Lecture 8: Discretization and Implementation of Continuous-time Design

Big picture
Discrete-time frequency response
Discretization of continuous-time design
Aliasing and anti-aliasing

why are we learning this:

▶ nowadays controllers are implemented in discrete-time domain
▶ implementation media: digital signal processor, field-programmable gate array (FPGA), etc
▶ either: controller is designed in continuous-time domain and implemented digitally
▶ or: controller is designed directly in discrete-time domain
Frequency response of LTI SISO digital systems

\[a \sin(\omega T_s k) \xrightarrow{G(z)} b \sin(\omega T_s k + \phi) \] at steady state

- sampling time: \(T_s \)
- \(\phi (e^{j\omega T_s}) \): phase difference between the output and the input
- \(M(e^{j\omega T_s}) = b/a \): magnitude difference

Continuous-time frequency response:

\[G(j\omega) = G(s)|_{s=j\omega} = |G(j\omega)| e^{j\angle G(j\omega)} \]

Discrete-time frequency response:

\[
G\left(e^{j\omega T_s}\right) = G(z)|_{z=e^{j\omega T_s}} = \left|G\left(e^{j\omega T_s}\right)\right| e^{j\angle G(e^{j\omega T_s})} \\
= M\left(e^{j\omega T_s}\right) e^{j\phi(e^{j\omega T_s})}
\]

Sampling

Sufficient samples must be collected (i.e., fast enough sampling frequency) to recover the frequency of a continuous-time sinusoidal signal (with frequency \(\omega \) in rad/sec)

\[\text{Figure: Sampling example (source: Wikipedia.org)} \]

- the sampling frequency \(= \frac{2\pi}{T_s} \)
- Shannon’s sampling theorem: the Nyquist frequency \(\left(\triangleq \frac{\pi}{T_s} \right) \) must satisfy

\[-\frac{\pi}{T_s} < \omega < \frac{\pi}{T_s} \]
Approximation of continuous-time controllers

bilinear transform

formula:

$$s = \frac{2}{T_s} \left(\frac{z - 1}{z + 1} \right) \quad z = \frac{1 + \frac{T_s}{2} s}{1 - \frac{T_s}{2} s}$$

intuition:

$$z = e^{sT_s} = \frac{e^{sT_s/2}}{e^{-sT_s/2}} \approx \frac{1 + \frac{T_s}{2} s}{1 - \frac{T_s}{2} s}$$

implementation: start with $G(s)$, obtain the discrete implementation

$$G_d(z) = G(s)\big|_{s=\frac{2}{T_s}} \approx \frac{z - 1}{z + 1}$$

Bilinear transformation maps the closed left half s-plane to the closed unit ball in z-plane
Stability reservation: $G(s)$ stable \iff $G_d(z)$ stable

Approximation of continuous-time controllers

history

Bilinear transform is also known as Tustin transform.
Arnold Tustin (16 July 1899 – 9 January 1994):

- British engineer, Professor at University of Birmingham and at Imperial College London
- served in the Royal Engineers in World War I
- worked a lot on electrical machines
Approximation of continuous-time controllers

Frequency mismatch in bilinear transform

\[
\frac{2}{T_s} \frac{z - 1}{z + 1} \bigg|_{z = e^{j\omega T_s}} = \frac{2}{T_s} e^{i\omega T_s/2} \left(e^{i\omega T_s/2} - e^{-j\omega T_s/2} \right) = j \frac{2}{T_s} \tan \left(\frac{\omega T_s}{2} \right)
\]

\(G(s) \big|_{s = j\omega} \) is the true frequency response at \(\omega \); yet bilinear implementation gives,

\[
G_d \left(e^{i\omega T_s} \right) = G(s) \big|_{s = j\omega_v} \neq G(s) \big|_{s = j\omega}
\]

Lecture 8: Discretization and Implementation of Continuous-time Design

Approximation of continuous-time controllers

Bilinear transform with prewarping

Goal: extend bilinear transformation such that

\[
G_d(z) \big|_{z = e^{j\omega T_s}} = G(s) \big|_{s = j\omega}
\]

At a particular frequency \(\omega_p \)

Solution:

\[
s = \frac{p}{z-1}, \quad z = \frac{1 + \frac{1}{p} s}{1 - \frac{1}{p} s}, \quad p = \frac{\omega_p}{\tan \left(\frac{\omega_p T_s}{2} \right)}
\]

Which gives

\[
G_d(z) = G(s) \big|_{s = \frac{\omega_p}{\tan \left(\frac{\omega_p T_s}{2} \right)} \frac{z-1}{z+1}}
\]

And

\[
\frac{\omega_p}{\tan \left(\frac{\omega_p T_s}{2} \right)} \frac{z - 1}{z + 1} \bigg|_{z = e^{j\omega_p T_s}} = j \frac{\omega_p}{\tan \left(\frac{\omega_p T_s}{2} \right)} \tan \left(\frac{\omega_p T_s}{2} \right)
\]
Approximation of continuous-time controllers
bilinear transform with prewarping

choosing a prewarping frequency ω_p:
- must be below the Nyquist frequency:

$$0 < \omega_p < \frac{\pi}{T_s}$$

- standard bilinear transform corresponds to the case where $\omega_p = 0$
- the best choice of ω_p depends on the important features in control design

example choices of ω_p:
- at the cross-over frequency (which helps preserve phase margin)
- at the frequency of a critical notch for compensating system resonances

Sampling and aliasing
sampling maps the continuous-time frequency

$$-\frac{\pi}{T_s} < \omega < \frac{\pi}{T_s}$$
on to the unit circle

![Diagram showing the mapping from the s-plane to the z-plane through sampling]

Lecture 8: Discretization and Implementation of Continuous-time Design
Sampling and aliasing

Sampling also maps the continuous-time frequencies \(\frac{\pi}{T_s} < \omega < \frac{3\pi}{T_s} \), \(3\frac{\pi}{T_s} < \omega < 5\frac{\pi}{T_s} \), etc, onto the unit circle.

Example (Sampling and Aliasing)

\(T_s = 1/60 \) sec (Nyquist frequency 30 Hz).

A continuous-time 10-Hz signal \([10 \text{ Hz} \leftrightarrow 2\pi \times 10 \text{ rad/sec } \in (-\pi/T_s, \pi/T_s)]\)

\[y_1(t) = \sin(2\pi \times 10t) \]

Is sampled to

\[y_1(k) = \sin \left(2\pi \times \frac{10}{60}k \right) = \sin \left(2\pi \times \frac{1}{6}k \right) \]

A 70-Hz signal \([2\pi \times 70 \text{ rad/sec } \in (\pi/T_s, 3\pi/T_s)]\)

\[y_2(t) = \sin(2\pi \times 70t) \]

Is sampled to

\[y_2(k) = \sin \left(2\pi \times \frac{70}{60}k \right) = \sin \left(2\pi \times \frac{1}{6}k \right) \equiv y_1(k)! \]
Anti-aliasing

need to avoid the negative influence of aliasing beyond the Nyquist frequencies

- sample faster: make π / T_s large; the sampling frequency should be high enough for good control design
- anti-aliasing: perform a low-pass filter to filter out the signals $|\omega| > \pi / T_s$

Summary

1. Big picture

2. Discrete-time frequency response

3. Approximation of continuous-time controllers

4. Sampling and aliasing
Sampling example

- continuous-time signal

\[y(t) = \begin{cases}
 e^{-at}, & t \geq 0 \\
 0, & t < 0
\end{cases}, \quad a > 0 \]

\[\mathcal{L}\{y(t)\} = \frac{1}{s + a} \]

- discrete-time sampled signal

\[y(k) = \begin{cases}
 e^{-aTsk}, & k \geq 0 \\
 0, & k < 0
\end{cases} \]

\[\mathcal{Z}\{y(k)\} = \frac{1}{1 - z^{-1}e^{-aTs}} \]

- sampling maps the continuous-time pole \(s_i = -a \) to the discrete-time pole \(z_i = e^{-aTs} \), via the mapping

\[z_i = e^{s_iT_s} \]