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Transmission of Signal Nonsmoothness
and Transient Improvement in

Add-On Servo Control
Tianyu Jiang and Xu Chen

Abstract— Plug-in or add-on control is integral for high-
performance control in modern precision systems. Despite the
capability of greatly enhancing the steady-state performance,
add-on compensation can introduce output discontinuity and
significant transient response. Motivated by the vast application
and the practical importance of add-on control designs, this paper
identifies and investigates how general nonsmoothness in signals
transmits through linear control systems. We explain the jump
of system states in the presence of nonsmooth inputs in add-
on servo enhancement, and derive formulas to mathematically
characterize the transmission of the nonsmoothness. The results
are then applied to devise fast transient responses over the
traditional choice of add-on design at the input of the plant.
Application examples to a manufacturing control system are
conducted, with simulation and experimental results that validate
the developed theoretical tools.

Index Terms— Disturbance rejection, nonsmooth inputs,
transient control.

I. INTRODUCTION

PLUG-IN or add-on control design is central for servo
enhancements in control engineering. In order to provide

a storage capacity in the terabyte scale, a modern hard disk
drive contains more than 900 000 data tracks within 1 in of the
disk. Correspondingly, the width of each track, called track
pitch (TP), can easily fall below 30 nm. During read/write
operations, servo control must maintain a tracking error that
is below 10% TP while strong external disturbances can induce
tracking errors that are as large as 70% TP. Such large errors
can only be attenuated by adding plug-in control commands.
As another example, in high-speed wafer scanning for semi-
conductor manufacturing, [1] showed that 99.97% of the force
commands in the positioning system are contributions of add-
on feedforward control.

In feedback algorithms, add-on servo is central for a large
class of design schemes that require a baseline feedback
controller. Two examples are: disturbance observers [2] and
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Youla-parameterization-based loop shaping [3], [4]. Either for
general low-frequency enhancement [5]–[7], or for the exten-
sions to structured disturbance rejection [8]–[10], disturbance
observers usually update the commands at the input side of
the plant. Youla parameterization can be parameterized either
as an add-on compensation at the plant input side [11], [12],
or a combined compensation at the plant input and controller
input [13], [14]. In feedforward-related control, adaptive or
sensor-based feedforward compensation [15]–[17] can be con-
figured as add-on algorithms either at the plant input or at the
reference input (see more details in Section III).

Fundamentally, add-on control brings servo enhancement
by introducing new dynamic properties in closed-loop signals.
Such a process induces certain degrees of nonsmoothness in
the signals. For meeting future demands in high-precision
systems, it is essential to understand what types of systems and
add-on changes create large transient, and what are the math-
ematical relationships between the signal nonsmoothness and
the induced transient. The importance of such considerations is
verified in simulation and experiments in [18] and [19], which
compared the transient performance in different feedforward
control algorithms. Still, a full theoretical solution to the prob-
lem is intrinsically nontrivial, except for simple discontinuities,
such as step and ramp signals. Despite the rich literature on
designs to achieve the desired steady-state performance, sparse
investigations on the transient in add-on compensation are
available, and a full understanding of the theoretical add-on
transient remains missing. This paper targets to bridge this gap.
The focuses are twofold. First, we develop theoretical results
about input-to-output discontinuity and reveal its practical
importance for the transient performance in control design.
Second, new investigations are made to examine the transient
characteristics in different add-on control designs. We derive
an exact mathematical formula for computing the changes
in system outputs when the input and/or its derivatives have
discontinuities, and provide computation of the associated
transient response. One central result we obtain is that, the
common choice of performing add-on control at the input side
of the plant yields undesired long transients, if there are delays
during turning ON the compensation. Solution of the problem
is discussed in detail and verified on a precision motion control
platform in semiconductor manufacturing.

The remainder of this paper is organized as follows.
Section II describes the wafer scanner hardware on which
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verification of the algorithm is performed. Section III reveals
the transient problem in add-on compensation, following
which Sections IV and V solve the mathematical problem.
Simulation and experimental results are provided
in Section VI. Section VII concludes this paper.

Notations and Assumptions: All signals and systems are
assumed to be causal and have real-valued coefficients. L{·}
and L−1{·} are, respectively, the operators of Laplace and
inverse Laplace transforms. For practical purposes, we exclu-
sively consider the first kind or jump discontinuities in signals
and their derivatives; and denote u(t+0 ) and u(t−0 ), respectively,
as the right- and the left-hand limits of a signal u(t) at t0.
f (i)(t) denotes di f (t)/dti , the generalized i th-order derivative
of a function f (t). f (t) is said to have a kth-order discontinu-
ity at t0 if y(k)(t+0 ) �= y(k)(t−0 )—in other words, f (t) is of (dif-
ferentiability) class Ck−1 but not of class Ck at t0. [Gd→y]d
denotes the time-domain output of the system with respect to
the input d . For a closed-loop system consisting of a plant with
transfer function P , and a controller (in a negative feedback
loop) C , T � PC/(1+PC) denotes the complementary sensi-
tivity function (the transfer function from the reference to the
plant output); S � 1/(1 + PC) is the sensitivity function that
defines the dynamics from the output disturbance to the plant
output.

Remark 1: We focus on analysis and control of the tran-
sient behavior, and assume that the discontinuous change
of input properties does not yield system instability (which
can be guaranteed by, for instance, a sufficiently long
dwell time during switching [20]). For additional infor-
mation on stability of such switched systems, we refer
readers to [21]–[24].

II. HARDWARE DESCRIPTION AND NOTATIONS

The developed algorithm in this paper is verified via simu-
lation and experiments on a wafer scanner prototype, a central
element for photolithography in the advanced manufacturing
of integrated circuits in semiconductor industry. The precision
control here synchronizes the motions of a wafer stage and a
reticle stage. The motion control allows patterns on integrated
circuits to be precisely transformed from a mask on the
reticle stage to different locations of the silicon wafer on
the wafer stage. A picture of the physical system is provided
in [8]. To achieve the nanometer-scale precision requirement,
high-performance actuation and measurement tools, including
air bearings, epoxy-core linear permanent magnet motors
(LPMMs), and laser interferometers, are used. The control
commands are executed on a LabVIEW real-time system with
field-programmable gate array. Fig. 1 shows the frequency
response, from the voltage input of the LPMM to the position
of the reticle stage.

III. TRANSIENT IN ADD-ON COMPENSATION

A. Example and Practical Importance

The influence of transient performance is significant in
the final achievable control accuracy. Consider an example
in Fig. 2. Assuming first that the signals r , uur, and uue are all
zero, we aim at regulating the output y in the presence of the

Fig. 1. Frequency response of the reticle stage.

disturbance d . Here, the baseline feedback controller C is best
tuned for regular servo performance and system robustness;
and uuc is the additional control to compensate d .

If uuc = −d , certainly, the disturbance is perfectly rejected.
This is ideally the goal for all observer- or feedforward-
based disturbance attenuation designs, if injection of control
command is at the plant input side. However, in practice:

1) Strong external disturbances may not always present,
and uuc is turned ON only when external disturbance
reaches the threshold, at which the error tolerance is
violated.1

2) The control system is usually subjected to different
tasks, where different disturbance properties require dif-
ferent add-on designs (indeed, if the add-on scheme is
universal for all situations, it should be absorbed as part
of the baseline controller).

Hence, for rejecting external disturbances, practically, a switch
is used for turning ON or OFF the compensation uuc. Consider
the case where d is a scaled step signal that occurred at 0.12 s.
If the add-on compensation is delayed by 2.4 s (i.e., uuc is
added at 2.52 s), even with the “perfect” rejection condition
uuc = −d , significant transient response can happen as shown
in Fig. 3—the experimental results on the wafer scanner
system.

Certainly, the above-mentioned example is for demonstra-
tion of the problem, and provides only an extreme case where
the add-on compensation is turned ON when an integrator in
the baseline controller C has already greatly compensated the
disturbance, and d is simple enough to be perfectly rejected by
simple feedback. These simplifying conditions will be dropped
in the remainder of this paper, where the general problem of
add-on transient is addressed.

B. Ideal-Case Add-On Compensation

Recall Fig. 2. The location of add-on compensation can be
at the reference input or the plant input; and the requirement
of servo enhancement may come from regulation or tracking

1In industrial applications, it is common to run a fault detector to monitor
the system performance and switch ON the compensation when the servo
performance is degraded to be below a prespecified performance threshold.
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Fig. 2. Add-on control designs in a feedback block diagram.

Fig. 3. Demonstration of transient behavior on a wafer scanner.

controls. These additional considerations are now added to
form a general block diagram with different configurations of
add-on signals. We now formally introduce the signals uur,
uue, and uuc, which are the added servo-enhancement signals
for updated reference (UR), updated error (UE), and updated
control (UC), respectively.

Let G(s) be the closed-loop transfer function from the
add-on control to the plant output. Assume zero initial con-
ditions at t = 0, i.e., y(i)(0)(= di y(0)/dti ) = 0, and first
focus on attenuating the disturbance d , namely, we aim at
achieving

[G]uadd-on + [Gd→y]d = 0 (1)

where uadd−on is uuc, uur or uue; Gd→y = P/(1 + PC) is
the transfer function from d to y. From Fig. 2, G equals
P/(1 + PC) in UC. In UE and UR, the dynamics between
uadd−on and y both equal the complementary sensitivity func-
tion, namely, G = T = PC/(1 + PC). Hence, regardless of
the design methods, to satisfy (1), the ideal conditions in UC
and UR/UE are, respectively, uuc = −d and [C]uur/ue = −d .

C. Transient in Ideal Add-On UC Control

Without loss of generality, suppose the actual disturbance d
is as shown in the top subplot in Fig. 4, where at time t0, the
plug-in servo enhancement is turned ON. The ideal-case UC
command uuc is the solid line in the second subplot of Fig. 4,
which perfectly cancels the disturbance after time t0.

Let

G(s) = bnsn + bn−1sn−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
(2)

Fig. 4. Input discontinuity in UC.

and consider the response of G(s) to the combined input u �
d + uuc. Directly solving the associated ordinary differential
equation (ODE) is not feasible as derivatives of u are not well
defined at time t0. We will show how this input discontinuity
creates abrupt changes in y(t) and its derivatives. Notice that
unlike the discontinuity in step responses, the solution to this
input-to-output discontinuity problem is nontrivial.

For a general system, we next derive the exact mathematical
result of the transient after t = t0 for u in Fig. 4. Recall (2)
and note that u(t) equals zero ∀t � t0 in Fig. 4. The transient
response y(t) in t ∈ (t0,∞) satisfies

y(n)(t) + an−1 y(n−1)(t) + · · · + a0y(t) = 0

with the initial condition:
{

y(i)(t+0
)}n−1

i=0 (3)

i.e., the transient is the natural response of the system with
the initial condition {y(i)(t+0 )}n−1

i=0 .
Solutions to the ODEs can be obtained using Laplace

transforms or direct computation via Calculus. It is, however,
central to recognize that the initial condition y(i)(t+0 ) does not
equal y(i)(t−0 ), i.e., the actual transient does not simply equal
the natural transient response under y(i)(t−0 )—the system
states right before the application of add-on compensation
(recall the example in Fig. 3). This is due to the input
discontinuity of u(i)(t−0 ) jumping to u(i)(t+0 )(= 0) in Fig. 4.
Next, we obtain the formula of {y(i)(t+0 )}n−1

i=0 based on u(i)(t−0 )
and the dynamics of G(s), and then analyze the resulting
transient performance.

IV. INPUT-TO-OUTPUT DISCONTINUITY

Theorem 2: Let u(t) and y(t) be the input and the out-
put of a finite-dimensional real-coefficient linear system G,
satisfying

y(n)(t) + an−1 y(n−1)(t) + · · · + a1 ẏ(t) + a0 y(t)

= bnu(n)(t) + bn−1u(n−1)(t) + · · · + b1u̇(t) + b0u(t) (4)

at time t0. If u(t) and/or its derivatives have discontinuities:
u(t+0 ) − u(t−0 ) = eu,0, u̇(t+0 ) − u̇(t−0 ) = eu,1, . . . , u(n)(t+0 ) −
u(n)(t−0 ) = eu,n , then y(t) and/or its derivatives contain
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discontinuities that satisfy
⎡

⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

an−1
. . .

. . .
...

...
. . .

. . . 0
a1 . . . an−1 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

y
(
t+0

) − y
(
t−0

)

ẏ
(
t+0

) − ẏ
(
t−0

)

...

y(n−1)
(
t+0

) − y(n−1)
(
t−0

)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

bn 0 . . . 0

bn−1
. . .

. . .
...

...
. . .

. . . 0
b1 . . . bn−1 bn

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

eu,0
eu,1
...

eu,n−1

⎤

⎥
⎥
⎥
⎦

. (5)

Theorem 2 fully characterizes the input-to-output disconti-
nuity. The matrix on the left-hand side of (5) is nonsingular.
Therefore, a unique solution exists for obtaining {ey,i}n−1

i=0 :=
{y(i)(t+0 ) − y(i)(t−0 )}n−1

i=0 . No knowledge of u(t) is required
except at t0, the instance of discontinuity. More specifically,
solutions of ey,i values can be obtained by forward substitution
after solving the matrix equality

ey,0 = bneu,0 (6a)

ey,1 = bn−1eu,0 + bneu,1 − an−1ey,0 (6b)
...

ey,n−1 =
n−1∑

j=0

b j+1eu, j −
n−2∑

j=0

a j+1ey, j . (6c)

Remark 3: Equation (5) provides up to the (n − 1)th
order output discontinuity. If the value of ey,n is of interest,
Theorem 2 can be applied to the augmented system G(s) =
(bnsn+1 + bn−1sn + · · ·+ b1s2 + b0s)/(sn+1 + an−1sn + · · ·+
a1s2 +a0s). Similar procedures can provide other higher order
discontinuities.

Numerical Verification: Consider the response of a first-
order system to a ramp-to-step signal

G(s) = 1

s + a
, u(t) =

{
αt : t ∈ [0, t0)

αt0 : t ≥ t0.
(7)

In this example, we have u(t+0 ) = u(t−0 ), u̇(t+0 ) �= u̇(t−0 ).
Convolution or inverse Laplace analysis gives y(t) =

(α/a)t + (α/a2)e−at − (α/a2), if t ∈ [0, t0); y(t) =
(α/a)t0 + (α/a2)[e−at − e−a(t−t0)], if t ≥ t0; ẏ(t) =
(α/a) − (α/a)e−at , if t ∈ [0, t0); ẏ(t) = −(α/a)[e−at −
e−a(t−t0)], if t ≥ t0; ÿ(t) = αe−at , if t ∈ [0, t0); and
ÿ(t) = α[e−at − e−a(t−t0)], if t ≥ t0. Then

y
(
t+0

) = y
(
t−0

)

ẏ
(
t+0

) = ẏ
(
t−0

)

ÿ
(
t+0

) = ÿ
(
t−0

) + (
u̇(t+0 ) − u̇

(
t−0

))
(8)

namely, the first-order input discontinuity creates a second-
order output discontinuity.

Alternatively, apply Theorem 2 and Remark 3 to the same
system. Noticing that G(s) = 1/(s + a) = s/(s2 + as), we
have⎡

⎣
1 0 0
a 1 0
0 a 1

⎤

⎦

⎡

⎣
ey,0
ey,1
ey,2

⎤

⎦ =
⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦

⎡

⎣
eu,0
eu,1
eu,2

⎤

⎦ =
⎡

⎣
0

eu,0
eu,1

⎤

⎦.

Fig. 5. Decomposition of discontinuity in g(t) at t0.

Hence y(t+0 ) − y(t−0 ) = 0, ẏ(t+0 ) − ẏ(t−0 ) = eu,0 = 0, and
ÿ(t+0 ) − ÿ(t−0 ) = eu,1 − aeu,0 = u̇(t+0 ) − u̇(t−0 ). The result
matches with that in (8). More important, the computation
here removes the necessity to compute the full time-domain
solution, which is not only long and complex for high-order
systems, but also infeasible for general signals without given
time-domain models.

A. Proof and Analysis

We first introduce a representation of discontinuous signals
using Dirac delta functions. In the remainder of the texts, we
will use μ(t) to denote the unit step signal, i.e., μ(t) = 1
∀t ≥ 0 and μ(t) = 0 ∀t < 0; and denote δ(t) as the Dirac
delta function that satisfies

∫ t
0 δ(τ )dτ = μ(t) and

∫ ∞
0 δ(τ −T )

g(τ )dτ = g(T ) if g(t) is continuous. As a distribution (a.k.a.
generalized function), δ(t) satisfies dμ(t)/dt = δ(t).

Consider a piecewise continuous function g(t) with a first-
kind/jump discontinuity at t0. We can write

g(t) = eg,0μ(t − t0) + f0(t) (9)

where f0(t) is continuous at t0; eg,0 = g(t+0 ) − g(t−0 ); and
μ(t − t0) creates the jump discontinuity at t = t0, as shown
in the example in Fig. 5.

Similarly, if ḟ0(t) is furthermore discontinuous at t0, we
have ḟ0(t) = eg,1μ(t − t0) + f1(t), where f1(t) is continuous
at t0. The derivative of (9) thus must satisfy

ġ(t) = eg,0δ(t − t0) + eg,1μ(t − t0) + f1(t) (10)

where eg,1μ(t − t0) gives the first-order discontinuity
ġ(t+0 ) �= ġ(t−0 ).

Further differentiation yields

g̈(t) = eg,0δ̇(t − t0) + eg,1δ(t − t0) + eg,2μ(t − t0) + f2(t)
...

g(n)(t) = eg,0δ
(n−1)(t − t0) + · · · + eg,n−1δ(t − t0)

+ eg,nμ(t − t0) + fn(t) (11)

where f2, . . . , fn are continuous at t0, and the nonsmoothness
of g(t) is characterized by

⎡

⎢
⎢
⎢
⎣

eg,0
eg,1
...

eg,n

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

g
(
t+0

) − g
(
t−0

)

ġ
(
t+0

) − ġ
(
t−0

)

...

g(n)
(
t+0

) − g(n)
(
t−0

)

⎤

⎥
⎥
⎥
⎦

. (12)
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Equations (9)–(11) can be compactly written as

⎡

⎢
⎢
⎢
⎣

g(t)
g(1)(t)

...

g(n)(t)

⎤

⎥
⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎢
⎣

f0(t)
f1(t)

...
fn(t)

⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

μ(t − t0)
δ(t − t0)

...

δ(n−1)(t − t0)

⎤

⎥
⎥
⎥
⎦

T

×

⎡

⎢⎢
⎢
⎢
⎣

eg,0 eg,1 . . . eg,n

0
. . .

. . .
...

...
. . .

. . . eg,1
0 . . . 0 eg,0

⎤

⎥⎥
⎥
⎥
⎦

. (13)

For matrix-vector operations in the form of (13), the
following result will appear to be useful:

Fact 4: The following is true:

⎡

⎢
⎢
⎢
⎣

e0 e1 . . . en

0 e0 . . . en−1
...

. . .
. . .

...
0 . . . 0 e0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a0
...

an−1
1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎣

a0 . . . an−1 1
...

. . .
. . . 0

an−1
. . .

. . .
...

1 0 . . . 0

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

e0
...

en−1
en

⎤

⎥
⎥
⎥
⎦

.

We now formally prove Theorem 2.
Proof: Replacing {g, fi , eg,i} with {y, fy,i , ey,i} and

{u, fu,i , eu,i }, respectively, in (13); and applying the resulting
equations to [y(t) y(1)(t) . . . y(n)(t)][a0 . . . an−1 1]T =
[u(t) u(1)(t) . . . u(n)(t)][b0 . . . bn−1 bn]T —the vector form
of (4)—give

⎡

⎢
⎢
⎢
⎣

fy,0(t)
fy,1(t)

...
fy,n(t)

⎤

⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎣

a0
...

an−1
1

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

fu,0(t)
fu,1(t)

...
fu,n(t)

⎤

⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎣

b0
...

bn−1
bn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎣

μ(t − t0)
δ(t − t0)

...

δ(n−1)(t − t0)

⎤

⎥
⎥⎥
⎦

T
⎡

⎢
⎢⎢
⎢
⎣

eu,0 eu,1 . . . eu,n

0 eu,0
. . .

...
...

. . .
. . . eu,1

0 . . . 0 eu,0

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

b0
...

bn−1
bn

⎤

⎥
⎥⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

μ(t − t0)
δ(t − t0)

...

δ(n−1)(t − t0)

⎤

⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎣

ey,0 ey,1 . . . ey,n

0 ey,0
. . .

...
...

. . .
. . . ey,1

0 . . . 0 ey,0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a0
...

an−1
1

⎤

⎥
⎥
⎥
⎦

(14)

where fy,i (t) and fu,i (t) are continuous at t = t0; ey,i =
y(i)(t+0 ) − y(i)(t−0 ); and eu,i = u(i)(t+0 ) − u(i)(t−0 ).

To solve for ey,i values, using Fact 4, we translate (14) to
⎡

⎢⎢
⎢
⎣

fy,0(t)
fy,1(t)

...
fy,n(t)

⎤

⎥⎥
⎥
⎦

T ⎡

⎢⎢
⎢
⎣

a0
...

an−1
1

⎤

⎥⎥
⎥
⎦

−

⎡

⎢⎢
⎢
⎣

fu,0(t)
fu,1(t)

...
fu,n(t)

⎤

⎥⎥
⎥
⎦

T ⎡

⎢⎢
⎢
⎣

b0
...

bn−1
bn

⎤

⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

μ(t − t0)
δ(t − t0)

...

δ(n−1)(t − t0)

⎤

⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢⎢
⎣

b0 . . . bn−1 bn
...

. . .
. . . 0

bn−1
. . .

. . .
...

bn 0 . . . 0

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢
⎣

eu,0
eu,1
...

eu,n

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

μ(t − t0)
δ(t − t0)

...

δ(n−1)(t − t0)

⎤

⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎣

a0 . . . an−1 1
...

. . .
. . . 0

an−1
. . .

. . .
...

1 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ey,0
ey,1
...

ey,n

⎤

⎥
⎥
⎥
⎦

.

δ(t − t0), δ̇(t − t0), . . . , δ(n−1)(t − t0) are linearly indepen-
dent, and cannot be expressed as linear combinations of the
continuous functions on the left-hand side of the last equality.
Hence, their coefficients on the right-hand side must be zero.
This corresponds to

⎡

⎢
⎢⎢
⎢
⎣

a1 . . . an−1 1
...

. . .
. . . 0

an−1
. . .

. . .
...

1 0 . . . 0

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

ey,0
ey,1
...

ey,n−1

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎣

b1 . . . bn−1 bn
...

. . .
. . . 0

bn−1
. . .

. . .
...

bn 0 . . . 0

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

eu,0
eu,1
...

eu,n−1

⎤

⎥
⎥⎥
⎦

. (15)

Rearranging the rows gives (5). �
Case for Add-On Servo Enhancement: Applying (5) to

u(t) in Fig. 4, and noting the input discontinuity of eu,i =
0 − u(i)(t−0 ),∀i � 0, we have

⎡

⎢
⎢⎢
⎢
⎣

1 0 . . . 0

an−1
. . .

. . .
...

...
. . .

. . . 0
a1 . . . an−1 1

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

ey,0
ey,1
...

ey,n−1

⎤

⎥⎥
⎥
⎦

= −

⎡

⎢
⎢⎢
⎢
⎣

bn 0 · · · 0

bn−1
. . .

. . .
...

...
. . .

. . . 0
b1 · · · bn−1 bn

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

u
(
t−0

)

u̇
(
t−0

)

...

u(n−1)
(
t−0

)

⎤

⎥⎥
⎥
⎦

. (16)

B. Discussions

Rewriting (5) symbolically as Maey = Mbeu and applying
Taylor expansion to M−1

a give ey = M−1
a Mbeu = ∑∞

k=0
(I − Ma)k Mbeu . Noting the lower triangular form of Ma ,
we can further simplify the expression to ey = ∑n

k=0
(I −Ma)k Mbeu , as I −Ma is nilpotent and (I −Ma)k vanishes
for k > n.
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From the results, the generalized output discontinuity is
a linear and continuous function of the discontinuities in
the input and its derivatives. Bounded input discontinuities
generate bounded discontinuities in the output. More specif-
ically, ‖ey‖q ≤ ‖∑n

k=0(I − Ma)k Mb‖p→q‖eu‖p , where
p, q ∈ [1,∞); ‖ · ‖p→q is an induced matrix norm; and
‖ · ‖p and ‖ · ‖q are vector norms. The numeric value of
the upper bound is problem-dependent. The matrix

∑n
k=0

(I − Ma)k Mb , however, is always lower triangular and has
easy-to-compute matrix norms, as (I − Ma)k and Mb are
both lower triangular (with actually all diagonal entries equal
to 1, 0, or bn). Furthermore, as Ma and Mb do not con-
tain a0 and b0, ‖∑n

k=0(I − Ma)k Mb‖p→q is independent
of b0 and a0. Discontinuities in {y(i)(t)}n−1

i=0 are, therefore,
independent of the DC gain and not related to the magnitude
response of the system [see also (6a)–(6c)]. Switched sys-
tems/signals can thus generate significant transient responses
while providing zero steady-state errors.

1) Influence of High-Order Input Discontinuities: If the
input is continuous, i.e., eu,0 = 0, the resulting output is still
continuous but not necessarily smooth. For instance, if bn is
large in (6b), large discontinuity in ẏ(t) occurs even if there
is only a small change of u̇(t). Notice that the result may
appear counter to intuitions and perceptions in conventional
analysis, which may lead to the assertion that b1—the scaling
coefficient of u̇(t) in (4)—is the dominant factor.

Furthermore, high-order input discontinuities eu,i values
only influence high-order derivatives in the output. More
specifically, the i th-order output discontinuity ey,i only
depends on {eu, j : j ≤ i}, based on the mathematical relations
in (6a)–(6c).

2) Influence of the Relative Degree of the System: If bn �= 0,
a discontinuous u(t) will render y(t) and all its derivatives
discontinuous. The direct implication is in line with the
conventional practice that jump discontinuities are undesired
in general switched control. In addition, from (6a), the jump
in the output is only linearly dependent on the jump in the
input and bn—the direct gain of the system.

In the case that the system is time-invariant, if the relative
degree of the transfer function associated with (4) is r—in
other words, bn , …, bn−r+1 all equal zero—then ey,0, …,
ey,r−1 on the left-hand side of (5) must be zero, namely,
y, ẏ, . . . , y(r−1) are all continuous at t0, and the input non-
smoothness can only cause discontinuities in the higher order
derivatives y(r), …, y(n−1).

3) Case for Nonideal Add-On Control: If the disturbance
estimation contains errors or there exists actuation delay tad ,
the ideal compensation is no longer feasible, as shown
in Fig. 6. Recall Fig. 4. In the case with nonideal add-on
control, the condition that the augmented command u(t) =
d(t) + uuc(t) equals zero ∀t � t0 (i.e., u(i)(t+0 ) = 0,∀i � 0)
will not hold. This, however, does not constrain one to com-
pute the transient response due to input discontinuity. To be
more specific, one can write the input signal as

u(t) =
{

d(t) : t ∈ [0, t0)

d(t) + uuc(t) = ε(t) �= 0 : t � t0
(17)

Fig. 6. Nonideal add-on UC control.

where t0 is the actual implementation time of uuc (i.e., it
may contain the actuation delay) and ε(t) is the residual
term characterizing the difference between the ideal add-on
control command and the actual command. The induced input
discontinuities at time t0 can thus be written as eu,i =
u(i)(t+0 ) − u(i)(t−0 ) = d(i)(t+0 ) + u(i)

uc (t+0 ) − d(i)(t−0 ) =
[d(i)(t+0 )−d(i)(t−0 )]+u(i)

uc (t+0 ). When d(t) is of class Ck at t0,
the term in the square bracket equals zero ∀0 ≤ i ≤ k, yielding
the formula eu,i = u(i)

uc (t+0 ), ∀0 ≤ i ≤ k. Note that although t0
is not known when there is actuation delay, u(i)

uc (t+0 ) (if exists)
is available, since it is the initial condition of the actual add-on
signal. Moreover, (5) works without requiring the condition
that u(i)(t+0 ) = 0,∀i � 0. Based on the relations in (6a)–(6c),
the output discontinuity {ey,i : 0 ≤ i ≤ k} can be derived
without the need to know d(t) and t0.

As an example, recall the system and the input in (7). If we
regard u(t) = αt, t ≥ 0 and u(t) = αt0, t ≥ t0, respectively,
as the disturbance d(t) and residual term ε(t) in (17), then the
corresponding add-on signal (which we design) is uuc(t) =
ε(t) − d(t) = αt0 − αt, t ≥ t0. One observes that u(i)

uc (t+0 )
is exactly the i th-order input discontinuity. Similar to the
application of Theorem 2 and Remark 3 to (7), this information
of add-on control uuc(t) is adequate and sufficient to identify
the induced output discontinuities.

V. TIME-DOMAIN RESPONSE AND TRANSIENT SPEED

Based on analysis in Section IV, motion control systems
that are powered by motors with double integrator (iner-
tia system) or 1/(ms2 + bs) types of nominal dynamics
always generate continuous outputs; systems with very fast
input–output dynamics, such as piezoelectric actuators (whose
nominal dynamics can be commonly modeled as a constant-
gain system), are sensitive to nonsmoothness in the input.
On the other hand, many servo controllers can be considerably
sensitive to input discontinuities. For instance, consider the
causal implementation of a PID controller CPID(s) = k p +
ki/s+kds/(εs+1) = [(k pε+kd)s2 +(k p +kiε)s+ki ]/[s(εs+
1)], where ε 
 1 is a small positive number. The direct gain
of the controller kp + kd/ε can be enormous in practice. Let
e and u be the input and output of CPID(s). Then, (5) gives
u(t+0 )−u(t−0 ) = (k p+(kd/ε))[e(t+0 )−e(t−0 )], u̇(t+0 )−u̇(t−0 ) =
(ki − (kd/ε2))[e(t+0 ) − e(t−0 )] + (k p + (kd/ε))[ė(t+0 ) − ė(t−0 )].
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Therefore, both the controller output and its derivatives will
exhibit significant jump discontinuities when the input has
only small discontinuities. A lead-lag controller can reduce
the amplification of the input discontinuities, but still has a
direct-gain component. The induced large magnitude in the
control command can easily trigger the input saturation and
the resulting nonlinear effects in the feedback loop (and even
instability and hardware damage). Moreover, omitted in con-
ventional transient analysis, abnormal faults triggered by such
discontinuity amplification are much more difficult to detect
and analyze (see also the second example in Section VI).

The analysis in the preceding paragraphs focused on charac-
terizing the output at the switching instance. Together with the
quantitative analysis, the following qualitative measures can be
made about intrinsic properties of the system and signals that
will induce small/smooth transient: large relative degree in the
transfer function (LTI case), small coefficients for high-order
derivatives, and small low-order discontinuities in the input
signal. To further reveal characteristics of the transient after
switching, we next derive the exact time-domain response due
to the input nonsmoothness.

Assume that the system coefficients are constant in (4). The
transient response after t0 is the solution to the ODE

y(n)(t) + an−1 y(n−1)(t) + · · · + a0 y(t) = 0 (18)

with the initial condition {y(i)(t+0 )(= y(i)(t−0 ) + ey,i)}n−1
i=0 .

Proposition 5: Let the same assumptions in Theorem 2
hold. Let G(s) = B(s)/A(s) be stable with A(s) = sn +
an−1sn−1 + · · · + a0 and B(s) = bnsn + bn−1sn−1 + · · · +
b1s + b0. The transient response due to {eu,i }n

i=0—the input
nonsmoothness at t0—has the Laplace transform

Y (s, ei ) =

e−t0s

⎡

⎢⎢
⎢
⎢
⎢
⎣

bnsn−1 + · · · + b2s + b1

bnsn−2 + · · · + b3s + b2
...

bns + bn−1
bn

⎤

⎥⎥
⎥
⎥
⎥
⎦

T ⎡

⎢⎢
⎢
⎢
⎢
⎣

eu,0
eu,1
...

eu,n−2
eu,n−1

⎤

⎥⎥
⎥
⎥
⎥
⎦

A(s)
.

(19)

The full transient response after t0 is

Y (s) = Y (s, ei )

+e−t0s

A(s)

⎡

⎢
⎢⎢
⎢
⎢
⎣

sn−1 + an−1sn−2 + · · · + a2s + a1

sn−2 + an−1sn−3 + · · · + a2
...

s + an−1
1

⎤

⎥
⎥⎥
⎥
⎥
⎦

T

×

⎡

⎢
⎢
⎢
⎢⎢
⎣

y
(
t−0

)

ẏ
(
t−0

)

...

y(n−2)
(
t−0 )

y(n−1)
(
t−0

)

⎤

⎥
⎥
⎥
⎥⎥
⎦

. (20)

Proof: Consider t+0 as the initial time. The Laplace-
domain quantities L{y(t)} = Y (s), L{ẏ(t)} = sY (s) − y(t+0 ),

and L{y(n)(t)} = snY (s) − sn−1 y(t+0 ) − sn−2 ẏ(t+0 ) − · · · −
y(n−1)(t+0 ) give

L[y(t), ẏ(t), . . . , y(n)(t)]T

= [1, s, . . . , sn]T Y (s)

−

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

0 . . . . . . 0

1 0
...

s 1
. . .

...
...

. . .
. . . 0

sn−1 . . . s 1

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢
⎣

y
(
t+0

)

ẏ
(
t+0

)

...

y(n−1)
(
t+0

)

⎤

⎥
⎥
⎥
⎦

. (21)

Writing the Laplace transform of (18) as
[a0, a1, . . . , an−1, 1]L[y(t), ẏ(t), . . . , y(n−1)(t), y(n)(t)]T = 0
and using (21), we can solve for Y (s). The solution is

Y (s)

=

e−t0s

⎡

⎢⎢
⎢
⎣

sn−1

sn−2

...
1

⎤

⎥⎥
⎥
⎦

T
⎡

⎢⎢
⎢
⎢
⎣

1 0 . . . 0

an−1
. . .

. . .
...

...
. . .

. . . 0
a1 . . . an−1 1

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

y
(
t+0

)

ẏ
(
t+0

)

...

y(n−1)
(
t+0

)

⎤

⎥⎥
⎥
⎦

A(s)
.

(22)

Substituting in y(i)(t+0 ) = y(i)(t−0 ) + ey,i yields the decom-
position Y (s) = Y (s, t−0 ) + Y (s, ei ), where Y (s, t−0 ) and
Y (s, ei )—obtained by replacing y(t+0 ) in (22) with y(t−0 )
and ei , respectively—are the Laplace transforms of the natural
transient and the transient due to nonsmoothness in the input.
Writing out Y (s, t−0 ) explicitly gives (20). To obtain the
specific form of Y (s, ei ) in (19), using (5) and (22) gives

Y (s, ei )

=

e−t0s

⎡

⎢
⎢
⎢
⎣

sn−1

sn−2

...
1

⎤

⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

an−1
. . .

. . .
...

...
. . .

. . . 0
a1 . . . an−1 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ey,0
ey,1
...

ey,n−1

⎤

⎥
⎥
⎥
⎦

A(s)

=

e−t0s

⎡

⎢
⎢⎢
⎣

sn−1

sn−2

...
1

⎤

⎥
⎥⎥
⎦

T
⎡

⎢
⎢⎢
⎢
⎣

bn 0 . . . 0

bn−1
. . .

. . .
...

...
. . .

. . . 0
b1 . . . bn−1 bn

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

eu,0
eu,1
...

eu,n−1

⎤

⎥
⎥⎥
⎦

A(s)
(23)

which, after simplifications, is equivalent to (19). �
Notice that Proposition 5 quantifies the postswitching

response using only properties of the preswitching system
and signal. The prophetic result can provide guidance on
the switching instance as well as conditions for small/smooth
postswitching transient response. In (19) and (20), the weight-
ing of the input discontinuities is characterized by the norms
of the scaling transfer functions. Take (19) for instance.
The transient Y (s, ei ) is a linear combination of the delayed
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impulse responses of

G B,n(s) := bn

A(s)
, G B,n−1(s) := bns + bn−1

A(s)
, . . . . (24)

The overall transient speed depends on the poles and zeros in
the individual modes. The 2 norm of the impulse response
of G B,i equals the H2 norm of the stable transfer func-
tion G B,i(s). Thus, the 2 norm of the overall time-domain
response yei (t) = L−1{Y (s, ei )} is upper bounded by
||yei (t)||2 ≤ ||G B,n(s)||2|eu,n−1| + ||G B,n−1(s)||2|eu,n−2| +
. . . ||G B,1(s)||2|eu,0|. Computing the H2 norms of the G B,i(s)
values provides a quantitative understanding of the significant
terms in the discontinuities of the input and its derivatives; and
hence can guide designers about the selection of the switching
instance.

To examine the transient speed in add-on control, first
consider the natural response Y (s, t−0 ), which is (22) with
t+0 replaced by t−0 , namely

Y
(
s, t−0

) = e−t0s{G0(s)y
(
t−0

) + G1(s)ẏ
(
t−0

) + . . .
}

(25)

where

G0(s) = sn−1 + an−1sn−2 + · · · + a1

A(s)
= 1

s
− a0

A(s)

1

s
(26)

G1(s) =
...

sn−2 + an−1sn−3 + · · · + a2

A(s)
= 1

s
G0(s) − a1

A(s)

1

s

(27)

Gi (s) = 1

s
Gi−1(s) − ai

A(s)

1

s
∀i ∈ {1, 2, . . . , n − 1}. (28)

In the time domain, from Final Value Theorem, all elements
L−1{Gi (s)} ∀i in (25) have zero steady-state values. Hence,
the transient indeed eventually converges to zero. From (26),
L−1{G0(s)} is the difference between a unit step and the step
response of a0/A(s), whose transient duration depends on the
poles from A(s) = 0. L−1{G1(s)} from (27) is the differ-
ence between L−1{(1/s)G0(s)}—the integral of L−1{G0(s)}
(a signal with zero steady-state value)—and the step response
of a1/A(s). Due to the integral effect, the transient speed
of L−1[G1(s)] is slower than L−1[G0(s)]. Analogous results
hold for the general case (28).

For the response due to input discontinuities, with eu,i =
0 − u(i)(t−0 ), similar construction gives that Y (s, ei ) in (23) is

Y (s, ei ) = −e−t0s{G B,0(s)u
(
t−0

) + G B,1u̇
(
t−0

) + . . .
}

(29)

G B,0(s) = bnsn−1 + · · · + b2s + b1

A(s)
= G(s)

1

s
− b0

A(s)

1

s
(30)

G B,i(s) = 1

s
G B,i−1(s) − bi

A(s)

1

s
∀i ∈ {1, 2, . . . , n − 1}.

Thus, L−1{G B,0(s)} is the transient difference between
the step responses of G(s) and b0/A(s). In (26) and (30), the
scaling a0 and b0 changes only the relative magnitude of the
response. For a fast overall transient response, (29) needs to
match the transient speed of (25) as Y (s) = Y (s, t−0 )+Y (s, ei ).
If the step response of G(s) is slow, namely, L−1{G(s)/s}
in (30) is slow compared with L−1{1/s} in (26), then the tran-
sient of L−1{G B,0(s)} will be slower than that of L−1{G0(s)}.

Actually, to have the same speed of response, the ideal case
can be seen to be that G(s) = 1, i.e., the add-on compensation
is directly applied on the output y (which is, of course, not
feasible in practice).

Recall in Fig. 2, that G(s)—the dynamics between the
add-on control command and the plant output—is P/(1+ PC)
in UC and PC/(1 + PC) in UR/UE, respectively. Among
the closed-loop transfer functions in a general feedback block
diagram in Fig. 2, PC/(1 + PC) has the dynamic response
that is closest to G(s) = 1, and hence will provide the fastest
transient response from the perspective of add-on injection.

On the other hand, from the pole-zero point of view, UR
also has faster transient. As G(s) = P/(1 + PC) in UC and
G(s) = PC/(1 + PC) in UR, the zeros of G(s) in UC
and UR contain, respectively, the poles of C and the zeros
of C . The feedback controller C , if feasible, is preferred to be
designed to have stable zeros, as open-loop unstable zeros slow
down the transient and will yield various fundamental limita-
tions in the steady-state performance of a feedback system
(see [25]–[27]). For the poles of C , marginally stable poles or
poles close to the imaginary axis are often needed for high-
gain feedback at low frequencies (consider the case of PID
control).

If again the add-on command is not ideal or there exists
actuation delay, similar to (17), we can decompose the actual
add-on command into two parts: uadd−on = uideal + ε. In this
case, (18) becomes y(n)(t) + an−1 y(n−1)(t) + · · · + a1 ẏ(t) +
a0y(t) = bnε

(n)(t) + bn−1ε
(n−1)(t) + · · · + b1ε̇(t) + b0ε(t).

The transient response can now be decomposed into three
parts: Y (s) = Y (s, t−0 ) + Y (s, ei ) + Y (s, ε), where the term
Y (s, ε) is the frequency domain response of the residual
disturbance ε(t). Assume that the relative magnitude of the
residual disturbance ε(t) over uideal is small and on the same
scale for both UC and UR. The conclusion that UR provides
faster transient response than UC is then still valid.

VI. SIMULATION AND EXPERIMENTS

In this section, the theory is verified on the wafer scanner
system. The plant has a nominal model P(s) = 1/(0.2556s2+
0.279s) and is stabilized (in negative feedback) by a PID
controller C(s) = 10 000(1 + 2/s + 0.012s). The noncausal
differentiation action in the PID controller is approximated by
s/(εs + 1) with ε = 1/9000.

Evaluating the transient properties, such as the impulse
and the step responses, reveals that PC/(1 + PC) provides
much faster transient response with respect to rapid changing
input signals. For actual disturbance rejection, abrupt step
disturbances are first injected to the plant similar to that
in Fig. 3, at around 0.12 s. This time, the add-on compensation
is turned ON much faster than the case in Fig. 3. Fig. 7
shows the effect of add-on compensation in simulation. As the
baseline controller already contains an integrator, the step
disturbance is asymptotically rejected in the first subplot. For
verifying the transient performance, add-on compensation is
turned ON at t0 = 0.5 s and t0 = 0.25 s, using the UC and
UR configurations in Section III-B.

Both add-on compensation schemes affect the system
in the direction of reducing the error. Comparing the
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Fig. 7. Effects of add-on compensation in simulation.

two bottom subplots in Fig. 7, it can be seen that the earlier the
compensation is turned ON, the more significant the rejection
effect is. For UC compensation, however, there is a large
undershoot due to the system dynamics, yielding a much
slower and worse transient compared with UR. Experiments
on the physical system also strongly verify the results as
shown in Fig. 8, where it is observed that the simulation and
experimental results almost overlap with each other, and UR
provides almost zero transient response in the actual system.
Notice that compared with the results in Fig. 3, although
the transient of UC is better in Fig. 8 (thanks to an earlier
application of the add-on enhancement), the UC transient is
still significantly long compared with that of UR. The adverse
effect of UC transient always exists as long as there are delays
in turning ON the add-on control.

Furthermore, applying the obtained results (23), we can get
the transient due to input discontinuity in UR

L−1
{

e−t0s [(120s + 10 000)eu,0 + 120eu,1]
0.2556s3 + 120.3s2 + 10 000s + 20 000

}
(31)

and in UC

L−1
{

e−t0s ẽu,0

0.2556s3 + 120.3s2 + 10 000s + 20 000

}
(32)

where eu,0, eu,1, and ẽu,0 are the input discontinuities at time
0.5 s. Fig. 9 provides the computed transient response due to
input discontinuity. The red dashed lines provide a zoomed-
in view of the experimental data in Fig. 8. The blue solid
lines are directly computed using only the nominal system
model and input derivatives at time 0.5 s. It is clear that except
for some effects from noises in actual hardware (there is a
permanent 18-Hz force ripple in the motor), the calculated
responses closely match those in the actual system.

Fig. 8. Simulation and experimental comparison of transients in UC and UR
compensation.

Fig. 9. Verification of transient computation algorithm in UC and UR. Red
dashed lines are from actual experiments. Blue solid lines are computed from
the developed transient computation equations (the equations compute only
the add-on transient response, which starts at 0.5 s).

Of course, as discussed in the theoretical derivations,
the transient problem exists not just for the case of step
disturbances but for any add-on design with input disconti-
nuities. Fig. 10 reveals the add-on transient in compensat-
ing frequency-dependent disturbances (a 500-Hz vibration).
A similar superior performance of UR add-on design is
observed. In this example, it is no longer possible to straight-
forwardly tell the direction of the adverse transient in UC,
as the high-frequency input and its derivatives change very
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Fig. 10. Experimental comparison of add-on vibration compensations:
compensation turned ON at 0.1 s, to attenuate a 500-Hz external vibration
(the residual errors are from an internal 18-Hz motor force ripple).

rapidly with respect to time; and the obtained conclusions in
the paper are increasingly important for avoiding large servo
errors during controller implementation.

As a second example, we apply the developed tools to
analyze a switched control scheme. Let d = 0 in Fig. 2.
Consider the case of tracking a reference r as shown in the
top plot of Fig. 11(a), which consists of a 10-Hz periodic
signal and a 100-Hz signal that starts at around 0.6 s. r is
designed to contain no discontinuities itself. To track the more
aggressive 100-Hz reference signal, the feedback controller C
switches to a more aggressive mode C2 = 40 000 × (1 +
3/s + 0.02 s/(18 000 s + 1)) at around 0.75 s, resulting in
the improved tracking in Fig. 11(a). However, a detailed look
at the control output indicates a significant increase of |u(t)|
as shown in Fig. 11(b). As the saturation limits of the control
input are −10 and 10 V, such high-amplitude control inputs are
extremely dangerous for application in practice, despite that
the tracking error appears to be well controlled in simulation.
Applying Theorem 2 to analyze the overlooked danger, one
can find that due to the jump in the input to C2, a significant
discontinuity occurs in the output of C2: u(t+0 ) − u(t−0 ) =
−991.2 V; u̇(t+0 )− u̇(t−0 ) = 1.76255×107 V/s. The calculated
−991.2 V jump in the control command can be seen to match
well with the actual signal in Fig. 11(b). Furthermore, applying
Proposition 5 gives the star-marked solid line in Fig. 11(c),
which shows that the transient induced from the discontinuity
in C2 indeed is the main contributor of the abruptness in the
overall control command.

With the prediction in Fig. 11(c), one can turn ON the input
to C2 first and slightly delay the engagement of the output of
C2, to avoid injecting the high-amplitude signals in the closed
loop. For instance, a 20-step delay in turning ON the output
of C2 gives the servo results in Fig. 12, where in the top plot,
the control command is seen to be maintained well under the
saturation limits (actually no visual discontinuity or overshoot
is observable from the new control command); and in the

Fig. 11. Closed-loop signals with direct controller switching. (a) Refer-
ence and tracking error. (b) Corresponding control input. (c) Decomposition
of control command: the transient due to discontinuity dominates in the
postswitching transient control command.

Fig. 12. Closed-loop signals with smoothened switching.

bottom plot, the error remains to be controlled with a slight
0.05 s longer transient compared with Fig. 11(a).2

2Certainly, the transient can be further controlled using advanced switching
mechanism. This paper focuses on providing the fundamental root causes and
mathematical analysis tools.
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VII. CONCLUSION

This paper addresses the general input-to-output discontinu-
ity problem and applies the results to the transient improve-
ment of add-on control designs. Simulation and experimental
results are provided to show the validity of the theoretical
analysis. Essentially, undesired transients occur as long as
there are input discontinuities acting upon a dynamic sys-
tem with poor transient properties. The problem is not only
important for add-on compensation schemes, but also for
other applications, such as the switching between multiple
controllers.
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