ (k +1)

Look at [F]: B
(
z−1)= b0 +b1z−1 + · · ·+bmz−m gives

[
B
(
z−1)− B̂

(
z−1,k +1

)]
u (k)

=




b0− b̂0 (k +1)
b1− b̂1 (k +1)

...
bm− b̂m (k +1)




T 


1
z−1

...
z−m


u (k)=




b0− b̂0 (k +1)
b1− b̂1 (k +1)

...
bm− b̂m (k +1)




T 


u (k)
u (k−1)

...
u (k−m)




Lecture 17: PAA with Parallel Predictors ME233 17-9

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
Similarly, for A

(
z−1)= 1+a1z−1 + · · ·+anz−n

[
Â
(
z−1,k +1

)
−A

(
z−1)] ŷ (k +1)=




a1− â1 (k +1)
a2− â2 (k +1)

...
an− ân (k +1)




T 


−ŷ (k)
−ŷ (k−1)

...
−ŷ (k +1−n)




Recall: θT = [a1,a2, · · ·an,b0,b1, · · · ,bm]
T

φ (k) = [−ŷ (k) ,−ŷ (k−1) , . . . ,−ŷ (k +1−n) ,u (k) , . . . ,u (k−m)]

hence

A
(
z−1)ε (k +1) =

[
B
(
z−1)− B̂

(
z−1,k +1

)]
u (k)

−
[
A
(
z−1)− Â

(
z−1,k +1

)]
ŷ (k +1) =−θ̃T (k +1)φ (k)

Lecture 17: PAA with Parallel Predictors ME233 17-10

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
PAA equations:

θ̃ (k +1) = θ̃ (k)+F (k)φ (k)ε (k +1)
A
(
z−1)ε (k +1) =−θ̃T (k +1)φ (k)

equivalent block diagram:

0 +//◦ // 1
A(z−1)

// ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1) F (k)+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)

Lecture 17: PAA with Parallel Predictors ME233 17-11

Stability of RLS based parallel PAA
step 2: Popov inequality
We will consider a simplified case with F (k) = F � 0:

0 +//◦ // 1
A(z−1)

// ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1)
F+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)

The nonlinear block is exactly the same as that in RLS, hence
satisfying Popov inequality:

k1

∑
k=0

θ̃ T (k +1)φ (k)ε (k +1)≥−1
2 θ̃T (0)F−1θ̃ (0)

Lecture 17: PAA with Parallel Predictors ME233 17-12

Stability of RLS based parallel PAA
step 3: SPR condition

0 +//◦ // 1
A(z−1)

// ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1)
F+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)

If G
(
z−1)= 1

A(z−1) is SPR, then the PAA is asmptotically hyperstable
Remarks:

I RLS has an identity block: G
(
z−1)= 1 which is independent of

the plant
I 1/A

(
z−1) depends on the plant (usually not SPR)

I several other PAAs are developed to relax the SPR condition
Lecture 17: PAA with Parallel Predictors ME233 17-13

Stability of RLS based parallel PAA: extension
For the case of a time-varying F (k) with

F−1 (k +1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k)

0 +//◦ // 1
A(z−1)

// ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1) F (k)+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)

the nonlinear block is more involved; we’ll prove later, that it requires
1

A(z−1)
− 1

2λ , where λ =max
k

λ2 (k)< 2, to be SPR

Lecture 17: PAA with Parallel Predictors ME233 17-14

Outline

1. Big picture
Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)

2. RLS-based parallel PAA
Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation
gain

3. Parallel PAAs with relaxed SPR requirements

4. PAAs with time-varying adaptation gains (revisit)

Lecture 17: PAA with Parallel Predictors ME233 17-15

Parallel algorithm with a fixed compensator
Instead of:

θ̂ (k +1) = θ̂ (k)+ F (k)φ (k)
1+φT (k)F (k)φ (k)εo (k +1)

F−1 (k +1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k)
φT (k) = [−ŷ (k) ,−ŷ (k−1) , . . . ,−ŷ (k +1−n) ,u (k) , . . . ,u (k−m)]

do: θ̂ (k +1) = θ̂ (k)+ F (k)φ (k)
1+φT (k)F (k)φ (k)νo (k +1)

where

ν (k +1) = C
(
z−1)ε (k +1) =

(
c0 + c1z−1 + . . .cnz−n)ε (k +1)

νo (k +1) = c0εo (k +1)+ c1ε (k)+ . . .cnε (k−n+1)

Lecture 17: PAA with Parallel Predictors ME233 17-16

Parallel algorithm with a fixed compensator
The SPR requirement becomes

C
(
z−1)

A(z−1)
− λ

2 , λ =max
k

λ2 (k)< 2 (2)

should be SPR.

Remark:
I if ci ’s are close to ai ’s, (2) approximates 1−λ/2> 0, and hence

is likely to be SPR
I problem: A

(
z−1) is unknown a priori for the assigning of

C
(
z−1)

I solution: make C
(
z−1) to be adjustable as well

Lecture 17: PAA with Parallel Predictors ME233 17-17

Parallel algorithm with an adjustable compensator
If A

(
z−1)= 1+a1z−1 + · · ·+anz−n, let Ĉ

(
z−1)= 1+ ĉ1z−1 + · · ·+ ĉnz−n and

ν (k +1) = Ĉ
(
z−1,k +1

)
ε (k +1)

νo (k +1) = εo (k +1)+
n
∑
i=1

ĉi (k)ε (k +1− i)

do θ̂e (k +1) = θ̂e (k)+
Fe (k)φe (k)

1+φTe (k)Fe (k)φe (k)
νo (k +1)

θ̂ T
e (k) =

[
θ̂T (k) , ĉ1 (k) , . . . , ĉn (k)

]

φT
e (k) =

[
φT (k) ,−ε (k) , . . . ,−ε (k +1−n)

]

F−1
e (k +1) = λ1 (k)F−1

e (k)+λ2 (k)φe (k)φT
e (k)

which has guaranteed asymptotical stablility.

Lecture 17: PAA with Parallel Predictors ME233 17-18

General PAA block diagram

0 +//◦ // H
(
z−1) //

−OO

×oo ◦θ̃(k+1) or θ̃e(k+1) F (k)+oo ×oo oo

// z−1

+
OO

φ(k) or φe(k) φ(k) or φe(k)

H
(
z−1) PAA
1 RLS/parallel predictor with adjustable compensator

1/A(z−1) parallel predictor
C(z−1)/A(z−1) parallel predictor with fixed compensator

Lecture 17: PAA with Parallel Predictors ME233 17-19

General PAA block diagram

0 +//◦ // H
(
z−1) //

−OO

×oo ◦θ̃(k+1) or θ̃e(k+1) F (k)+oo ×oo oo

// z−1

+
OO

φ(k) or φe(k) φ(k) or φe(k)

I if F (k) = F , H
(
z−1) being SPR is sufficient for asymptotic

stability
I if F (k) is time-varying, we will show next: H

(
z−1)− 1

2λ being
SPR is sufficient for asymptotic stability

Lecture 17: PAA with Parallel Predictors ME233 17-20

Outline

1. Big picture
Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)

2. RLS-based parallel PAA
Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation
gain

3. Parallel PAAs with relaxed SPR requirements

4. PAAs with time-varying adaptation gains (revisit)

Lecture 17: PAA with Parallel Predictors ME233 17-21

PAA with time-varying adaptation gains

0
+//◦ // H

(
z−1) ε(k+1)

−OO

×
θ̃T (k+1)φ(k)

θ̃ (k +1) = θ̃ (k)+F (k)φ (k)ε (k +1)oo ×oo oo

φ(k) φ(k)

where F−1 (k +1) = λ1 (k)F−1 (k)+λ2 (k)φT (k)φ (k)

I unfortunately, the nonlinear block does not satisfy Popov
inequality (not passive)

Lecture 17: PAA with Parallel Predictors ME233 17-22

PAA with time-varying adaptation gains
a modification can re-gain the passivity of the feedback block

◦ // H
(
z−1) ε(k+1)

−
w(k)

OO

PAA θ̃ (k) Eq
θ̃T (k+1)φ(k)

oo

⇔

◦ // H
(
z−1) ε(k+1)

+��//

OO

λ/2
+
//◦
+��// λ/2 −
//◦
+��// λ2 (k)/2 +
//◦
+��// λ2 (k)/2 −
//◦

−

w(k)

PAA θ̃ (k) Eq oo

Lecture 17: PAA with Parallel Predictors ME233 17-23

PAA with time-varying adaptation gains
a modification can re-gain the passivity of the feedback block

◦ // H
(
z−1) ε(k+1)

+��//

OO

λ/2
+
//◦
+��// λ/2 −
//◦
+��// λ2 (k)/2 +
//◦
+��// λ2 (k)/2 −
//◦

−

w(k)

PAA θ̃ (k) Eq oo

⇔

◦ // H
(
z−1) +//◦

// λ/2

−OO

+
�� NL blk
��

Linear blk
KS

// 1
2 (λ −λ2 (k)) −

//◦
s(k)

// λ2 (k)/2
− ��

−

w(k)

OO

PAA θ̃ (k) Eq ◦oo
+
oo

Lecture 17: PAA with Parallel Predictors ME233 17-24

PAA with time-varying adaptation gains
step 1: show that the following is passive

// λ2 (k)/2
− ��

w(k)=θ̃T (k+1)φ(k)
oo PAA θ̃ (k) Eq ◦

ε(k+1)
oo

+

s(k)oo

step 2: the following is then passive

+��//

OO

1
2 (λ −λ2 (k)) −

//◦

s(k)// λ2 (k)/2
− ��

w(k)

PAA θ̃ (k) Eq ◦oo
+
oo

note that it is a feedback
connection of a passive block with
1
2 (λ −λ2 (k))≥ 0

step 3: SPR condition for the linear block H
(
z−1)− λ

2
Lecture 17: PAA with Parallel Predictors ME233 17-25

Passivity of the sub nonlinear block
Consider: // λ2 (k)/2

− ��
w(k)=θ̃T (k+1)φ(k)

oo PAA θ̃ (k) Eq ◦
ε(k+1)
oo

+

s(k)oo

s (k) = ε (k +1)+ λ2(k)
2 θ̃T (k +1)φ (k) gives

k1

∑
k=0

w (k)s (k)

=
k1

∑
k=0

θ̃ T (k +1)φ (k)
[

ε (k +1)+ λ2 (k)
2 θ̃ T (k +1)φ (k)

]

⇓note that F−1 (k +1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k)

=
k1

∑
k=0

θ̃ T (k +1)φ (k)ε (k +1)+ 1
2 θ̃ T (k +1)

[
F−1 (k +1)−λ1 (k)F−1 (k)

]
θ̃ (k +1)

which is no less than −1
2 θ̃T (0)F−1 (0) θ̃ (0) as shown next.

Lecture 17: PAA with Parallel Predictors ME233 17-26

Proof of passivity of the sub nonlinear block
θ̃ (k +1) = θ̃ (k)+F (k)φ (k)ε (k +1)

hence
k1

∑
k=0

θ̃ T (k +1)φ (k)ε (k +1) =
k1

∑
k=0

θ̃ T (k +1)F−1 (k)
(

θ̃ (k +1)− θ̃ (k)
)

Combining terms and after some algebra (see appendix), we get
k1

∑
k=0

w (k)s (k) =
k1

∑
k=0

1
2 θ̃ T (k +1)(1−λ1 (k))F−1 (k) θ̃ (k +1)

+
k1

∑
k=0

1
2
[
θ̃ (k +1)− θ̃ (k)

]T
F−1 (k)

[
θ̃ (k +1)− θ̃ (k)

]

+
k1

∑
k=0

1
2
[
θ̃ T (k +1)F−1 (k) θ̃ (k +1)− θ̃ T (k)F−1 (k) θ̃ (k)

]

︸ ︷︷ ︸
1
2 θ̃ T (k1+1)F−1(k1)θ̃(k1+1)− 1

2 θ̃ T (0)F−1(0)θ̃(0)≥− 1
2 θ̃ T (0)F−1(0)θ̃(0)

(3)

Lecture 17: PAA with Parallel Predictors ME233 17-27

Summary

◦ // H
(
z−1) +//◦

// λ/2

−OO

+
�� NL blk
��

Linear blk
KS

// 1
2 (λ −λ2 (k)) −

//◦
s(k)

// λ2 (k)/2
− ��

−

w(k)

OO

PAA θ̃ (k) Eq ◦oo
+
oo

In summary, the NL block indeed satisfies Popov inequality.
For stability of PAA, it is sufficient that

H
(
z−1)− λ

2 is SPR

Lecture 17: PAA with Parallel Predictors ME233 17-28

Appendix: derivation of (3)
k1
∑

k=0
θ̃T (k +1)F−1 (k)

(
θ̃ (k +1)− θ̃ (k)

)
+

1
2 θ̃T (k +1)

[
F−1 (k +1)−λ1 (k)F−1 (k)

]
θ̃ (k +1)

=
k1
∑

k=0
θ̃T (k +1)F−1 (k) θ̃ (k +1)− θ̃T (k +1)F−1 (k) θ̃ (k)+ 1

2 θ̃T (k +1)
[
F−1 (k +1)−λ1 (k)F−1 (k)

]
θ̃ (k +1)

=
k1
∑

k=0
θ̃T (k +1)F−1 (k) θ̃ (k +1)− θ̃T (k +1)F−1 (k) θ̃ (k) +

1
2 θ̃T (k +1)

[
F−1 (k +1)−λ1 (k)F−1 (k)

]
θ̃ (k +1)

=
k1
∑

k=0

1
2 θ̃T (k +1)(1−λ1 (k))F−1 (k) θ̃ (k +1)+ 1

2 θ̃T (k +1)F−1 (k) θ̃ (k +1)− θ̃T (k +1)F−1 (k) θ̃ (k)

+
1
2 θ̃T (k +1)F−1 (k +1) θ̃ (k +1) (4)

The term 1
2 θ̃T (k +1)(1−λ1 (k))F−1 (k) θ̃ (k +1) is always

none-negative if 1−λ1 (k)≥ 0, which is the assumption in the
forgetting factor definition. We only need to worry about

k1

∑
k=0

1
2 θ̃ T (k +1)F−1 (k) θ̃ (k +1)− θ̃ T (k +1)F−1 (k) θ̃ (k)+ 1

2 θ̃ T (k +1)F−1 (k +1) θ̃ (k +1)

(5)

Lecture 17: PAA with Parallel Predictors ME233 17-29

Appendix: derivation of (3)

The underlined terms are already available in (5). Adding and
substracting terms in (5) gives

k1

∑
k=0

1
2 θ̃ T (k +1)F−1 (k) θ̃ (k +1)− 1

2 θ̃ T (k)F−1 (k) θ̃ (k)

+
1
2 θ̃ T (k +1)F−1 (k +1) θ̃ (k +1)− θ̃ T (k +1)F−1 (k) θ̃ (k)+ 1

2 θ̃ T (k)F−1 (k) θ̃ (k)

=
k1

∑
k=0

1
2 θ̃ T (k +1)F−1 (k) θ̃ (k +1)− 1

2 θ̃ T (k)F−1 (k) θ̃ (k)

+
1
2
[
θ̃ (k +1)− θ̃ (k)

]T
F−1 (k)

[
θ̃ (k +1)− θ̃ (k)

]

︸ ︷︷ ︸
≥0

Lecture 17: PAA with Parallel Predictors ME233 17-30

Appendix: derivation of (3)
Summarizing, we get

k1

∑
k=0

w (k)s (k) =
k1

∑
k=0

1
2 θ̃ T (k +1)(1−λ1 (k))F−1 (k) θ̃ (k +1)

+
k1

∑
k=0

1
2
[
θ̃ (k +1)− θ̃ (k)

]T
F−1 (k)

[
θ̃ (k +1)− θ̃ (k)

]

+
k1

∑
k=0

1
2
[
θ̃ T (k +1)F−1 (k) θ̃ (k +1)− θ̃ T (k)F−1 (k) θ̃ (k)

]

︸ ︷︷ ︸
1
2 θ̃ T (k1+1)F−1(k1)θ̃(k1+1)− 1

2 θ̃ T (0)F−1(0)θ̃(0)

hence
k1

∑
k=0

w (k)s (k)≥−1
2 θ̃ T (0)F−1 (0) θ̃ (0)

Lecture 17: PAA with Parallel Predictors ME233 17-31

Summary

1. Big picture
Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)

2. RLS-based parallel PAA
Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation
gain

3. Parallel PAAs with relaxed SPR requirements

4. PAAs with time-varying adaptation gains (revisit)

Lecture 17: PAA with Parallel Predictors ME233 17-32

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 18: Parameter Convergence in PAAs

Big picture
why are we learning this:
Consider a series-parallel PAA

// B̂(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

y(k+1) // Â(z−1,k+1)

+
OO

where the plant is stable.
(Hyper)stability of PAA gives

lim
k→∞

ε (k) = lim
k→∞

{
−θ̃T (k)φ (k−1)

}
= 0

But this does not guarantee

lim
k→∞

θ̃ (k) = 0⇐⇒ lim
k→∞

θ̂ (k) = θ

Lecture 18: Parameter Convergence in PAAs ME233 18-1

Parameter convergence condition
// B̂(z−1,k+1)

− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

y(k+1) // Â(z−1,k+1)

+
OO

ε (k)→ 0 means

Â
(
z−1,k+1

) B
(
z−1)

A(z−1)
u (k)− B̂

(
z−1,k+1

)
u (k)→ 0

⇒
[
Â
(
z−1,k+1

)
B
(
z−1)−A

(
z−1) B̂

(
z−1,k+1

)]
u (k)→ 0

⇔
[
Â
(
z−1)B

(
z−1)±A

(
z−1)B

(
z−1)−A

(
z−1) B̂

(
z−1)]u (k)→ 0

⇔
[
Ã
(
z−1)B

(
z−1)−A

(
z−1) B̃

(
z−1)]u (k)→ 0

where Ã
(
z−1)= Â

(
z−1)−A

(
z−1).

Lecture 18: Parameter Convergence in PAAs ME233 18-2

Parameter convergence condition

Consider a new polynomial α0+α1z−1+···+αm+nz−m−n
︷ ︸︸ ︷[
Ã
(
z−1)B

(
z−1)−A

(
z−1) B̃

(
z−1)]u (k)→ 0

B̃
(
z−1)= b̃0 + b̃1z−1 + · · ·+ b̃mz−m

A
(
z−1)= 1+a1z−1 + · · ·+anz−n

B
(
z−1)= b0 +b1z−1 + · · ·+bmz−m

Ã
(
z−1)= ã1z−1 + · · ·+ ãnz−n

Two questions we are going to discuss for assuring θ̃ = 0:
I is αi = 0 true iff ãi = 0, b̃i = 0 (i.e., {αi}= 0⇔ θ̃ = 0)?

I if αi 6= 0, can
[
α0 +α1z−1 + · · ·+αm+nz−m−n]u (k) = 0?

Lecture 18: Parameter Convergence in PAAs ME233 18-3

Parameter convergence condition
Qs 1: αi = 0 ⇐⇒ ãi = 0, b̃i = 0? Ans: yes if B

(
z−1) and A

(
z−1) are coprime

α0 +α1z−1 + · · ·+αm+nz−m−n = Ã
(
z−1)B

(
z−1)−A

(
z−1) B̃

(
z−1)

I the right hand side is composed of terms of ãibj and ap b̃q
I comparing coefficients of z−k gives



α0
α1
...
...
...

αm+n




= S




b̃0
b̃1
...
b̃m
ã1
...
ãn




, S : a square matrix composed of {ai ,bj}

I turns out S is non-singular if and only if B
(
z−1) and A

(
z−1)

are coprime (recall the theorem discussed in repetitive control)
Lecture 18: Parameter Convergence in PAAs ME233 18-4

Parameter convergence condition
Qs 2: if αi 6= 0, can

[
α0 +α1z−1 + · · ·+αm+nz−m−n]u (k) = 0?

Simple example with n+m = 2, u (k) = cos (ωk) = Re
{
ejωk}:

[
α0 +α1z−1 +α2z−2]u (k)→ 0

⇐
[
α0 +α1z−1 +α2z−2]ejωk → 0

which can be achieved either by α0 = α1 = α2 = 0 (the desired case)
or by
(
1− e−jωz−1)(1− ejωz−1)ejωk

=
[
1−2cos (ω)z−1 + z−2]ejωk → 0

Lecture 18: Parameter Convergence in PAAs ME233 18-5

Parameter convergence condition
Qs 2: if αi 6= 0, can

[
α0 +α1z−1 + · · ·+αm+nz−m−n]u (k) = 0?

If, however,

u (k) = c1 cos (ω1k)+ c2 cos (ω2k) = Re
{
c1ejω1k + c2ejω2k

}

then [
α0 +α1z−1 +α2z−2]u (k)→ 0

can only be achieved by α0 = α1 = α2 = 0 (the desired case).
Observations:

I complex roots of α0 +α1z−1 +α2z−2 always come as pairs
I impossible for α0 +α1z−1 +α2z−2 to have four roots at e±jω1

and e±jω2

I if the total number of parameters n+m = 3, u (k) should
contain at least 2

(
= n+m+1

2
)
frequency components

Lecture 18: Parameter Convergence in PAAs ME233 18-6

Parameter convergence condition
general case:

α0 +α1z−1 + · · ·+αm+nz−m−n = 0

I number of the pairs of roots = (m+n)/2, if m+n is even
I number of the pairs of roots = (m+n−1)/2 if m+n is odd

Theorem (Persistant of excitation for PAA convergence)
For PAAs with a series-parallel predictor, the convergence

lim
k→∞

θ̂i (k) = θi (k)

is assured if
1, the plant transfer function is irreducible
2, the input signal contains at least 1+(m+n)/2 (for n+m even) or
(m+n+1)/2 (for m+n odd) independent frequency components.

Lecture 18: Parameter Convergence in PAAs ME233 18-7

Outline

1. Big picture

2. Parameter convergence conditions

3. Effect of noise on parameter identification

4. Convergence improvement in the presence of stochastic noises

5. Effect of deterministic disturbances

Lecture 18: Parameter Convergence in PAAs ME233 18-8

Effect of noise on parameter identification
Noise modeling:

+

w(k+1)

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

i.e. A
(
z−1)y (k+1) = B

(
z−1)u (k)+w (k+1)

y (k+1) = θT φ (k)+w (k+1)

or

+

n(k+1)

��u(k) // B(z−1)
A(z−1) +

//◦ y(k+1)//

i.e. y (k+1) = θ T φ (k)+A
(
z−1)n (k+1)

which is equivalent to w (k+1) = A
(
z−1)n (k+1) in the first case

Lecture 18: Parameter Convergence in PAAs ME233 18-9

Effect of noise on parameter identification
plant output: y (k+1) = θ T φ (k)+w (k+1)
predictor output: ŷ (k+1) = θ̂T (k+1)φ (k)

a posteriori prediction error:

ε (k+1) = y (k+1)− ŷ (k+1) =

ε(k+1): error without noise︷ ︸︸ ︷
−θ̃ T (k+1)φ (k) +w (k+1)

PAA: θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)
= θ̂ (k)+F (k)φ (k)ε (k+1)+F (k)φ (k)w (k+1)

I F (k)φ (k)w (k+1) is integrated by PAA
I need: E [φ (k)w (k+1)] = 0

and a vanishing adaptation gain F (k):
F−1 (k+1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k), λ1 (k) k→∞−→ 1 and
0< λ2 (k)< 2

Lecture 18: Parameter Convergence in PAAs ME233 18-10

Effect of noise on parameter identification
plant output: y (k+1) = θ T φ (k)+w (k+1)
predictor output: ŷ (k+1) = θ̂T (k+1)φ (k)

a posteriori prediction error:

ε (k+1) = y (k+1)− ŷ (k+1) =

ε(k+1): error without noise︷ ︸︸ ︷
−θ̃ T (k+1)φ (k) +w (k+1)

PAA: θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)
= θ̂ (k)+F (k)φ (k)ε (k+1)+F (k)φ (k)w (k+1)

I F (k)φ (k)w (k+1) is integrated by PAA
I need: E [φ (k)w (k+1)] = 0

and a vanishing adaptation gain F (k):
F−1 (k+1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k), λ1 (k) k→∞−→ 1 and
0< λ2 (k)< 2

Lecture 18: Parameter Convergence in PAAs ME233 18-10

Effect of noise on parameter identification
plant output: y (k+1) = θ T φ (k)+w (k+1)
predictor output: ŷ (k+1) = θ̂T (k+1)φ (k)

a posteriori prediction error:

ε (k+1) = y (k+1)− ŷ (k+1) =

ε(k+1): error without noise︷ ︸︸ ︷
−θ̃ T (k+1)φ (k) +w (k+1)

PAA: θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)
= θ̂ (k)+F (k)φ (k)ε (k+1)+F (k)φ (k)w (k+1)

I F (k)φ (k)w (k+1) is integrated by PAA
I need: E [φ (k)w (k+1)] = 0

and a vanishing adaptation gain F (k):
F−1 (k+1) = λ1 (k)F−1 (k)+λ2 (k)φ (k)φT (k), λ1 (k) k→∞−→ 1 and
0< λ2 (k)< 2

Lecture 18: Parameter Convergence in PAAs ME233 18-10

Series-parallel PAA convergence condition

+

w(k+1)

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)+F (k)φ (k)w (k+1)
In series-parallel PAA:

φ (k) = [−y (k) ,−y (k−1) , . . . ,−y (k−n+1) ,
u (k) ,u (k−1) , . . . ,u (k−m)]T

E [φ (k)w (k+1)] = 0 is achieved if
I w (k+1) is white, and
I u (k) and w (k+1) are independent

Lecture 18: Parameter Convergence in PAAs ME233 18-11

Series-parallel PAA convergence condition

+

w(k+1)

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

Issues: w (k+1) is rarely white, e.g.,

+

n(k+1)

��u(k) // B(z−1)
A(z−1) +

//◦ y(k+1)//

where the output measurement noise n (k+1) is usually white but

y (k+1) = θ T φ (k)+
w(k+1)︷ ︸︸ ︷

A
(
z−1)n (k+1)

so w (k+1) is not white.
Lecture 18: Parameter Convergence in PAAs ME233 18-12

Parallel PAA convergence condition
In parallel PAA:

φ (k) = [−ŷ (k) ,−ŷ (k−1) , . . . ,−ŷ (k−n+1) ,
u (k) ,u (k−1) , . . . ,u (k−m)]T

E [φ (k)w (k+1)] = 0 does not require w (k+1) to be white as
ŷ (k) does not depend on w (k+1) by design

// B̂(z
−1,k+1)

Â(z−1,k+1)
−

ŷ(k+1)

��u(k) ◦ //

// B(z−1)
A(z−1)

+

y(k+1)

OO

w(k+1)

OO

Lecture 18: Parameter Convergence in PAAs ME233 18-13

Summary
Theorem (Series-parallel PAA convergence condition)
When the predictor is of series-parallel type, the PAA with a
vanishing adaptation gain has unbiased convergence when
i. u (k) is rich in frequency (persistent excitation) and is independent
from the noise w (k+1)
ii. w (k+1) is white

Theorem (Parallel PAA convergence condition)
When the predictor is of parallel type, the PAA with vanishing
adaptation gain has unbiased convergence when
i. u (k) satisfies the persistent excitation condition
ii. u (k) is independent from w (k+1)

Note: parallel predictors have more strict stability requirements
Lecture 18: Parameter Convergence in PAAs ME233 18-14

Outline

1. Big picture

2. Parameter convergence conditions

3. Effect of noise on parameter identification

4. Convergence improvement in the presence of stochastic noises

5. Effect of deterministic disturbances

Lecture 18: Parameter Convergence in PAAs ME233 18-15

Convergence improvement when there is noise
extended least squares
If the effect of noise can be expressed as

n(k+1)
��

C(z−1)
A(z−1)

+��u(k) // B(z−1)
A(z−1)

+//◦ y(k+1)//

i.e.w (k+1) = C(z−1)n(k+1) =
[
1+ c1z−1 + . . .cnC z−nC

]
n(k+1)

where n (k+1) is white, then
y (k+1) = θT φ (k)+C

(
z−1)n (k+1) = θT

e φe (k)+n (k+1)

θ T
e =

[
θT ,c1, . . . ,cnC

]

φT
e (k) =

[
φT (k) ,n (k) , . . . ,n (k−nC +1)

]

Lecture 18: Parameter Convergence in PAAs ME233 18-16

Convergence improvement when there is noise
extended least squares
a posteriori prediction

ŷ (k+1) = θ̂T
e (k+1)φe (k)

φT
e (k) =

[
φT (k) ,n (k) , . . . ,n (k−nC +1)

]

but n (k) , . . . ,n (k−nC +1) are not measurable. However, if θ̂e is
close to θe , then

ε (k+1) = y (k+1)− ŷ (k+1)≈ n (k+1)

extended least squares uses

ŷ (k+1) = θ̂T
e (k+1)φ∗e (k)

φ∗e (k) =
[
φT (k) ,ε (k) , . . . ,ε (k−nC +1)

]T

where ε (k) = y (k)− ŷ (k)
Lecture 18: Parameter Convergence in PAAs ME233 18-17

Convergence improvement when there is noise
output error method with adjustable compensator

// B̂(z
−1,k+1)

Â(z−1,k+1)
− ��u(k) ◦ ε(k+1)//

// B(z−1)
A(z−1)

+
OO

If A
(
z−1)= 1+a1z−1 + · · ·+anz−n, let Ĉ

(
z−1)= 1+ ĉ1z−1 + · · ·+ ĉnz−n and

ν (k+1) = Ĉ
(
z−1,k+1

)
ε (k+1)

νo (k+1) = εo (k+1)+
n
∑
i=1

ĉi (k)ε (k+1− i)

construct PAA with θT
e =

[
θ T ,a1, . . . ,an

]
and ν (k+1) as the

adaptation error.
Lecture 18: Parameter Convergence in PAAs ME233 18-18

Convergence improvement when there is noise
output error method with adjustable compensator

θ̂e (k+1) = θ̂e (k)+
Fe (k)φe (k)

1+φTe (k)Fe (k)φe (k)
νo (k+1)

θ̂ T
e (k) =

[
θ̂T (k) , ĉ1 (k) , . . . , ĉn (k)

]

φT
e (k) =

[
φT (k) ,−ε (k) , . . . ,−ε (k+1−n)

]

F−1
e (k+1) = λ1 (k)F−1

e (k)+λ2 (k)φe (k)φT
e (k)

Stability condition:

1− λ
2 is SPR; λ =max

k
λ2 (k)< 2

Convergence condition: depend on properties of the disturbance and
A
(
z−1); see details in ME233 reader

Lecture 18: Parameter Convergence in PAAs ME233 18-19

Different recursive identification algorithms

I there are more PAAs for improved convergence

I each algorithm suits for a certain model of plant + disturbance

Lecture 18: Parameter Convergence in PAAs ME233 18-20

Outline

1. Big picture

2. Parameter convergence conditions

3. Effect of noise on parameter identification

4. Convergence improvement in the presence of stochastic noises

5. Effect of deterministic disturbances

Lecture 18: Parameter Convergence in PAAs ME233 18-21

Effect of deterministic disturbances
Intuition: if the disturbance structure is known, it can be included in
PAA for improved performance.
Example (constant disturbance):

+

d

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

y (k+1) =−
n
∑
i=1

aiy (k+1− i)+
m
∑
i=0

biu (k− i)+d = θT φ (k)+d

Approach 1: enlarge the model as

y (k+1) =
[
θT ,d

][φ (k)
1

]
= θT

e φe (k)

and construct PAA on θe .
Lecture 18: Parameter Convergence in PAAs ME233 18-22

Effect of deterministic disturbances

+

d

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

y (k+1) =−
n
∑
i=1

aiy (k+1− i)+
m
∑
i=0

biu (k− i)+d = θT φ (k)+d

Approach 2: notice that
(
1− z−1)d = 0, we can do

y(k+1) // 1− z−1 // yf (k+1) ; u(k+1) // 1− z−1 // uf (k+1) ;

and have a new “disturbance-free” model for PAA:

yf (k+1) =−
n
∑
i=1

aiyf (k+1− i)+
m
∑
i=0

biuf (k− i)

Lecture 18: Parameter Convergence in PAAs ME233 18-23

Effect of deterministic disturbances

+

d

��u(k) // B(z−1)
+
//◦ // 1

A(z−1)
y(k+1)//

Similar considerations can be applied to the cases when d is
sinusoidal, repetitive, etc

Lecture 18: Parameter Convergence in PAAs ME233 18-24

ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 19: Adaptive Control based on Pole
Assignment

Big picture

reasons for adaptive control:
I unknown or time-varying plants
I unknown or time-varying disturbance (with known structure but

unknown coefficients)
two main steps:

I decide the controller structure
I design PAA to adjust the controller parameters

two ways of adaptation process:
I indirect adaptive control: adapt the plant parameters and use

them in the updated controller
I direct adaptive control: directly adapt the controller parameters

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-1

RST control structure
Plant:

G
(
z−1)= z−dB

(
z−1)

A(z−1)

B
(
z−1)= b0 +b1z−1 + · · ·+bmz−m, b0 6= 0

A
(
z−1)= 1+a1z−1 + · · ·+anz−n

Consider RST type controller:

r∗(k) // T
(
z−1) r(k)+//◦ // 1

S(z−1)
u(k) // z−d B(z−1)

A(z−1)

y(k)
−OO

R
(
z−1) oo

Closed-loop transfer function:

Y
(
z−1)

R (z−1)
=

z−dB
(
z−1)

A(z−1)S (z−1)+ z−dB (z−1)R (z−1)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-2

Pole placement

Closed-loop pole assignment via:

z−dB(z−1)R(z−1)+S(z−1)A(z−1) = D(z−1)

I this is a polynominal (Diophantine) equation
I design D

(
z−1), find S

(
z−1) and R

(
z−1) by coefficient

matching

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-3

Pole placement for plants with stable zeros
If zeros of plant are all stable, they can be cancelled. We can do

S
(
z−1)= S ′(z−1)B(z−1)

D(z−1) = D ′(z−1)B(z−1)

yielding
z−dR(z−1)+S ′(z−1)A(z−1) = D ′(z−1) (1)

where the polynomials should match order:

S ′
(
z−1)= 1+ s ′1z−1 + · · ·+ s ′d−1z−(d−1)

R
(
z−1)= r0 + r1z−1 + · · ·+ rn−1z−(n−1)

The transfer function from r(k) to y(k) is thus

Gr→y (z−1) =
z−dB(z−1)

S(z−1)A(z−1)+ z−dB(z−1)R(z−1)
=

z−d

D ′(z−1)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-4

Pole placement for plants with stable zeros
Hence we can let

T (z−1) = D ′(z−1), r∗(k) = yd(k +d)

yd (k+d) // D ′(z−1)
r(k) // z−d

D′(z−1)
// y(k)

which means

D ′
(
z−1) [y (k +d)− yd (k +d)] = 0

I this is the desired control goal, you can compare it with the goal
in system identification: y (k +1)− ŷ (k +1) = 0

I next we express D ′
(
z−1)y (k +d) and D ′

(
z−1)yd (k +d) in

forms similar to “θT φ (k)”

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-5

Pole placement for plants with stable zeros
the D ′

(
z−1)y (k +d) term

For a tuned pole placement with known plant model:
I z−dR(z−1)+S ′(z−1)A(z−1) = D ′(z−1) yields

A(z−1)S ′(z−1)y (k +d)=D ′(z−1)y (k +d)−z−dR(z−1)y (k +d)

I and the plant model

u(k) // z−d B(z−1)
A(z−1)

y(k)

gives
A(z−1)y (k +d) = B(z−1)u(k)

Combining the two gives

D ′(z−1)y (k +d) = B(z−1)S ′(z−1)u (k)+R(z−1)y (k) (2)
Lecture 19: Adaptive Control based on Pole Assignment ME233 19-6

Pole placement for plants with stable zeros
the D ′

(
z−1)y (k +d) term

We will now simplify (2). Note first:

S
(
z−1)= B

(
z−1)S ′

(
z−1)= s0 + s1z−1 + · · ·+ sd+m−1z−(d+m−1)

hence

D ′(z−1)y (k +d) =

S(z−1)︷ ︸︸ ︷
B(z−1)S ′(z−1)u (k)+R(z−1)y (k)

= θT
c φ (k)

where

θ T
c = [s0,s1, . . . ,sd+m−1, r0, . . . , rn−1]

φ (k) = [u (k) ,u (k−1) , . . . ,u (k−d −m+1) ,y (k) , . . . ,y (k−n+1)]T

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-7

Pole placement for plants with stable zeros
the D ′

(
z−1)yd (k +d) term

For the actual adaptive S
(
z−1) and R

(
z−1), the control law is

yd (k+d) // D ′(z−1)
r(k)+//◦ // 1

Ŝ(z−1)
u(k) //

−OO

R̂
(
z−1) y(k)oo

i.e. u (k) = 1
Ŝ(z−1)

[
D ′(z−1)yd (k +d)− R̂(z−1)y (k)

]

yielding

D ′(z−1)yd (k +d) = Ŝ(z−1)u (k)+ R̂(z−1)y (k) = θ̂ T
c φ (k) (3)

This is a direct adaptive control: no explicit B(z−1) and A(z−1) in θ̂c
Lecture 19: Adaptive Control based on Pole Assignment ME233 19-8

Pole placement for plants with stable zeros
Hence we can define

ε (k +d) = D ′(z−1)y(k +d)− θ̂T
c (k +d)φ (k)

or equivalently

a posteriori: ε (k) = D ′(z−1)y(k)− θ̂T
c (k)φ (k−d)

a priori: εo (k) = D ′(z−1)y(k)− θ̂T
c (k−1)φ (k−d)

and apply parameter adaptation for θc , e.g., using series-parallel
predictors

θ̂c (k) = θ̂c (k−1)+ F (k−1)φ (k−d)
1+φ (k−d)T F (k−1)φ (k−d)

εo(k)

F−1 (k) = λ1 (k)F−1 (k−1)+λ2 (k)φ (k−d)φT (k−d)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-9

Comparison with system identification
Comparison:
standard system identification:

y (k +1) = θ T φ (k)
θ̂ (k +1) = θ̂ (k)+F (k)φ (k)ε (k +1)

ε (k +1) = εo (k +1)
1+φT (k)F (k)φ (k)

adaptive pole placement:

D ′
(
z−1)y (k) = θT

c φ (k−d)
θ̂c (k) = θ̂c (k−1)+F (k−1)φ (k−d)ε(k)

ε (k) = εo (k)
1+φT (k−d)F (k−1)φ (k−d)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-10

Pole placement for plants with stable zeros
PAA Stability

First obtain the a posteriori dynamics of the parameter error:

θ̂c (k) = θ̂c (k−1)+F (k−1)φ (k−d)ε (k)
⇒θ̃c (k) = θ̃c (k−1)+F (k−1)φ (k−d)ε (k)

In the mean time

ε (k) = D ′(z−1)y(k)− θ̂T
c (k)φ (k−d)

⇓ recall D ′
(
z−1)y (k +d) = θT

c φ (k)
= θ T

c φ (k−d)− θ̂T
c (k)φ (k−d)

=−θ̃c (k)T φ (k−d)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-11

Pole placement for plants with stable zeros
PAA Stability

ε (k) =−θ̃c (k)T φ (k−d)
θ̃c (k) = θ̃c (k−1)+F (k−1)φ (k−d)ε (k)

0 +//◦ // 1 // ε (k)
−

θ̃T
c (k)φ(k−d)

OO

Nonlinear Block oo
The PAA thus is in a standard series-parallel structure with the LTI
block being 1. Hyperstability easily follows, which gives

lim
k→∞

ε (k) = D ′(z−1)y(k)− θ̂T
c (k−1)φ (k−d)

1+φT (k−d)F (k−1)φ (k−d) → 0

Similar as before, to prove εo(k) = D ′
(
z−1)(y (k)− yd (k))→ 0, we

need to show that φ (k−d) is bounded, which can be shown to be
true (see ME233 reader).

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-12

Pole placement for plants with stable zeros
Design procedure:
Step 1: choose desired D ′(z−1) (degD ′(z−1)≤ n+d −1). The
overall closed-loop characteristic polynomial is D ′(z−1)B(z−1).
Step 2: determine orders in the Diophantine equation S ′(z−1)
(degS ′(z−1) = d −1) and R(z−1) (degR(z−1) = n−1).
Step 3: at each time index, do the following:

I apply an appropriate PAA to estimate the coefficients of
S(z−1) = S ′(z−1)B(z−1) and R(z−1), based on the
reparameterized plant model

D ′(z−1)y (k) = θT
c φ (k−d)

I use the estimated parameter vector, θ̂c (k), to compute the
control signal u(k) according to

u (k) = 1
Ŝ(z−1)

[
D ′(z−1)yd (k +d)− R̂(z−1)y (k)

]

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-13

Example
Consider a plant (discrete-time model of 1/(ms +b) with an extra
delay) Gp

(
z−1)= z−2b0

1+a1z−1

We have B
(
z−1)= b0 (m = 0 here); A

(
z−1)= 1+a1z−1 (n = 1

here); d = 2. The pole placement equation is

(1+a1z−1)(1+ s ′1z−1)+ z−2r0 = 1+d ′1z−1 +d ′2z−2

⇒ s ′1 = d ′1−a1,r0 = d ′2−a1(d
′
1−a1)

and S(z−1) = S ′(z−1)B(z−1) = s0 + s1z−1; R(z−1) = ro

u (k) = 1
Ŝ(z−1)

[
D ′(z−1)yd (k +d)− R̂(z−1)y (k)

]

=
1

ŝ0 (k)
[
D ′(z−1)yd (k +2)− r̂0(k)y (k)− ŝ1 (k)u (k−1)

]

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-14

Remark

// z−d +//◦ error //

D
(
z−1)
−OO

yd (k+d) // D ′
(
z−1)

r(k)
+//◦ // 1

Ŝ(z−1)
u(k) // z−d B(z−1)

A(z−1)

y(k)

OO

−OO

R̂
(
z−1) oo

Parameter convergence is achieved if the excitation yd is rich in
frequency (which may not be assured in practice). Yet the
performance goal of making D ′

(
z−1) [y (k)− yd (k)] small can still

be achieved even if yd is not rich in frequency.

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-15

Add now disturbance cancellation
If the disturbance structure is known, we can estimate its parameters
for disturbance cancellation. Consider, e.g.,

y (k) =
z−dB

(
z−1)

A(z−1)
[u (k)+d (k)]

where B
(
z−1) is cancallable and the disturbance satisfies

W
(
z−1)d (k) =

(
1− z−1)d (k) = 0

d

��yd (k+d) // D ′
(
z−1) r(k)+//◦ // 1

S(z−1)
u(k) //◦ // z−d B(z−1)

A(z−1)

y(k)
−OO

R
(
z−1) oo

the deterministic control law should be:

u (k) = 1
S (z−1)

[
−R

(
z−1)y (k)+D ′(z−1)yd (k +d)

]
−d

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-16

Disturbance cancellation

u (k) = 1
S (z−1)

[
−R

(
z−1)y (k)+D ′(z−1)yd (k +d)

]
−d

can be equivalently represented as

D ′
(
z−1)yd (k +d) = θ T

c φ (k)+d∗, d∗ = S
(
z−1)d

= θ T
ceφe (k) , θce =

[
θT

c ,d∗
]T

, φe (k) =
[
φT (k) ,1

]T

In the adaptive case:

D ′
(
z−1)yd (k +d) = θ̂T

ce (k +d)φe (k)

where θ̂ce (k) is updated via a PAA, e.g.

θ̂ce (k) = θ̂ce (k−1)+
F (k−1)φe (k−d)

[
D ′(z−1)y (k)− θ̂ T

ce (k−1)φe (k−d)
]

1+φTe (k−d)F (k−1)φe (k−d)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-17

Outline

1. Big picture

2. Adaptive pole placement
Cancellable B

(
z−1)

Remark

3. Extension: adaptive pole placement with disturbance cancellation

4. Pole placement with no cancellation of B
(
z−1)

5. Indirect adaptive pole placement

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-18

Uncancellable B
(
z−1
)

r∗(k) // T
(
z−1) r(k)+//◦ // 1

S(z−1)
u(k) // z−d B(z−1)

A(z−1)

y(k)
−OO

R
(
z−1) oo

Y
(
z−1)

R (z−1)
=

z−dB
(
z−1)

A(z−1)S (z−1)+ z−dB (z−1)R (z−1)
=

z−dB
(
z−1)

D (z−1)

If B
(
z−1) contains unstable roots or if we don’t want to cancel it, we

can do
r∗(k)=yd (k+d) // T

(
z−1)= D(z−1)

B(1)
r(k) // z−d B(z−1)

D(z−1)
// y(k)

⇒ D
(
z−1)

[
y (k +d)− B

(
z−1)

B (1) yd (k +d)
]
= 0

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-19

Uncancellable B
(
z−1
)

or

r∗(k)=yd (k+d) // T
(
z−1)= D(z−1)B(z)

[B(1)]2
r(k) // z−d B(z−1)

D(z−1)
// y(k)

⇒ D
(
z−1)

[
y (k +d)− B

(
z−1)B (z)
[B (1)]2

yd (k +d)
]
= 0

which gives zero phase error tracking.
Remark: can also partially cancel the stable parts of B

(
z−1)

Note: now we explicitly need B (1) and/or B (z) in T
(
z−1) ⇒ need

adaptation to find the plant parameters ⇒ indirect adaptive control

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-20

Indirect adaptive pole placement: big picture
Consider the plant z−dB

(
z−1)/A

(
z−1).

r∗(k) // T̂
(
k,z−1) r(k)+//◦ // 1

Ŝ(k,z−1)
u(k) // z−d B(z−1)

A(z−1)

y(k)
−OO

R̂
(
k,z−1) oo

Pole placement with known plant parameters:

A
(
z−1)S

(
z−1)+ z−dB

(
z−1)R

(
z−1)= D

(
z−1)

Assumptions:
I we know n, m, and d ;
I the plant is irreducible.

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-21

Indirect adaptive pole placement: big picture

r∗(k) // T̂
(
k,z−1) r(k)+//◦ // 1

Ŝ(k,z−1)
u(k) // z−d B(z−1)

A(z−1)

y(k)
−OO

R̂
(
k,z−1) oo

I At time k , identify B̂
(
k,z−1) and Â

(
k,z−1) (using a suitable

PAA); design T̂
(
k,z−1) based on methods previously discussed.

I Solve Diophantine equation

Â
(
k,z−1) Ŝ

(
k,z−1)+ z−1B̂

(
k,z−1) R̂

(
k,z−1)= D

(
z−1)

for Ŝ
(
k,z−1) and R̂

(
k,z−1).

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-22

Indirect adaptive pole placement: details
I Controller order:

Â
(
k,z−1)

︸ ︷︷ ︸
order: n

Ŝ
(
k,z−1)

︸ ︷︷ ︸
order: d+m−1

+z−d B̂
(
k,z−1)

︸ ︷︷ ︸
order: d+m

R̂
(
k,z−1)

︸ ︷︷ ︸
order: n−1

= D
(
z−1)

︸ ︷︷ ︸
order≤n+m+d−1

I Controller parameters:
Ŝ
(
k,z−1)= ŝ0 (k)+ ŝ1 (k)z−1 + · · ·+ ŝr−1 (k)z−d−m+1

R̂
(
k,z−1)= r̂0 (k)+ r̂1 (k)z−1 + · · ·+ r̂r−1 (k)z−n+1

I Solvability of the Diophantine equation: Â
(
k,z−1) and

B̂
(
k,z−1) need to be coprime. If not, use the previous

estimation.
I Control law:

u (k) = 1
Ŝ (k,z−1)

[
T̂
(
k,z−1) r∗ (k)− R̂

(
k,z−1)y (k)

]

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-23

Indirect adaptive pole placement: extension

Consider the plant z−1B
(
z−1)/A

(
z−1) with the general feedback

design

y∗(k) //◦ // R̂(k,z
−1)

Ŝ(k,z−1)
// z−1B(z−1)

A(z−1)

y(k)
−OO

Similar as before, but assume we know only the order of the
plant: r =max (n,m+1).
Pole placement with known plant parameters:

A
(
z−1)S

(
z−1)+ z−1B

(
z−1)R

(
z−1)= D

(
z−1)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-24

Indirect adaptive pole placement: extension

y∗(k) //◦ // R̂(k,z
−1)

Ŝ(k,z−1)
// z−1B(z−1)

A(z−1)

y(k)
−OO

I Can write B
(
z−1)= b0 +b1z−1 + · · ·+br−1z−r+1 and

A
(
z−1)= 1+a1z−1 + · · ·+ar z−r

I At time k , identify B̂
(
k,z−1) and Â

(
k,z−1)

I Solve Diophantine equation

Â
(
k,z−1) Ŝ

(
k,z−1)+ z−1B̂

(
k,z−1) R̂

(
k,z−1)= D

(
z−1)

for Ŝ
(
k,z−1) and R̂

(
k,z−1)

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-25

Indirect adaptive pole placement: extension
I Controller order:

Â
(
k,z−1)

︸ ︷︷ ︸
order: r

Ŝ
(
k,z−1)

︸ ︷︷ ︸
order: r−1

+z−1B̂
(
k,z−1)

︸ ︷︷ ︸
order: r

R̂
(
k,z−1)

︸ ︷︷ ︸
order: r−1

= D
(
z−1)

︸ ︷︷ ︸
order≤2r−1

I Controller parameters:
Ŝ
(
k,z−1)= ŝ0 (k)+ ŝ1 (k)z−1 + · · ·+ ŝr−1 (k)z−r+1

R̂
(
k,z−1)= r̂0 (k)+ r̂1 (k)z−1 + · · ·+ r̂r−1 (k)z−r+1

I Control law:

u (k) =
R̂
(
k,z−1)

Ŝ (k,z−1)
[y∗ (k)− y (k)]

=
1

ŝ0 (k)
{−ŝ1 (k)u (k−1)−·· ·− ŝr−1u (k− r +1)

+r̂0 (k) [y∗ (k)− y (k)]+ · · ·+ r̂r−1 (k) [y∗ (k− r +1)− y (k− r +1)]}
Lecture 19: Adaptive Control based on Pole Assignment ME233 19-26

Summary

1. Big picture

2. Adaptive pole placement
Cancellable B

(
z−1)

Remark

3. Extension: adaptive pole placement with disturbance cancellation

4. Pole placement with no cancellation of B
(
z−1)

5. Indirect adaptive pole placement

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-27

References

Goodwin and Sin, “Adaptive Filtering, Prediction and Control,”
Prentice Hall.

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-28

Exercises

I We mentioned that direct adaptive control requires no
identification of the plant. In direct adaptive pole placement, the
closed loop characteristic polynomial is

D
(
z−1)= D ′

(
z−1)B

(
z−1)

which depends on B
(
z−1). So the closed-loop design directly

depends on the plant zeros. Why is it still direct adaptive
control?

Lecture 19: Adaptive Control based on Pole Assignment ME233 19-29

	A1 Syllabus, Spring 2014
	0 Introduction
	1 Dynamic Programming
	3 Probability Theory
	4 Least squares (LS) estimation
	5 Stochastic state estimation (Kalman Filter)
	6 Linear Quadratic Gaussian (LQG) Control
	7 Principles of Feedback Design
	8 Discretization and Implementation of Continuous-time Design
	9 LQG/Loop Transfer Recovery (LTR)
	10 LQ with Frequency Shaped Cost Function (FSLQ)
	11 Feedforward Control: Zero Phase Error Tracking
	12 Preview Control
	13 Internal Model Principle and Repetitive Control
	14 Disturbance Observer
	15 System Identification and Recursive
	16 Stability of Parameter Adaptation Algorithms
	17 PAA with Parallel Predictors
	18 Parameter Convergence in PAAs
	19 Adaptive Control based on Pole Assignment

