ME 233, UC Berkeley, Spring 2014 Xu Chen

Lecture 6: Linear Quadratic Gaussian (LQG)

Control

Big picture
LQ when there is Gaussian noise
LQG
Steady-state LQG

Big picture

in deterministic control design:
» state feedback: arbitrary pole placement for controllable systems

» observer provides (when system is observable) state estimation
when not all states are available

» separation principle for observer state feedback control
we have now learned:

» LQ: optimal state feedback which minimizes a quadratic cost
about the states

» KF: provides optimal state estimation
in stochastic control:

» the above two give the linear quadratic Gaussian (LQG)
controller
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Big picture

lant:
i x(k+1) = Ax (k) + Bu (k) + By w (k)

y (k) = Cx (k) +v (k)
assumptions:

» w (k) and v (k) are independent, zero mean, white Gaussian
random processes, with

Elw(k)w' (k)]= W, E[v(k)vT (k)] =V

» x(0) is a Gaussian random vector independent of w (k) and
v (k), with

Ex(0)] = X0, E[(x(0) — x0)(x(0) — x0) 7] = Xo
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LQ when there is noise

Assume all states are accessible in the plant
x(k+1) = Ax(k)+ Bu(k)+ Byw (k)

The original LQ cost
N—1
2J =T (N)Sx(W)+ X {xT (1) Qe )+ () Rus)}

is no longer valid due to the noise term w (k).
Instead, consider a stochastic performance index:

N—

E {XT(N)SX(’V)+ & [XT(j)QX(J)+uT(j)RU(J)]}

{x(0),w(0),..,w(N—1)}

with S>0, >0, R>0
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LQ with noise and exactly known states

solution via stochastic dynamic programming:
Define “cost to go":

N—-1
Je(x(k)) = E §x"(N)Sx(N)+ ;[XT(J)Qx(jHuTU)Ru(j)] ,

={w(k),...,w(N—-1)}

We look for the optima under control U,” = {u(k),...,u(N—1)}:
Jic (x (k) = min Ji (x (K))

k

» the ultimate optimal cost is
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LQ with noise and exactly known states

solution via stochastic dynamic programming:

iteration on optimal cost to go:

N-1
I8 (x(k)) = min E {XT(N)SX(’V)+XT(k)QX(k)+uT(k)RU(k)+ )y [XT(j)QX(j)+uT(j)RU(j)]}

us wy j=k+1
N-1
= min min E {XT(N)SX(N)+XT(k)QX(k)+uT(k)Ru(k)—|— Yy [xT(j)Qx(j)—i—uT(j)Ru(j)]} (1)
U v wE j=k+1

N—-1
xT(WSx(N)+ Y X7 ()Qx() +u” ())Ru(j)]

= m|n min{ x T (k)Qx(k)+uT (k)Ru(k) + E
u(k) j=k+1

k

} (2
} 3)
} (4)

(DR + E [ (x(k+1))}} ®)

N-1
xT(NSx(N)+ Y. [xT () @x() +u” ()Ru(j)]

j=k+1

= mln

x T (k)Qx(k)+uT (k)Ru(k) + min EE
Uiy YW

N—-1
xT(MSx(N)+ Y, [xT (7)Qx(j) +u” (j)Ru(j)]
j=k+1

+1W+

1
T T
= mm {x (K)Qx(k)+u' (k)Ru(k)+ I(E )Umln E

» (1) to (2): x(k) does not depend on w(k), w(k+1),...,
w(N—1)
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LQ with noise and exactly known states

solution via stochastic dynamic programming: induction

R () = min {XT(KYQx(0)+ T UORU()+ E [S212 (x(k+1)] |

at time N: JE(x(N)) =xT (N)Sx(N)

assume at time k + 1:

7

i1 (x(k+1)) =x" (k+1)P(k+1)x(k+1)+ b(k+1)

~

cost in a standard LQ due to noise

then at time k:

Jp (x(k)) = rurELr; (XT(k)QX(k) +u" (k)Ru(k)+ W(Ek) [XT (k4+1)P(k+1)x(k+1)+b(k+ 1)D

next: use system dynamics x (k+1) = Ax (k) + Bu (k) + Byw (k)...
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LQ with noise and exactly known states

after some algebra:

R Ox(0) = B min{xT (k) | Q+ATP (k-+1) A x(K)

+uT (k) [R+ BTP(k+1) B] u(k)+2xT (k) AT P (k+1) Bu(k) +2xT (k) ATP (k4 1) Byw (k)
+2uT (K)BTP(k+1)Byw (k)+w (k)" Bl P(k+1)B,w(k)+b(k+1)}

w (k) is white and zero mean =

2 {2XT(k)ATP(k—I— 1) Byw (k) +2uT (k) BTP(k+1) wa(k)} ~0

WI(Ek){w(k)TBMT,P(kJrl)wa(k)} equals

Tr{WI(Ek) [B;P(kﬂ)wa(k)w(k)T} } — Tr [B;P(kﬂ)BWW}

other terms: not random w.r.t. w(k); can be taken outside of E, ()
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LQ

with noise and exactly known states

therefore

I

_I_

(x (K)) = zrer;{xT(k) Q+ATP(k+1)A| x(k)
uT (k) [R+ BTP(k+1)B} u(k) +2xT (K)AT P (k +1) Bu(k)}

Ty [B;P(kH)BWW] b(k+1)

note: the term inside the minimization is a quadratic (actually
convex) function of u(k). Optimization is easily done.
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Recall: facts of quadratic functions

Lecture 6:

consider

1
f(u)ZEUT/\/Iu+pTu—I—q, M=mT (6)
optimality (maximum when M is negative definite; minimum

when M is positive definite) is achieved when

df o o -1
8u°:MU +p=0=>u"=-M""p (7)

and the optimal cost is

1
fo=f(u?)=—3p"M p+q (8)
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LQ with noise and exactly known states

Jf (< (k) = min {uT(k) [R+ BTP(k+1) B} u(k)+2xT (k) AT P (k +1) Bu (k)

+xT(K) [ Q+ATP(k+1)A| x(k) } +Tr [ BT P (k+1) B W| + b(k+1)

» optimal control law [by using (7)]:

uo (k) = — [R+ BTP(k+1)B}_1BTP(k+1)Ax(k)

» optimal cost [by using (8)]:
J,f(x(k)):{—XT(k)ATP(/H—l)B [R+ BTP(k+1)B]_1BTP(k+1)Ax(/<)

+xT (k) [Q+ATP(1<+1)A} x(k)}—f—Tr [BV{P(kH)BWW} +b(k+1)
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LQ with noise and exactly known states

Riccati equation:
the optimal cost

JE (x (k)= {—XT(k)ATP(k—H)B [R+BTP(/<+1)B} 1BTP(/<+1)AX(I<)
+xT (k) {Q+ATP(/<+1)A} X(k)}—l—Tr [BVCP(k+1)BWW} +b(k+1)

can be written as

Jg (x (k) = x" (k) P (k)x (k) + b (k)

with the Riccati equation

P(ky=ATP(k+1)A—ATP(k+1)B [R+BTP(I<+1)B}_1BTP(k+1)A+Q

and b(k)=Tr [B;P(k+1)BWW]+b(k+1)

boundary conditions: P(N) =S5 and b(N) =0
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LQ with noise and exactly known states

observations:
» optimal control law and Riccati equation are the same as those
in the regular LQ problem
» addition cost is due to B, w (k):

b(k)=Tr [BVCP(H 1)BWW] +b(k+1), b(N)=0

» the final optimal cost is

PxO)= E [xT(0)P(0)x(0)+(0)]
- E (%0 +x(0) = x0) " P(0) (xo+x(0) — ) + b (0)]
= x4 P(0)xo+Tr(P(0) X,)+ b(0) (9)
where N-1
b(0)= Y Tr [BMT,P(jJr 1)BWW]
Jj=0
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LQG: LQ with noise and inexactly known states

notice that

» not all states may be available and there is usually output noise:

x(k+1)=Ax(k)+ Bu(k)+ Byw (k)
y (k) = Cx(k)+ v (k)

» when u is a function of y, the cost has to also consider the
randomness from V" = {v(k),...,v(N—1)}

N-1
J= E {XT(N)SX(N)+ ;)[XT(j)QX(jH‘UT(j)RU(f)]}

x(0),W", V4

(10)

these motivate the linear quadratic Gaussian (LQG) control problem
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LQG solution

only y (k) is accessible instead of x (k), some connection has to be
built to connect the cost to Yy, ={y(0),...,y(k)}:

E|x7 (k) Qx (k)]
—E{E|xT (k) @x (k)| Vi }
=E{E | (x(K) = % (KIK) + % (KIK)T @(x (k) = & (klK) + % (k[ )| V] }
—E{E | (x(K) =% (KIK))T Q(x (k) = % (K[K))| Yic+ %7 (K|K) Q (K|K)| i
#2(x (k) = % (KlK)) T Qx (KIK)| i | (11)
LQG solution

but E[x(k)|Yx] = %(k|k) and X (k|k) is orthogonal to X (k|k) (property
of least square estimation), so

E{E{(x(k)—&(k|k))TQ>“<(k]k)’Yk”:E{(x(k)—&(k]k))TQﬁ(k\k)}
— TrE [Q&(k\k)ﬂ(uk)] -
yielding
E [XT(k) Qx(k)}
—E{E| (x (k) =& (k1K) T Q(x (K) ~ % (KIK))| Yic+ %7 (K|Kk) Q (KIK)| Vi }
—E | &7 (klK) Q% (kIK)| V4]
+E{E[TH{QUx (k) ~ % (KIK) (x (k) ~ & (k1K) }| Vi | }
—E [&T(/qk) Q)?(k|k)} T Tr{QZ (k)
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LQG solution

the LQG cost (10) is thus

~

J

7\
7 Y

N-1
J=E {&T(N|N)52(N|N) + Y [’TGL)Q&(L) + uT(j)Ru(j)]}

Jj=0

N-1
+Tr{SZ(N)}+ Y Tr{QZ(j)}
=0

J

A 7
-~

independent of the control input

hence
min J <— min J
{6(0),...,u(N—1)} (u(0),..,u(N—1)}
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LQG is equivalent to an LQ with exactly know
states

consider the equivalent problem to minimize:

N—1
J=E {&T(NIN)SQ(NINH Y BTG @KU + uT(j)RU(j)]}

Jj=0

» X (k|k) is fully accessible, with the dynamics:

R(k+1lk+1)

$(k+1/k)+F (k+1)e, (k+1)
A% (k|k) + Bu (k) +F (k+1) e, (k+1)

» from KF results, e, (k+1) is white, Gaussian with covariance:
V+CM(k+1)CT
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LQG is equivalent to LQ with exactly know states

LQ with exactly known states:

N-1
J=E {XT(N)Sx(N)+ ZO [xT () Qx(j) + uT(j)Ru(j)]}

x(k+1) = Ax(k)+ Bu(k)+ Byw (k)

ue (k) = — [R+ BTP(k+1)B] BTP(k+1) Ax (K)

LQG: . N-1
Q J= E{%T(NIN)SQ(NNH Z(,)[>A<T(j|j)0>“<(j.i)+UT(J')RU(J')]}
X(k+1|k+1)=Ax(k|k)+Bu(k)+F(k+1)e, (k+1)

the solution of LQG is thus:

1
BT P(k+1) A% (k|k) (12)

u°(k):—[R+BTP(k+1)B}

1
B"P(k+1)A+@Q

P(k)=ATP(k+1)A—ATP(k+1)B {R+BTP(k+1)B}
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Optimal cost of LQG control

» LQ with known states (see (9)):
x(k+1)=Ax(k)+ Bu(k)+ Byw (k)
N—1
J° = xT P(0)xo + Tr(P(0) X,) + Tr[BVCP(jH)BWW
0

o

J:

\ - >

b(0)

» LQG:
X(k+1lk+1)=Ax(k|k)+Bu(k)+F(k+1)e, (k+1)

J° = x] P(0)x, + Tr[P(0)Z(0)]
+ Y TH{FTG+ )P+ D)FG+ 1V + CM(k+1)CT]} (13)

N—-1
Jo=Jo+ Y Tr{QZ(j)} +Tr{SZ(N)}
j=0
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Separation theorem in LQG

KF: an (optimal) observer

LQ: an (optimal) state feedback control

Separation theorem in observer state feedback holds—the closed-loop
dynamics contains two separated parts: LQ dynamics plus KF
dynamics

w(k)
¥

B, v(k)

k +

—£e={1QG K (k) B8/ ——[C }* 0
A
X(klk
(k|k) KE
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Stationary LQG problem

Assumptions: system is time invariant; weighting matrices in
performance index is time-invariant; noises are white, Gaussian, wide

sense stationary.
Equivalent problem: minimize

X N-1
J = lim %: lim E{ il 3\/5 T Z[x UT(j)Ru(j)]}

N—c0 N—c0

—E [XT(k)Qx(k) + uT(k)Ru(k)}
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Solution of stationary LQG problem

x(k+1) = Ax(k)+ Bu(k)+ Byw (k)
y (k) = Cx (k) + v (k)
J=E {XT(k)Qx(k) + uT(k)Ru(k)}

the solution is u = —KsX (k|k): steady-state LQ + steady-state KF
Ks = [R+ BTPSB}_lsTPSA
P.=ATP,A—ATP.B [R+ BTPSB]_lgTPSA+Q
Fo=MCT [CMSCT+ v}_l
My = AMAT — AM,CT [CMSCT+ v} " CM.AT + B, WB]

stability and convergence conditions of the Riccati equations:
» (A,B,) and (A, B): controllable or stabilizable
» (A, Cy) and (A, C): observable or detectable (Q = CJCq)
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Solution of stationary LQG problem

» stability conditions: guaranteed closed-loop stability and KF
stability

» separation theorem: closed-loop eigenvalues come from

» the n eigenvalues of LQ state feedback: A— BK;
> the n eigenvalues of KF: A— AF;C (or equivalently A— FsCA)

» optimal cost:
Jo="Tr [Ps (BKSZSAT + B, WBT )] (14)

» exercise: prove (14)
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Continuous-time LQG

» plant:
x(t) = Ax(t)+ Bu(t)+ By,w(t)
y(t) = Ox(6)+v(t)
» assumptions: w(t) and v(t) are Gaussian and white; x (0) is
Gaussian
> cost:

J=E {XT(tf)SX(tf) +/t0tf [xT () Q(t)x(t)+u' (t)R(t) u(t)} dt}

where S >0, Q(t) = 0, and R(t) > 0 and the expectation is
taken over all random quantities {x(0),w(t),v(t)}
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Continuous-time LQG solution

» Continuous-time LQ:

u(t) = =R BT P(t)%(t|t) (15)
dP T —1RT
7 =ATP+PA-PBRT'BTP+Q. P(tf) =S (16)
» Continuous-time KF:
dx(t|t) . .
P = Ax(t|t) + Bu(t) + F(t) (y(t) — Cx(t[t)) (17)
F(t)=M(t)CT V7L, %(to|te) = xo (18)
M
dd—t:AM+ MAT —MCTVv=ICM + B, WB),, M(t)) =X, (19)
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Summary

—

. Big picture

2. Stochastic control with exactly known state

3. Stochastic control with inexactly known state

4. Steady-state LQG

5. Continuous-time LQG problem
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