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Abstract—This paper presents an adaptive control scheme
for identifying and rejecting unknown and/or time-varying
narrow-band vibrations. We discuss an idea of safely and
adaptively inverting a (possibly non-minimum phase) plant
dynamics at selected frequency regions, so that structured
disturbances (especially vibrations) can be estimated and
canceled from the control perspective. By taking advantage
of the disturbance model in the design of special infinite-
impulse-response (IIR) filters, we can reduce the adaptation
to identify the minimum amount of parameters, achieve
accurate parameter estimation under noisy environments,
and flexibly reject the narrow-band disturbances with clear
tuning intuitions. Evaluation of the algorithm is performed
via simulation and experiments on an active-suspension
benchmark.

Index Terms—adaptive regulation, loop shaping, inverse
control, vibration rejection, active suspension

I. Introduction

The rejection of single and multiple narrow-band dis-
turbances is a fundamental problem in many mechanical
systems that involve periodic motions. For example,
the shaking mechanism in active suspensions [1], the
rotating disks in hard disk drives [2], and the cooling
fans for computer products [3], all generate vibrations
that are composed of sinusoidal components in nature.
Challenges of the problem are that we often do not have
accurate knowledge of the disturbance frequencies, and
that in many applications the disturbance characteristics
may even change w.r.t. time and/or among different
products (e.g., in the hard disk drive industry [4]).

In various situations, hardware limitations or exces-
sive cost make it infeasible to re-design the hardware
for reducing these disturbances, and it is only possible
to address the problem from the control-engineering
approach. As narrow-band disturbances are composed
of sinusoidal signal components, controllers can be
customized to incorporate the disturbance structure to
asymptotically reject the vibrations. This internal-model-
principle [5] based perspective has been investigated in
feedback control algorithms in [1], [3], [6]–[8], among
which [6], [7] used state-space designs, and [1], [3], [8]
applied Youla Parameterization, a.k.a. all stabilizing con-
trollers, with a Finite Impulse Response (FIR) adaptive
Q filter. Alternatively, the disturbance frequency can be
firstly estimated and then applied for controller design.

X. Chen and M. Tomizuka are with the Department of Mechanical
Engineering, University of California, Berkeley, CA, 94720, USA (email:
maxchen@me.berkeley.edu; tomizuka@me.berkeley.edu)

This indirect-adaptive-control perspective has been con-
sidered in [9]–[11]. Indeed, frequency identification of
narrow-band signals is a problem that receives great
research attention itself. Among the related literature
we can find: (i) methods using nonparametric spectrum
estimation or eigen analysis (subspace methods) [12],
[13]; (ii) online adaptive identification approaches [14]–
[20]. Spectrum estimation and eigen analysis in gen-
eral require more expensive computation within the
sampling interval, and have lower resolutions for non-
stationary processes. Among references in group (ii), for
the identification of n frequency components, adaptive
notch filters in the orders of 5n− 1 [19], 2n + 6 [20], 3n
[15]–[17], and 2n [14], have been discussed.

In this paper we discuss a new adaptive incorporation
of the internal model principle for asymptotic rejection
of narrow-band disturbances. Different from the FIR-
based adaptive algorithms, we construct the controllers
and adaptation with Infinite Impulse Response (IIR)
filters and inverse system models. Applying these con-
siderations we are able to obtain a structured controller
parameterization that requires the minimum number of
adaptation parameters. An additional consideration is
that adaptation on IIR structures enables direct adaptive
control with adaptation algorithms that use the parallel
predictor, which is essential for accurate parameter con-
vergence under noisy environments [21]. The importance
of this aspect can also be seen from the aforementioned
literature on frequency identification. Finally, with the
inverse-model based design, the internal signals in the
proposed algorithm have clear physical meanings. The
controller structure extends the idea in [2]. The main
results of this paper, i.e., the design of inverse models,
the derivation of the cascaded IIR filters, and the adap-
tation algorithm for time-varying disturbance rejection,
however, are all newly developed. An additional con-
tribution is the application to a new class of systems
that has characteristics quite different from the hard disk
drive in [2]. A short version of the paper appeared in
[22]. This article is a substantially modified version with
proofs and derivations of equations, extended analysis
of the algorithms (especially the adaptive-control part),
and implementation details as well as the full simulation
and experimental results.

The algorithm is evaluated on an active suspension
system that has been described in [23]. Fig. 1 presents the
frequency response of the plant. It can be observed that
the system has a group of resonant and anti-resonant
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modes, especially at around 50 Hz and 100 Hz. Addi-
tionally, the system is open-loop stable but has multiple
lightly damped mid-frequency zeros and high-frequency
nonminimum-phase zeros. These characteristics place
additional challenges not just for adaptive disturbance
rejection, but also for general feedback control [24].
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Figure 1: Frequency response of the plant

II. SelectiveModel Inversion
Fig. 2 shows the proposed control scheme. We have

the following relevant signals and transfer functions:
• P(z−1) and P̂(z−1): the plant and its identified model.

They are open-loop stable in the benchmark;
• C(z−1): the baseline controller designed to provide a

robustly stable closed loop. For controlling a stable plant,
we assume that C(z−1) is also stable;
• d(k) and d̂(k): the actual (unmeasurable) disturbance

and its online estimate. To see this, note that

d̂(k) = P(q−1)u(k) + d(k)− P̂(q−1)u(k) ≈ d (k) ,

where q−1 is the one-step-delay operator (in this paper,
P(z−1), P(q−1), and P(e− jω) are used to denote respectively
the transfer function, the pulse transfer function, and the
frequency response of P(z−1)). d̂(k) is quite accurate as
P̂(z−1) is identified quite accurately in the benchmark.
The minimum requirement for P̂(z−1) is that is should be
accurate within the frequency region where disturbance
occurs. The noise due to model mismatch, if any, can be
later reduced by filtering in the adaptation scheme;
• y(k): the measured residual errors;
• P−1

m (z−1) and z−m: these are constructed such that:
1) Pm(z−1) has a relative degree of zero (and hence

P−1
m (z−1) is realizable);
2) P−1

m (z−1) is stable; and
3) within the frequency range of the possible distur-

bances, P(z−1)
∣∣∣
z=e jω ≈ z−mPm(z−1)

∣∣∣
z=e jω , namely, P−1

m (z−1)
is a nominal inverse model (without delays) of P(z−1).
Indeed in Fig. 1, the dashed line depicts the frequency
response of z−mPm(z−1), which matches well with the
experimental frequency response up to around 350 Hz;

• Parameter adaptation algorithm: provides online
information of the characteristics of d̂(k);
• c (k): the compensation signal to asymptotically reject

the narrow-band disturbance in d (k).
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Figure 2: Structure of the proposed control scheme

Ignoring first the shaded blocks (about parameter
adaptation) in Fig. 2, we have

y (k) = d (k) + P(q−1)u (k)

u(k) = −C(q−1)y (k)− c(k)

c(k) = Q(q−1)[P−1
m (q−1)y(k)− q−mu(k)]

from which we can derive the sensitivity function,
namely, the transfer function from d(k) to y(k):

S(z−1) = Gd2y(z−1) =
(
1− z−mQ(z−1)

)
/X(z−1) (1)

X(z−1) = 1 + P(z−1)C(z−1) + Q(z−1)(P−1
m (z−1)P(z−1)− z−m)

(2)

From the frequency-response perspective (replace z−1

with e− jω), if P(e− jω) = e− jmωPm(e− jω) in (1) and (2), then
the last term in X(e− jω) vanishes and

S(e− jω) =
(
1− e− jmωQ(e− jω)

)
/
(
1 + P(e− jω)C(e− jω)

)
. (3)

If we design a Q-filter Q(z−1) with its frequency re-
sponse as shown in Fig. 3, then 1− e−mjωQ(e− jω), and
thus Gd2y(e− jω) in (1), will become zero at the center
frequencies of Q(z−1), namely, disturbances occurring at
these frequencies will be strongly attenuated. Assume
first that vibrations occur exactly at 60 Hz and 90 Hz.
Q(z−1) will filter out all other frequency components
such that its output c(k) consists of signals only at the
disturbance frequencies. More specifically, c(k) is actually
an estimated version of P−1(q−1)d(k) if d(k) contains just
narrow-band vibrations. To see this, notice in Fig. 2, that
the control signal u (k) flows through two paths to reach
the summing junction before Q(z−1): one from the plant
P(z−1) to the inverse P−1

m (z−1), and the other through z−m.
Hence the effect of u(k) gets canceled at the summing
junction before Q(z−1), and only the filtered disturbance
P−1

m (q−1)d(k) enters Q(z−1).
We remark that the shape of Q(z−1) in Fig. 3 is central

in the proposed design scheme. Uncertainties exist in
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Figure 3: Frequency response of a Q-filter example

P(z−1) (particularly at high frequencies), no matter how
accurate Pm(z−1) is constructed (based on modeling or
system identification). It is not practical (and is even
dangerous) to invert P(z−1) over the entire frequency
region. Keeping the magnitude of Q(z−1) small except
at the interested disturbance frequencies forms a “lo-
cal/selective” model inverse (SMI) of the plant dynam-
ics, such that errors due to model mismatches do not
pass through Q(z−1) and equation (3) remains a valid
approximation of (1). In this way, closed-loop stability
can be readily preserved since 1/(1 + P(z−1)C(z−1)) is the
sensitivity function of the baseline system (and hence
is stable). A stable Q(z−1) in this case will assure the
stability of S(z−1)≈ (1−z−mQ(z−1))/(1+P(z−1)C(z−1)). Un-
der the above conditions, the proposed scheme becomes
a special form of Youla parameterization [25], where
the add-on stable Q parameterization does not alter
the closed-loop stability and focus on just disturbance
cancellation. Of course, a prior assumption is that good
model information can be obtained at the disturbance
frequencies. If the system already has large uncertainties
at the disturbance frequencies, it is best not to apply
large control effort there in the first place.

The full stability result is summarized as follows:

Theorem 1. Under the definitions listed at the beginning
of this section, when there is no mismatch between P(z−1)
and z−mPm(z−1), the closed loop in Fig. 2 is stable as long as
Q(z−1) is stable. When there is (stable and bounded) model un-
certainty ∆(z−1) such that P(z−1) = z−mPm(z−1)[1 + ∆(z−1)],
the closed loop is stable if Q(z−1) is stable and∣∣∣Q(e− jω)

∣∣∣ < ∣∣∣∣∣∣1 + P(e− jω)C(e− jω)
∆(e− jω)

∣∣∣∣∣∣ , ∀ω ∈ [0,π] . (4)

Proof: The nominal stability condition is a standard
result of Youla parameterization. For robust stability,
noting that ∆(z−1) = P−1

m (z−1)P(z−1)−z−m, from (2), we can
obtain the closed-loop characteristic polynomial:

1 + P(z−1)C(z−1) + z−mQ(z−1)∆(z−1) = 0 (5)

The system is thus robustly stable if ∀ ω ∈ [0,π]∣∣∣e− jmω∆(e− jω)Q(e− jω)
∣∣∣ < ∣∣∣1 + P(e− jω)C(e− jω)

∣∣∣ . (6)

Noticing that the delay term e− jmω has unity magnitude,
we can transform (6) to (4).

The benchmark system has visible uncertainties only
at high frequencies (this is also the common case in
general mechanical systems). (4) then provides very
flexible design freedom for Q(z−1). More important, the
stability condition in Youla parameterization also holds
when Q(z−1) is made adaptive (but is still stable). This
greatly benefits the rejection of unknown and time-
varying vibrations when we update the parameters of
Q(z−1).

In the next section, we propose an approach to obtain
the optimal inverse filter P−1

m (z−1). Following that, in
Section IV we study the application of the internal model
principle to design a customized Q(z−1) that satisfies the
frequency response in Fig. 3 for SMI.

III. Design of The Inverse Dynamics
In the aforementioned analysis we have assumed

P−1
m (z−1) to be stable. It is well known that nonminimum-

phase zeros in P(z−1) not only make P−1(z−1) unstable but
also cause control limitations. The benchmark system has
multiple of such zeros. We discuss next an H∞ treatment
of the problem when designing P−1

m (z−1).
Let S denote the set of all stable discrete-time rational

transfer functions. Recalling the ideal situation where
P(z−1) = z−mPm(z−1), we search among S to find M(z−1) =
P−1

m (z−1) such that the following two criteria are satisfied:
(i) model matching: to minimize the cost func-

tion ||W1(z−1)
(
M(z−1)P(z−1)− z−m

)
||∞, namely, we mini-

mize the maximum magnitude of the model mismatch
M(z−1)P(z−1)−z−m, weighted by W1(z−1). The ideal solu-
tion, if P−1(z−1) is stable, is simply M(z−1) = z−mP−1(z−1).
The weighting function determines the interested region
where we would like to have good model accuracy.

(ii) gain constraint: as the inverse is used for process-
ing the measured output signal, we should be careful
not to amplify the noises in y(k). Consider the problem
of min ||W2(z−1)M(z−1)P(z−1)||∞, where the magnitude of
M(z−1)P(z−1) is scaled by the weight W2(z−1). The opti-
mal solution for this part alone would be that M(z−1) = 0,
i.e., M(z−1) will not amplify any of its input components.
To make full use of this gain constraint, we combine it
with criterion (i) to form:

min
M(z−1)∈S

∥∥∥∥∥∥
[

W1(z−1)
(
M(z−1)P(z−1)− z−m

)
W2(z−1)M(z−1)P(z−1)

]∥∥∥∥∥∥
∞

. (7)

The optimization in (7) finds the optimal inverse that
preserves accurate model information in the frequency
region specified by W1(z−1), and in the meantime penal-
izes excessive high gains of M(z−1) at frequencies where
W2(z−1) has high magnitudes. Typically W1(z−1) is a low-
pass filter and W2(z−1) is a high-pass filter.



By the formulation of the problem, (7) falls into the
framework of H∞ control, and can be efficiently solved
in the robust control toolbox in MATLAB. The solution
exists as long as P(z−1), W1(z−1), and W2(z−1) are stable.
The order of M(z−1) will be the sum of the orders
of W1(z−1), W2(z−1), z−m and P(z−1). After solving (7),
standard model reduction techniques can be applied to
obtain a lower-order solution of M(z−1). Actually, the
dashed line in Fig. 1 is the resulted z−mPm(z−1) where we
have first obtained P−1

m (z−1) from (7) and then plotted the
inverse of P−1

m (z−1) combined with z−m. We can see that
the optimal solution matches well with the actual plant
dynamics, and moreover, P−1

m (z−1) is stable although
P(z−1) is nonminimum-phase.

Remark 1: similar to standard H∞ controller design,
the transfer function P(z−1) is used in the proposed
optimization. Hence the accuracy of M(z−1) depends on
the quality of P(z−1). It is well understood that accurate
modeling of very high-frequency dynamics is difficult,
if possible at all, for all mechanical systems. Very sharp
resonant or anti-resonant modes are also difficult to
model exactly, since very small mismatch in the reso-
nances (due to e.g. temperature change) will make P(z−1)
behave differently from the actual plant at the resonant
frequencies. So practical design should avoid focusing on
model inversion at very high frequencies, and be aware
of the challenges in the presence of sharp resonances.

Remark 2: commonly, nonminimum-phase zeros oc-
cur at high frequencies. If there are such zeros in the
frequency region of the vibrations, the problem becomes
fundamentally much more challenging. For instance, if
there is a pair of zeros at 150 Hz on the unit circle, then
control input at 150 Hz will not be able to impact the
output of the plant at all!

In the benchmark, to obtain the inverse model, we first
apply system identification (we use the subspace system
identification algorithm [26]) to obtain P(z−1) from the
collected input-output data, and then perform the algo-
rithm in this section to get P−1

m (z−1). The order of the
plant model (provided by the benchmark) for simulation
is 25. The order of the obtained P−1

m (z−1), after standard
model reduction, is 23. This value is quite reasonable
considering the high-order nature of the physical system.

IV. Disturbance Observer Design

With the inverse and the other filters specified in Fig.
2, it remains to design Q(z−1), which is the heart of the
selective model inversion and disturbance observer. For
narrow-band vibrations, there exist configurations that
can achieve optimal disturbance rejection.

Recall (1). To regulate y (k) = S(q−1)d (k) to zero, it
suffices to design Q(z−1) such that at the steady state(

1− q−mQ(q−1)
)
d (k) = 0. (8)

We propose an IIR structure Q(z−1) = BQ(z−1)/AQ(z−1).
For a vibration disturbance that is composed of
d (k) =

∑n
i=1 Ci sin(ωik + ψi) (Ci , 0, ωi , 0, ψi ∈ R), it

can be verified that, after two steps of transient,(
1−2cos(ωi)q−1 + q−2

)
Ci sin(ωik +ψi) = 0. This is the con-

cept of the intern model principle [5], [27]. Define

A(z−1) ,
n∏

i=1

(1−2cos(ωi)z−1 + z−2), (9)

then

A(q−1)d(k) =

n∑
i=1

n∏
j=1

(1−2cos
(
ω j

)
q−1 + q−2)Ci sin(ωik +ψi)

=

n∑
i=1

 n∏
j=1, j,i

(1−2cos
(
ω j

)
q−1 + q−2)

×
(1−2cos(ωi)q−1 + q−2)Ci sin(ωik +ψi)

is zero after 2n steps of transient, and (8) is achieved if

1− z−mQ(z−1) = K(z−1)
A(z−1)

AQ(z−1)
. (10)

To get a 1 − z−mQ(z−1) with a magnitude response
similar to that in Fig. 3, A(z−1)/AQ(z−1) should have a
notch-filter structure. A natural choice is to damp the
roots of A(z−1) by a scalar α ∈ (0,1) and let

AQ(z−1) ,
n∏

i=1

(
1−2αcos(ωi)z−1 +α2z−2

)
, (11)

i.e., AQ(z−1) = A(αz−1). This makes Q(z−1) stable, and will
benefit the parameter adaptation algorithm later. To see
the latter point, expanding the product in (9), we can get

A(z−1) = 1 + a1z−1 + · · ·+ anz−n + · · ·+ a1z−2n+1 + z−2n, (12)

where we have mapped the parameters {ωi}
n
1 in (9) to

{ai}
n
1 , and the new coefficient vector {1,a1, . . . ,an, . . . ,a1,1}

has a mirror symmetric form by construction. Replacing
every z−1 with αz−1, we obtain AQ(z−1) = A(αz−1), which
is also linear in {ai}

n
1 . Only these n parameters need to

be later identified. This is the minimum possible number
for n unknown narrow-band signals.

The filter K(z−1) is necessary to make the solution
causal for a general m. Without K(z−1), (10) indicates that
Q(z−1) = zm(AQ(z−1) − A(z−1))/AQ(z−1), where the non-
realizable zm is non-trivial to cancel. A design guide for
K(z−1) is that it should not introduce serious magnitude
distortion to the achieved notch shape of A(z−1)/A(αz−1)
in 1−z−mQ(z−1) = K(z−1)A(z−1)/A(αz−1). This way we can
control the noise amplification in (8), especially when
d(k) contains other disturbances not modeled by (9). We
discuss next choices of K(z−1) for different values of m.

A. The case for m = 0
For the simplest case m = 0, a scalar value K(z−1) = k0

provides a realizable solution to (10). Recalling Q(z−1) =
BQ(z−1)/AQ(z−1) = BQ(z−1)/A(αz−1) and (12), we reduce
(10) to A(αz−1)−BQ(z−1) = k0A(z−1), which yields

BQ(z−1) = (1− k0) + (α− k0)a1z−1 + · · ·+ (αn
− k0)anz−n+

· · ·+ (α2n−1
− k0)a1z−2n+1 + (α2n

− k0)z−2n. (13)



It can be shown (see Appendix) that k0 = αn leads
to the common factor 1−αz−2 in BQ(z−1), which places
two symmetric zeros to Q(z−1) at ±

√
α. This provides

balanced magnitude response for Q(z−1) at low and high
frequencies.

B. The case for m = 1
Applying analogous analysis as in Section IV-A, if m =

1, we reduce (10) to A(αz−1)− z−1BQ(z−1) = k0A(z−1), the
solution of which is BQ(z−1) = (1− k0)z + (α− k0)a1 + · · ·+
(αn
−k0)anz−n+1 + · · ·+ (α2n−1

−k0)a1z−2n+2 + (α2n
−k0)z−2n+1.

To let the term (1− k0)z vanish for realizability, we
require k0 = 1, which gives

BQ(z−1) =

2n∑
i=1

(αi
−1)aiz−i+1; ai = a2n−i, a2n = 1. (14)

As an example, when n = 1, (9), (12) and (14) yield a1 =
−2cosω1 and

Q(z−1) =
(1−α)

(
2cosω1− (1 +α)z−1

)
1−2αcosω1z−1 +α2z−2

.

Evaluating the frequency response at ω1 and using
the identity 2cos(ω1) = e jω1 + e− jω1 , we can obtain that
Q(e− jω1 ) = e jω1 . Thus, Q(z−1) provides exactly one-step
advance to counteract the one-step delay in 1−z−1Q(z−1)
at the center frequency ω1, hence the zero magnitude
response of 1− z−1Q(z−1) at ω1.

C. The case for an arbitrary m
For m > 1, assigning K(z−1) = k0 no longer gives a

realizable solution. Defining K(z−1) as a general FIR filter
can address the causality issue. This will give slightly
less control over the shape of K(z−1)A(z−1)/A(αz−1), as
K(z−1) is now an FIR to be computed and its shape is
non-trivial until we have solved (10). Another way that
provides additional design freedom is to consider an IIR
design:

K(z−1) =

N∑
i=0

ki

[
A(z−1)

A(αz−1)

]i

, ki ∈ R. (15)

Namely, K(z−1) is chosen as a combination of N (≥ 0)
filters that influence only the local loop shape (recall
that A(z−1)/A(αz−1) is a notch filter). Take the example
of m = 2. When N = 1,1 (10) is

1− z−2Q(z−1) =

(
k0 + k1

A(z−1)
A(αz−1)

)
A(z−1)

A(αz−1)
,

which gives

Q(z−1) = z2
(
1− k0

A(z−1)
A(αz−1)

− k1
A(z−1)2

A(αz−1)2

)
. (16)

Partitioning, we obtain

Q(z−1) , z2
(
1−ρ1

A(z−1)
A(αz−1)

)(
1−ρ2

A(z−1)
A(αz−1)

)
. (17)

1If N = 0, the result is unrealizable since K(z−1) is a scalar again.

The numerator of Q(z−1) is given by BQ(z−1) =
z2(A(αz−1)−ρ1A(z−1))(A(αz−1)−ρ2A(z−1)). Recalling (12),
we have A(αz−1)−ρiA(z−1) =

(
1−ρi

)
+

(
α−ρi

)
a1z−1 + · · ·+

(α2n
−ρi)z−2n. To make the z2 term vanish in BQ(z−1) for

realizability of Q(z−1), we must have 1−ρi = 0 for i = 1,2,
yielding k0 = 2, k1 = −1 in (16). With these solved ρi and
ki, after simplification, (17) and (15) become

Q(z−1) =

∑2n
i=1(αi

−1)aiz−i+1

A(αz−1)

2

; ai = a2n−i, a2n = 1 (18)

K(z−1) = 2−
A(z−1)

A(αz−1)
. (19)

For a general integer m, when N = m−1, applying anal-
ogous analysis, we get the following partitioned Q(z−1)
from (15) and (10):

Q(z−1) = zm
m∏

i=1

(
1−ρi

A(z−1)
A(αz−1)

)
.

The solution pair is thus obtained when ρi = 1 ∀i, and

Q(z−1) =

∑2n
i=1(αi

−1)aiz−i+1

A(αz−1)

m

(20)

1− z−mQ(z−1) = 1−
(
1−

A(z−1)
A(αz−1)

)m

(21)

=
A(z−1)

A(αz−1)

m∑
i=1

(
m
i

)[
−

A(z−1)
A(αz−1)

]i−1

. (22)

Here ai is as defined in (18); and from (21) to (22) we have

used the identity (1 + x)m = 1 +

(
m
1

)
x + · · · +

(
m
m

)
xm,

where
(

m
i

)
= m!

i!(m−i)! is the binomial coefficient.

It can be observed that the general result obtained here
is essentially a cascaded version of the developed Q(z−1)
in Section IV-B. For the sake of clarity, we denote now
the Q filter for m = 0 and m = 1 respectively as Q0(z−1)
and Q1(z−1). From the discussion at the end of Section
IV-B, Q1(z−1) provides one-step phase advance at the
disturbance frequencies {ωi}

n
1 , to address the term z−1 in

1−z−1Q1(z−1). For a general m, we see that the cascaded
Q(z−1) =

[
Q1(z−1)

]m
in (20) works the same way since

1− z−mQ(z−1) = 1− (z−1Q1(z−1))m, i.e., each Q1(z−1) block
compensates one z−1 term, to achieve 1− e− jmωQ(e− jω) =
0 when ω ∈ {ωi}

n
1 . Recall from Fig. 3, that Q(z−1) is

a special type of bandpass filter. Cascading multiple
Q1(z−1) together not only provides the compensation for
z−m, but also provides an enhanced bandpass frequency
response, as |Q(e− jω)|m ≤ |Q(e− jω)| if m≥ 1 and |Q(e− jω)|< 1
(when ω is outside of the passband). If needed, we can
additionally cascade one or multiple blocks of Q0(z−1) to
Q(z−1), which will further reduce the magnitude of the
filter outside the passband.

V. Parameter Adaptation
This section discusses the online adaptation of Q(z−1)

when the disturbance characteristics is not known. Recall



from Fig. 2, that the residual is

y (k) = Gd2y(q−1)d(k) = S(q−1)d(k) ≈
1− q−mQ(q−1)

1 + P(q−1)C(q−1)
d(k).

The beginning of Section II has discussed the obtaining
of d̂(k) ≈ d(k). Letting w(k) , d̂(k)/(1 + P(q−1)C(q−1)) and
recalling the solution of 1−q−mQ(q−1) in (22), we get

y(k) ≈

 m∑
i=1

(
m
i

)[
−

A(q−1)
A(αq−1)

]i−1 A(q−1)
A(αq−1)

w(k)

The direct dynamics between w(k) and y(k)
is nonlinear w.r.t. the unknown coefficients
θ , [a1,a2, . . . ,an]T in Q(z−1). Noticing however the

filter
∑m

i=1

(
m
i

)[
−

A(q−1)
A(αq−1)

]i−1
is a linear combination of

(and actually also normalized) notch filters,2 we can
simply design to minimize

ỹ(k) = A(q−1)/A(αq−1)w(k). (23)

Additional filtering can be applied on w(k) to improve
the signal-to-noise ratio. In the benchmark, the interested
disturbance-rejection region is [50–95] Hz. A bandpass
filter in Fig. 4 can be used on w (k).
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Figure 4: Example bandpass filter

The structure of (23) is special (and simplified) for
adaptive control due to the close relationship between
the numerator and the denominator. For such type of
adaptation model, [2] has proposed a two-stage adap-
tation scheme that combines recursive least squares
and output-error based parameter adaptation algorithms
(PAA) for identification of θ. We list below only the
central equations and then focus on applying the PAA
for identifying different time-varying vibrations.

Step one: recursive least squares (RLS) aiming at min-
imizing A(q−1)w(k), where A(q−1) is given by (12):

εo (k) = −Â(q−1)w(k) (24)

= −ψ (k−1)T θ̂ (k−1)− (w (k) + w (k−2n)) (25)

θ̂ (k) = θ̂ (k−1) +
P (k−1)ψ (k−1)εo (k)

1 +ψ (k−1)T P (k−1)ψ (k−1)
(26)

P (k) =
1
λ (k)

[
P(k−1)−

P(k−1)ψ(k−1)ψT(k−1)P(k−1)
λ (k) +ψT(k−1)P(k−1)ψ(k−1)

]
Here the regressor vector ψ(k − 1) = [ψ1(k −
1), . . . ,ψn(k− 1)]T is computed from ψi (k−1) = w (k− i) +
w (k−2n + i) ; i = 1, ...,n−1, and ψn (k−1) = w (k−n).

2In special case where m = 1, this summation term becomes identity.

Step two: parallel adaptation algorithm with
a fixed compensator C(z−1) = 1 + c1αz−1 + · · · +
cnαnz−n + · · · + c1α2n−1z−2n+1 + α2nz−2n, aiming at
minimizing A(q−1)/A(αq−1)w(k). With the newly
introduced denominator part, the regressor vector
is composed of φi (k−1) = w (k− i) + w (k−2n + i) −
αie (k− i) − α2n−ie (k−2n + i) ; i = 1, ...,n − 1, and
φn (k−1) = w (k−n)−αne (k−n). We have

e (k) = φ (k−1)T θ̂ (k) + w (k) + w (k−2n)−α2ne (k−2n)

ν (k) = C(q−1)e(k) = e (k) +α2ne (k−2n) +ϕ (k−1)Tθc (27)

eo (k) = φ (k−1)T θ̂ (k−1) + w (k) + w (k−2n)−α2ne (k−2n)

νo (k) = eo (k) +α2ne (k−2n) +ϕ (k−1)Tθc (28)

where e(k) and ν(k) are respectively the a posteriori
estimation and adaptation errors; eo(k) and νo(k) are
respectively the a priori estimation and adaptation er-
rors; and θc , [c1,c2, . . . ,cn] is the coefficient vector of
C(z−1). ϕ(k − 1) = [ϕ1 (k−1) ,ϕ2 (k−1) , . . . ,ϕn (k−1)]T in
(27) and (28) are computed from: ϕi (k−1) = αie (k− i) +
α2n−ie (k−2n + i) ; i = 1, ...,n−1, ϕn (k−1) = αne (k−n). The
final parameter adaptation equations are

θ̂ (k) = θ̂ (k−1) +
P (k−1)

(
−φ (k−1)

)
νo (k)

1 +φ (k−1)T P (k−1)φ (k−1)
(29)

P (k) =
1
λ (k)

[
P(k−1)−

P(k−1)φ(k−1)φT(k−1)P(k−1)
λ (k) +φT(k−1)P(k−1)φ(k−1)

]
The RLS algorithm is globally convergent if the adap-

tation input contains pure narrow-band vibrations, but
yields biased estimate if there are colored input noises.
The parallel algorithm in Step two provides accurate
local convergence but needs proper parameter initializa-
tion. Steps one and two are therefore connected by using
the final estimated parameter θ̂o at Step one to initialize
θc and θ̂ in Step two. The switching between the two
steps can be made automatic [2] (after some tuning) or
simply by a fixed time window to run Step one.

To have good convergence under noisy environments,
let α in Step two initialize from a relatively small value
(e.g. 0.8) and converge gradually to a value that is
close to 1 (e.g. 0.99). The estimated θ̂(k) is then used
to construct the Q filter designed in the previous section
(the coefficient α in the Q filter for implementation does
not need to be the same as that used in parameter
adaptation).

The forgetting factor λ(k) determines how much infor-
mation is used for adaptation. In this article we suggest
the following tuning rules:

(i) rapid initial convergence: initialize the forgetting
factor to be exponentially increasing from λ0 to 1 in
the first several samples, where λ0 can be taken to be
between [0.92,1)

(ii) adjustment for sudden parameter change: when
the prediction error encounters a sudden increase, indi-
cating a change of system parameters, switch from Step
two to Step one, reduce λ (k) to a small value λ (e.g. 0.92



in the benchmark), and then increase it back to its steady-
state value λ (usually close to 1), using the formula
λ(k) = λ−λrate(λ−λ(k−1)), with λrate [preferably in the
range (0.9,0.995)] defining the speed of convergence.

(iii) adjustment for continuously changing parameters:
when the parameters are changing, keep λ(k) strictly
smaller than one, using e.g., a constant λ(k) (< 1).

VI. Implementation
In this section we provide some details about imple-

menting the algorithm:
Obtaining the frequencies from the identified param-

eters: from (9) and (12), the vibration frequen-
cies and the identified parameters are mapped by∏n

i=1

(
1−2cos(ωi)z−1 + z−2

)
= 1 + a1z−1 + · · · + anz−n + · · · +

a1z−2n+1 + z−2n. For the simplest case where n = 1, we
have a1 = −2cosω1, from which we can compute the
vibration frequency ω1 = 2πΩ1Ts, where the unit of Ω1
is Hz. The parameter a1 is online updated and Ω1 can
be computed offline for algorithm tuning. For n > 1, as(
1−2cos(ωi)z−1 + z−2

)
=

(
1− e jωiz−1

)(
1− e− jωiz−1

)
, ωi can

be computed offline via calculating the angle of the com-
plex roots of 1+a1z−1 + · · ·+anz−n + · · ·+a1z−2n+1 +z−2n = 0.

Algorithm tuning: besides the above structural map-
ping between the identified parameters and the vibration
frequency, another property is also useful for algorithm
tuning: the width of the attenuation bandwidth in Fig.
3 is determined by the parameter α in (11). When α is
smaller but very close to one, the magnitude of Q(z−1)
is very small except at the vibration frequencies. The
closed-loop robust stability will then be easy to satisfy
from Theorem 1. This will however require very accurate
information of the disturbance frequency. Designers can
gradually reduce α to reach the desired attenuation
bandwidth. Keep in mind, however, that the Q filter
should satisfy the gain constraint (4) for stability.

Baseline controller: the active suspension system is
open-loop stable. Since the benchmark is on narrow-
band vibration rejection rather than motion control, we
used a baseline controller (provided by the benchmark3)
that has very small gains to achieve closed-loop robust
stability. For general motion control problems, the base-
line controller should also be carefully chosen to provide
the standard loop-shaping performance (see, e.g., [2]).

VII. Simulation and Experimental Results
We apply in this section the proposed scheme to

the benchmark on active suspension. In this system,
the plant delay m = 2 in the modeling of P(z−1)

∣∣∣
z=e jω ≈

z−mPm(z−1)
∣∣∣
z=e jω . Hence two Q1(z−1) blocks are needed

in (20). Vibrations occur in the middle frequency region
between 50 Hz and 95 Hz. There are also other noises
at low and high frequencies. To enhance the bandpass
property of Q(z−1), we added one additional Q0(z−1)

3See http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/
benchmark_adaptive_regulation/index.html

block designed in Section IV-A, and prefiltered the input
to the PAA by a bandpass filter as shown in Fig. 4
to remove the bias and other high-frequency noises in
the estimated disturbance. Three levels of evaluations
are conducted. Within each level, three types of distur-
bances are considered: the first with constant unknown
frequencies injected at a certain time (denoted as simple
step test), the second with sudden frequency changes
at specific time instances, and the third with chirp-
changing frequencies. The graphical and numerical data
are compared to other participants of the benchmark.

A. Level 1: rejection of single-frequency vibrations
Fig. 5 shows the time trace of the residual errors

(experimental result) for a time-varying vibration with
the following characteristics: the disturbance frequency
changes in the pattern of null→ 75Hz→ 85Hz→ 75Hz→
65Hz→ 75Hz→ null, occurring respectively at 5 sec, 8
sec, 11 sec, 14 sec, 17 sec, and finally 32 sec, when
the disturbance is turned off. In the presence of vari-
ous frequency jumps, the algorithm is seen to provide
rapid and strong vibration compensation. Comparing
the data at 2 sec and 7 sec, we see that the steady-state
residual errors with the compensation scheme (data at
7 sec) has been reduced to be at the same magnitude
as the baseline case (at 2 sec) where no disturbance is
present. Summarized in Table I are the simulation and
experimental results of a full set of evaluations covering
different frequency values. The performance is evaluated
by two quantitative values: the 2-norm values of the
transient errors at the initial 3 seconds after disturbance
injection (denoted as ||e||22 T©), and the maximum values
of the residual error. It can be seen the performances at
different frequencies are all similar to that in Fig. 5.
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Figure 5: Experimental results of rejecting a narrow-
band disturbance with step frequency changes.

At a particular frequency, Fig. 6 presents the steady-
state error spectra when the system is subjected to a
75-Hz disturbance. With the compensation scheme, the
spectral peak at 75 Hz has been reduced from around
−42 dB to −91 dB, indicating a disturbance attenuation of
about 49 dB (the benchmark specification is 40 dB). These
results are directly reflected in Fig. 7, which presents
the magnitude responses of the sensitivity functions



Table I: Results of rejecting vibrations with step changes
in frequencies (level 1)

freq. (Hz) ||e||22 T© (×10−3V2) max |e| (×10−3V)

Si
m

ul
at

io
n

Se
q.

1 60→70 20.78 22.10
70→60 11.21 19.80
60→50 15.51 19.40
50→60 10.39 20.98

Se
q.

2 75→85 19.29 22.43
85→75 10.12 17.37
75→65 10.66 18.96
65→75 9.09 19.17

Se
q.

3 85→95 17.09 23.93
95→85 12.13 23.02
85→75 10.15 18.96
75→85 8.64 16.93

Ex
pe

ri
m

en
t

Se
q.

1 60→70 19.50 23.95
70→60 13.51 20.27
60→50 28.47 23.85
50→60 15.62 22.62

Se
q.

2 75→85 16.64 20.16
85→75 9.93 16.61
75→65 11.31 20.28
65→75 10.11 18.93

Se
q.

3 85→95 135.00 25.18
95→85 16.07 19.06
85→75 10.33 18.94
75→85 8.56 15.26

(note the sharp notch at 75 Hz and small amplifications
at other regions). During actual experiments there are
random noises that are time-dependent. Hence compar-
ing to Fig. 6a, the open- and closed-loop spectra, at
frequencies other than the spectral peaks, look slightly
more different in Fig. 6b.
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(b) Experiment

Figure 6: Error spectra of rejecting a 75 Hz vibration
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Figure 7: Magnitude response of the sensitivity functions
with (w/) and without (w/o) the proposed compensator

The algorithm is additionally tested at frequencies
uniformly sampled between 50 Hz and 95 Hz. Table II
summarizes, from the second to the last columns, the
overall 2-norm reduction of the errors (global attenuation
GA), the disturbance attenuation (DA) at the vibration
frequencies, the maximum spectral amplification, the
3-sec transient value of ||e||22 T©, the residual value of
||e||22 at the final 3 seconds (denoted as ||e||22 R©), the
maximum of |e|, and lastly a scalar called transient ratio
(T ratio). T ratio is the ratio between ||e||22 at two time
windows: the first from 7 sec to 10 sec (disturbance
was injected at 5 sec); the other at the final 3 seconds.
It is a measure of whether the residual errors have
converged to the steady-state values after two seconds
(required specification from benchmark) of running the
adaptive algorithm. If T ratio is less than 1.21, it is
regarded that the algorithm has fully converged (100%
satisfaction in the benchmark). The numbers indicate
that, similar to the case in Fig. 6, in all tests, the narrow-
band disturbance has been greatly attenuated within a
short period of time. As the system has two pairs of
strong resonant and anti-resonant modes neat 50 Hz and
100 Hz (recall Fig. 1), we intentionally reduced the depth
of attenuation at frequencies below 52 Hz and above 92
Hz in the experiments. This is done by selecting α to be
closer to 1, and hence a sharper notch shape in Fig. 3.
The simulation results do not have this modification and
reflect the best possible performance.

Fig. 8 shows a summary, in the same scale, of the level-
1 time-domain results under different specifications. The
first subplot is the time-domain result corresponding to
the spectra in Fig. 6; and the second subplot is another
example with step frequency changes in the disturbance.
The third one is for the case when the disturbance is a
chirp signal whose frequency sweeps between 50 Hz and
95 Hz in the time windows {[10–15], [20–25]} sec. Under
such time-varying vibrations, we see that the proposed
algorithm maintains its effectiveness of compensating
the disturbance. For this time-varying vibration, we used
an aggressive forgetting factor to track the changing
frequency, to achieve a compensation result that is as
good as those in the first two subplots. Yet the parameter
was updated a bit too fast when the vibration stopped
changing its frequency from 15 sec to 20 sec (recall that



Table II: Results of rejecting vibrations with unknown constant frequencies (level 1 simple step test)

freq. GA DA max. amp. ||e||22 T© ||e||22 R© max |e| T ratio
(Hz) (dB) (dB) (dB) @(Hz) (×10−3V2) (×10−3V2) (×10−3V)

Si
m

ul
at

io
n

50 34.55 51.18 3.10 60.94 10.09 3.62 18.29 1.0571
55 34.40 56.55 4.04 46.88 8.66 3.73 20.68 1.0574
60 34.40 52.22 3.33 50.00 8.17 3.71 20.53 1.0684
65 34.43 50.93 3.08 54.69 8.01 3.71 19.78 1.0575
70 34.44 55.44 2.79 81.25 8.03 3.83 20.00 1.0515
75 34.77 54.76 2.96 67.19 8.46 3.73 19.27 1.0511
80 34.99 46.99 3.74 100.00 8.89 3.67 21.64 1.0605
85 34.62 45.87 4.88 100.00 9.72 3.64 23.80 1.0588
90 32.53 45.83 4.25 101.56 10.78 3.81 27.15 1.0444
95 25.39 48.33 4.72 103.13 13.97 3.82 29.54 1.0753

Ex
pe

ri
m

en
t

50 35.80 46.61 7.58 62.50 14.79 6.20 29.21 0.9999
55 35.43 51.38 10.91 128.10 11.63 4.67 19.00 0.9106
60 35.51 52.10 8.89 128.10 11.26 4.02 19.00 1.0987
65 33.54 53.89 7.52 75.00 10.56 4.17 17.81 0.9784
70 31.42 48.37 8.02 117.20 10.33 4.45 19.03 1.0186
75 31.05 49.01 7.85 135.90 10.18 4.11 17.81 1.0119
80 31.44 49.04 9.29 289.10 10.71 3.79 20.28 0.9905
85 30.23 45.70 6.63 126.60 11.19 4.04 19.08 0.9993
90 29.40 42.62 8.20 129.70 12.33 3.89 21.49 0.9933
95 26.42 31.58 6.64 0.10 18.04 4.33 26.30 1.0434

95 Hz is close to the sharp resonant mode). In level two
and level three, the adaptation speed was reduced to
give a smoother overall transient. Table III summarizes,
for all three levels of evaluations, the maximum of the
absolute error and the mean square error value E(e2) for
rejecting the chirp disturbances. These numbers are all
within the benchmark specifications.
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Figure 8: Time-domain level-1 experimental results

Table III: Simulation (Sim.) and experimental (Exp.) re-
sults of rejecting chirp disturbances

max |e| (×10−3V) E
(
e2

)
(×10−6V2)

Freq. ↗ ↘ ↗ ↘

Si
m

. Level 1 8.8 5.3 3.83 2.91
Level 2 34.4 96.5 87.5 407
Level 3 38.0 38.5 197 193

Ex
p. Level 1 20.3 11.7 4.37 11.5

Level 2 31.5 33.9 79.8 61.5
Level 3 33.6 41.2 102 111

B. Level-2: rejection of two narrow-band vibrations

In level 2 the complexity of the test was doubled. Figs.
9 and 10 show, respectively, the frequency- and time-
domain experimental results in one test. The algorithm
is seen to have maintained its effectiveness and per-
formance in rejecting the vibrations. Fig. 9 corresponds
to the spectral comparison for the first subplot in Fig.
10. The disturbances at 60 and 80 Hz are attenuated,
respectively, by 41.91 dB and 39.05 dB, without introduc-
ing large amplified errors at other frequencies. Indeed,
the proposed algorithm has the property of maintaining
very small amplification of other disturbances, due to the
frequency-domain design criterion in Fig. 3. The full sim-
ulation and experimental results at different frequencies
are summarized in Tables IV and V. Similar to level-1
results, the performance is uniform in different tests.
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Figure 9: Frequency-domain level-2 experimental results

C. Level 3: rejection of three narrow-band vibrations

In this section the disturbance is extended to contain
three narrow-band vibrations. Not only the complexity
of the problem has been much increased, but also the
adaptation environment is much more challenging. It



Table IV: Results of rejecting vibrations with unknown constant frequencies (level 2 simple step test)

freq. GA DA max. amp. ||e||22 T© ||e||22 R© max |e| T ratio
(Hz) (dB) (dB)-(dB) (dB) @(Hz) (×10−3V2) (×10−3V2) (×10−3V)

Si
m

ul
at

io
n 50,70 39.87 (43.87)(49.81) 5.17 46.88 42.20 3.91 32.82 1.0542

55,75 40.00 (51.22)(50.18) 3.83 100.00 29.20 3.93 30.31 1.0427
60,80 40.35 (47.51)(42.28) 5.49 100.00 29.60 3.72 33.94 1.0533
65,85 40.38 (46.66)(42.15) 6.69 100.00 25.10 3.71 36.33 1.0368
70,90 39.66 (50.24)(41.23) 6.06 101.56 36.70 3.74 44.61 1.0437
75,95 37.33 (49.84)(43.08) 4.87 109.38 40.10 3.73 44.40 1.0525

Ex
pe

ri
m

en
t 50,70 37.56 (42.95)(45.04) 10.77 76.56 83.61 7.28 40.17 0.9276

55,75 38.56 (47.11)(44.71) 7.98 115.63 52.38 5.15 31.69 0.9828
60,80 39.83 (41.91)(39.05) 8.10 92.19 43.05 3.94 29.29 1.1452
65,85 35.31 (50.39)(38.52) 11.27 104.69 42.63 5.74 31.76 1.0021
70,90 37.05 (44.28)(37.33) 7.47 98.44 38.89 4.12 37.90 0.9652
75,95 35.31 (46.31)(33.15) 9.04 71.88 42.24 4.55 39.16 1.1808
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Figure 10: Time-domain level-2 experimental results

Table V: Results of rejecting vibrations with step changes
in frequencies (level 2)

freq. (Hz) ||e||22 T© (×10−3V2) max |e| (×10−3V)

Si
m

ul
at

io
n

Se
q.

1 [55,75]→[60,80] 52.60 34.30
[60,80]→[55,75] 55.40 34.50
[55,75]→[50,70] 70.40 36.70
[50,70]→[55,75] 60.50 40.00

Se
q.

2 [70,90]→[75,95] 62.50 29.00
[75,95]→[70,90] 53.60 36.40
[70,90]→[65,85] 55.10 33.90
[65,85]→[70,90] 45.60 31.80

Ex
pe

ri
m

en
t

Se
q.

1 [55,75]→[60,80] 64.54 42.43
[60,80]→[55,75] 72.71 39.68
[55,75]→[50,70] 102.45 41.21
[50,70]→[55,75] 70.79 38.76

Se
q.

2 [70,90]→[75,95] 83.67 37.18
[75,95]→[70,90] 56.23 40.02
[70,90]→[65,85] 66.46 34.73
[65,85]→[70,90] 85.89 38.80

appears the strong vibrations have excited other system
modes at the beginning of all experiments (see the
small side peaks in Fig. 11). Fig. 11 presents the error
spectra in the scheme where the disturbance frequen-
cies are unknown but constant. Similar to the case in
previous sections, the narrow-band disturbances have
been greatly attenuated. Some of the small side peaks,
although not expected at the design stage, are actually at-
tenuated in the experiments (similar result also appears
in Fig. 9), and the proposed algorithm correctly found

the largest peaks. Fig. 12 provides an example of the
time-domain results at each disturbance characteristics.
The corresponding identified frequencies for the second
subplot are shown in Fig. 13 (computed offline from
the method in Section VI). With the correctly identified
frequencies, the algorithm rapidly reduces the residual
errors to the same magnitude as the case where no
vibrations are present.
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Figure 11: Error spectra in the rejection of three narrow-
band vibrations (experimental result)
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Figure 12: Time-domain level-3 experimental results



Table VI: Results of rejecting vibrations with unknown constant frequencies (level 3 simple step test)

freq. GA DA max. amp. ||e||22 T© ||e||22 R© max |e| T ratio
(Hz) (dB) (dB)-(dB)-(dB) (dB) @(Hz) (×10−3) (×10−3) (×10−3)

Si
m

. 50,65,80 43.91 (42.63)(39.54)(40.76) 6.57 101.56 108.90 3.70 44.70 1.0835
55,70,85 43.93 (47.93)(44.80)(40.36) 4.91 101.56 95.70 3.70 49.60 1.0518
60,75,90 43.48 (45.57)(47.12)(40.29) 4.88 110.94 75.90 3.70 52.80 1.0488
65,80,95 42.00 (44.58)(39.94)(41.39) 5.11 110.94 56.70 3.70 59.10 1.0422

Ex
p.

50,65,80 41.97 (38.48)(45.66)(42.86) 7.54 93.75 182.13 5.73 47.10 0.9911
55,70,85 39.59 (44.79)(44.41)(37.54) 9.46 46.88 127.86 6.08 51.98 0.9675
60,75,90 38.31 (42.65)(41.75)(35.95) 8.27 115.63 94.49 6.17 48.53 1.1593
65,80,95 39.01 (43.70)(37.90)(33.14) 8.26 54.69 98.87 5.01 54.64 1.0608
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Figure 13: Identified frequencies for the middle plot of
Fig. 12 (vibrations injected at the fifth second)

The full summary of simulation and experimental
results at different frequencies are shown in Tables VI
and VII. In all cases, the achieved performance are at
the same level as those demonstrated in Figs. 11 to 13.

Table VII: Results of rejecting vibrations with step
changes in frequencies (level 3)

freq. ||e||22 T© max |e|
(Hz) (×10−3V2) (×10−3V)

Si
m

ul
at

io
n

Se
q.

1 [55,70,85]→[60,75,90] 72.60 48.90
[60,75,90]→[50,70,85] 80.11 54.11
[55,70,85]→[50,65,80] 109.84 52.47
[50,65,80]→[55,70,85] 76.17 49.10

Se
q.

2 [60,75,90]→[65,80,95] 60.81 44.51
[65,80,95]→[60,75,90] 79.87 49.57
[60,75,90]→[55,70,95] 93.96 56.69
[55,70,85]→[60,75,90] 99.21 52.26

Ex
pe

ri
m

en
t

Se
q.

1 [55,70,85]→[60,75,90] 149.24 56.84
[60,75,90]→[50,70,85] 162.04 59.58
[55,70,85]→[50,65,80] 242.40 59.58
[50,65,80]→[55,70,85] 127.32 59.58

Se
q.

2 [60,75,90]→[65,80,95] 162.60 51.94
[65,80,95]→[60,75,90] 120.96 52.22
[60,75,90]→[55,70,95] 158.29 59.58
[55,70,85]→[60,75,90] 133.57 59.30

The benchmark has set up several evaluation quanti-
ties about overall performance, robustness, and complex-
ity. The proposed algorithm achieved 100% in the bench-
mark specification index for transient performance;
100%, 100%, and 99.78% respectively in steady-state
simulation performance; and ranked one, three, and two,
respectively in experimental results. The recorded task
execution time is also moderate among the benchmark
participants. Detailed summaries and discussions are
provided in the benchmark synthesis paper [23].

D. Remark about the simulation and experimental results

From the tables, the proposed algorithm is seen to
be effective under all tests. The experimental results
match well with the simulations, and we can obtain
quite good guidance from the offline simulation. Due
to the presence of system uncertainties and unmodeled
noises, some experiments are slightly more difficult to
perform, especially when the disturbance frequencies are
close to the resonances at around 50 Hz and 100 Hz in
Fig. 1. Actually, as the actual resonances have slightly
different frequencies than those in simulation, the initial
run of the experiments at 50 Hz and 95 Hz failed in
the parameter adaptation. To cope with the problem,
we first used a weak baseline controller such that the
gain between the disturbance and the control input is
very low at high frequencies and around the system
modes (see Fig. 14). Additionally, two modifications can
be made on the Q-filter design. The first is to make the
Q filter have sharper passbands in Fig. 3. The second
is to put a scalar gain that is smaller than one ahead of
Q(z−1). The effect of both modifications is to make Q(z−1)
pass less noises in the band-pass process. Accompanied
by this increased robustness, is the requirement of more
accurate parameter convergence in the first modification,
or the loss of perfect disturbance property in the second
relaxation. From an engineering point of view, perfect
disturbance rejection may however not always be neces-
sary. For example, an attenuation of around 35 dB can
already make the error spectra relatively flat in Fig. 6.
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Figure 14: Magnitude response of the closed-loop trans-
fer function from the disturbance to the control input



VIII. Conclusions
In this paper, an adaptive selective model inversion

(SMI) scheme has been introduced for multiple narrow-
band disturbance rejection. This special Youla parameter-
ization is constructed by a H∞-based inverse design and
internal-model-principle based IIR filters. Under com-
prehensive tests, the proposed algorithm significantly
attenuated the disturbance. In particular, the properties
of minimum adaptation parameters, small error ampli-
fication, and intuitive tuning rules are useful for related
control problems.
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Appendix
The Q-filter numerator in (13) can be partitioned into

BQ
(
z−1

)
= bnz−n +

n−1∑
i=0

(
biz−i + b2n−iz−2n+i

)
, (30)

where bi = (αi
− k)ai, a0 = 1, and ai = a2n−i. Letting k = αn

gives bn = 0 and

biz−i + b2n−iz−2n+i

=αnaiz−i
[(
αi−n
−1

)
+

(
α−i+n

−1
)
z−2n+2i

]
(31)

We claim that biz−i + b2n−iz−2n+i always contains the
factor 1−αz−2. To see this, substituting in z−2 = α−1 to
(31), we can observe that

[(
αi−n
−1

)
+

(
α−i+n

−1
)
z−2n+2i

]
=[(

αi−n
−1

)
+

(
α−i+n

−1
)
αi−n

]
= 0, which proves that 1 −

αz−2 is a common factor of biz−i +b2n−iz−2n+i. Since bn = 0,
BQ(z−1) in (30) thus contains the common factor 1−αz−2.
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