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A Recursive System
Identification with Non-uniform
Temporal Feedback under
Coprime Collaborative Sensing∗
We present a system identification method based on recursive least-squares (RLS) and co-
prime collaborative sensing, which can recover system dynamics from non-uniform tempo-
ral data. Focusing on systems with fast input sampling and slow output sampling, we use
a polynomial transformation to reparameterize the system model and create an auxiliary
model that can be identified from the non-uniform data. We show the identifiability of the
auxiliary model using a Diophantine-equation approach. Numerical examples demon-
strate successful system reconstruction and the ability to capture fast system response with
limited temporal feedback.
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1 Introduction
A common assumption for real-time control systems design is

that the sampling of input and output signals is uniform, peri-
odic, and synchronous [1]. In the information-rich world, however,
data streams are often non-uniform and asynchronous. (In fact,
real-time control system implementations often have to adjust the
sampling rate to deal with irregular data [2].) While non-uniformly
sampled data intuitively contain more temporal information for sys-
tem analysis and controls [3,4], they violate the classical real-time
control framework, and most existing methods for non-uniformly
sampled systems are heuristic and specific [5]. It remains not
well understood how to systematically leverage non-uniform data
streams for real-time dynamic systems. In particular, as the first
critical step in real-time controls, classic system identification re-
quires synchronous input and output data when building the model
of a dynamical system [6].

From a signal processing point of view, non-uniform data are
naturally dense in certain temporal regions where more information
about the system dynamics can be revealed [7]. The non-uniformly
sampled data can be collected by triggering the sensor with events,
by randomized sampling, or by fusing measurements from multiple
sensors. On the one hand, the temporal resolution is increased
due to the data irregularity [8]. On the other hand, it challenges
conventional system identification algorithms.

One approach to identifying a system under non-uniform data is
based on the approximation theory [9]. Briefly, the non-uniformly
collected data is approximated or reconstructed by a sequence of
uniform samples, and then, the conventional system identification
algorithms can be applied to the resulting uniform data [10]. Sev-
eral techniques have been proposed for the data reconstruction, in-
cluding linear [11], polynomial [12], and spline interpolations [13].
Other works on system identification subject to non-uniformly sam-
pled data have also been conducted by using the Expectation Max-
imization approach [14–16], the Maximum Likelihood Estimation
[16,17], the lifting operator [18,19], and the output error method
[20].

Stepping further beyond the existing approaches, this paper con-
tributes to a novel system identification that leverages the temporal
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advantage of non-uniform sampling but overcomes the obstacle
imposed by non-uniform data collection for general input-output
models. We first propose a coprime collaborative sensing scheme,
which generates one set of data that appears non-uniform with re-
spect to time while, in the meantime, having systematic underlying
sampling patterns. Next, we implement a model reparameteriza-
tion tailored for the selected sensing scheme based on polynomial
transformation to construct an auxiliary model that can be directly
identified with the available observations. Then, a recursive least-
squares-based algorithm is designed to identify the auxiliary model
and to illustrate the feasibility of working with the mechanism of
collaborative sampling and model reparameterization. Lastly, the
parameters of the original fast system model are recovered by re-
moving the highest common factors between the denominator and
numerator polynomials.

The remainder of this paper is organized as follows. In section
2, technical preliminaries regarding the model reparameterization
are reviewed and introduced. The proposed coprime collaborative
sensing and system modeling are formally defined in section 3.
In section 4, we derive recursive system identification algorithms
based on the proposed sensing scheme and model reparameteriza-
tion strategies. Section 5 contains multiple classes of numerical
examples. Section 6 concludes the paper.

2 Preliminaries
In this section, we review the transfer operator and model pa-

rameterization in standard single-rate and multi-rate system identi-
fication. Consider the deterministic autoregressive-moving-average
(ARMA) model for a linear time-invariant system:

𝑦(𝑘) = 𝑞−𝑑𝐵(𝑞−1)
𝐴(𝑞−1)

𝑢(𝑘) (1)

where 𝑑 is an integer number of sampling periods contained in the
time delay of the systems, and 𝑞 is the time-domain shift operator
defined as 𝑞𝑦(𝑘) = 𝑦(𝑘 + 1), 𝑞−1𝑦(𝑘) = 𝑦(𝑘 − 1), and 𝐴(𝑞−1) =
1+𝑎1𝑞

−1+· · ·+𝑎𝑛𝑎𝑞−𝑛𝑎 , 𝐵(𝑞−1) = 𝑏1𝑞
−1+𝑏2𝑞

−2+· · ·+𝑏𝑛𝑏𝑞−𝑛𝑏
are polynomials of 𝑞−1. Equation (1) can be rewritten as:

𝐴(𝑞−1)𝑦(𝑘) = 𝑞−𝑑𝐵(𝑞−1)𝑢(𝑘) (2)
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or alternatively (1 + · · · + 𝑎𝑛𝑎𝑞
−𝑛𝑎 )𝑦(𝑘) = (𝑏1𝑞

−1 + · · · +
𝑏𝑛𝑏𝑞

−𝑛𝑏 )𝑢(𝑘 − 𝑑). Expanding and rearranging yield

𝑦(𝑘) = −𝑎1𝑦(𝑘 − 1) − · · · − 𝑎𝑛𝑎 𝑦(𝑘 − 𝑛𝑎)

+ 𝑏1𝑢(𝑘 − 𝑑 − 1) + · · · + 𝑏𝑛𝑏𝑢(𝑘 − 𝑑 − 𝑛𝑏) (3)

or 𝑦(𝑘) = 𝜃𝑇𝜙(𝑘), where

𝜙(𝑘) = [ − 𝑦(𝑘 − 1),−𝑦(𝑘 − 2), . . . ,−𝑦(𝑘 − 𝑛𝑎),

𝑢(𝑘 − 𝑑 − 1), 𝑢(𝑘 − 𝑑 − 2), . . . , 𝑢(𝑘 − 𝑑 − 𝑛𝑏)]𝑇

𝜃 = [𝑎1, 𝑎2, . . . , 𝑎𝑛𝑎 , 𝑏1, 𝑏2, . . . , 𝑏𝑛𝑏 ]𝑇

When the system input and output are sampled at different rates
(slower output sampling in this paper), the available data become
𝑦(𝐽𝑘) = {𝑦(𝑘−𝐽), 𝑦(𝑘−2𝐽), . . . }, 𝑢(𝑘) = {𝑢(𝑘−1), 𝑢(𝑘−2), . . . },
where 𝐽 is a positive integer representing the ratio between the
input and output sampling rates. The original single-rate model
described in Eq. (1) can be transformed into a dual-rate version
that can be identified directly from the available measurements
[21]. The solution approach is first to recognize the factorization:

1 − 𝑥𝐽 = (1 − 𝑥) (1 + 𝑥 + 𝑥2 + · · · + 𝑥𝐽−1) (4)

Next, consider the characteristic equation 𝐴(𝑞−1) in the multipli-
cation form:

𝐴(𝑞−1) ≜
𝑛𝑎∏︂
𝑖=1
[1 − (𝜆𝑖𝑞)−1] (5)

where 𝜆𝑖’s are the reciprocals of the poles of the system, and 𝑛𝑎 is
the order of the characteristic equation (i.e., the number of poles).
Observing the structure of Eq. (4), we notice that by designing a
polynomial:

𝐹𝐽 (𝑞−1) =
𝑛𝑎∏︂
𝑖=1

[︂
1 + (𝜆𝑖𝑞)−1 + (𝜆𝑖𝑞)−2 + · · · + (𝜆𝑖𝑞)−𝐽+1

]︂
= 1 + 𝑓1𝑞

−1 + · · · + 𝑓𝑛𝑎𝐽−𝑛𝑎𝑞
−𝑛𝑎𝐽+𝑛𝑎 (6)

the original characteristic equation described in Eq. (5) can be
transferred into:

𝐴𝐽 (𝑞−𝐽 ) = 𝐴(𝑞−1)𝐹𝐽 (𝑞−1)

= [1 − (𝜆1𝑞)−𝐽 ] [1 − (𝜆2𝑞)−𝐽 ] . . . [1 − (𝜆𝑛𝑎𝑞)−𝐽 ]

= 1 + 𝑎𝐽,1𝑞−𝐽 + 𝑎𝐽,2𝑞−2𝐽 + · · · + 𝑎𝐽,𝑛𝑎𝑞
−𝑛𝑎𝐽

with a down-sampled observation space. Applying the same trans-
formation polynomial shown in Eq. (6) to the numerator of Eq.
(1) yields a multi-rate system model:

𝑦(𝑘) =𝑞
−𝑑𝐵(𝑞−1)𝐹𝐽 (𝑞−1)
𝐴(𝑞−1)𝐹𝐽 (𝑞−1)

𝑢(𝑘)

=
𝑞−𝑑𝐵𝐽 (𝑞−1)
𝐴𝐽 (𝑞−𝐽 )

𝑢(𝑘)

(7)

or in a form similar to Eq. (2):

𝐴𝐽 (𝑞−𝐽 )𝑦(𝑘) = 𝑞−𝑑𝐵𝐽 (𝑞−1)𝑢(𝑘) (8)

where 𝐵𝐽 (𝑞−1) = 𝑏𝐽,1𝑞
−1 + · · · + 𝑏𝐽,𝑛𝑎 (𝐽−1)+𝑛𝑏𝑞

−𝑛𝑎 (𝐽−1)−𝑛𝑏 .
Rewriting Eq. (8) in a predictor form similar to Eq. (3), we have

Fig. 1 The proposed collaborative sensing scheme of multi-
ple sensors with coprime sampling rates. The illustration de-
picts the case when three coprime sensors’ data are merged
for use (boxed in black dashed lines). The instants enclosed
by red solid lines represent valid measurements for updating
parameter estimation (i.e., when all sensors’ measurements
overlap)

𝑦(𝑘) = −𝑎𝐽,1𝑦(𝑘 − 𝐽) − · · · − 𝑎𝐽,𝑛𝑎 𝑦(𝑘 − 𝑛𝑎𝐽)

+ 𝑏𝐽,1𝑢(𝑘 − 𝑑 − 1) + · · · + 𝑏𝐽,𝑛𝑏𝑢(𝑘 − 𝑑 − 𝑛𝑎 (𝐽 − 1) − 𝑛𝑏)

where the output prediction is precisely a linear combination
of 𝑢(𝑘) and 𝑦(𝐽𝑘). Therefore, directly identifying the multi-
rate model parameters becomes possible after the aforementioned
model reparameterization.

The key insight of the introduced model reparameterization is
to recognize that the historical measurements required for system
identification depend solely on the order of system polynomials
(i.e., 𝐴(𝑞−1) and 𝐵(𝑞−1)). By designing a transformation polyno-
mial, we can freely adjust the order of system polynomials. Con-
sequently, the challenge posed by input and output asynchronism
in identifying system dynamics is effectively circumvented.

3 Proposed Coprime Collaborative Sensing and
Model Reparameterization

Figure 1 illustrates the proposed coprime collaborative sensing
scheme, where multiple sensors with coprime sampling rates col-
laboratively sense the system output. Assuming the fundamental
sampling period is 𝑇 , and 𝑆 represents the set of sensors sampling
rate, we define the coprime sampling rate as: 𝑆 = {𝑎𝑇, 𝑏𝑇, 𝑐𝑇, ...},
where 𝑎, 𝑏, 𝑐, ... are coprime integers. The data collected from
these sensors is then combined chronologically, assuming that all
sensors begin sampling simultaneously. The coprime sampling
rates result in fewer measurements overlapping when multiple sen-
sor measurements are fused, providing the highest temporal res-
olution as more details of the system response become available.
This enables the parameter estimation to be updated with the maxi-
mum information entropy precisely when all sensor measurements
overlap.

When 𝑛 sensors of different rates are used, the available output
measurements become

𝑦(𝐽1𝑘, . . . , 𝐽𝑛𝑘) = {𝑦(𝑘 − 𝐽1), 𝑦(𝑘 − 2𝐽1), . . .

.

.

.

𝑦(𝑘 − 𝐽𝑛), 𝑦(𝑘 − 2𝐽𝑛), . . . }

Based on the aforementioned multi-rate model reparameterization,
we know that there will be 𝑛 unique transformation polynomials:

𝐹𝐽1 (𝑞
−1) =

𝑛𝑎∏︂
𝑖=1

[︂
1 + (𝜆𝑖𝑞)−1 + (𝜆𝑖𝑞)−2 + · · · + (𝜆𝑖𝑞)−𝐽1+1

]︂
.
.
.
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𝐹𝐽𝑛 (𝑞
−1) =

𝑛𝑎∏︂
𝑖=1

[︂
1 + (𝜆𝑖𝑞)−1 + (𝜆𝑖𝑞)−2 + · · · + (𝜆𝑖𝑞)−𝐽𝑛+1

]︂
if we want to identify the system model with the given output
observation space. Let

𝐹𝐽∗ (𝑞
−1) = 1

𝑛

𝑛∑︂
𝑖=1

𝐹𝑗𝑖 (𝑞−1) (9)

Multiplying Eq. (9) to both sides of Eq. (2), we obtain the auxiliary
system model:

𝐴𝐽∗ (𝑞
−𝐽1 , · · ·, 𝑞−𝐽𝑛 )𝑦(𝑘) = 𝑞−𝑑𝐵𝐽∗ (𝑞

−1)𝑢(𝑘) (10)

where

𝐴𝐽∗ (𝑞
−𝐽1 , · · ·, 𝑞−𝐽𝑛 ) = 1 +

𝑎𝐽1 ,1
𝑛

𝑞−𝐽1 + · · +
𝑎𝐽1 ,𝑛𝑎

𝑛
𝑞−𝑛𝑎𝐽1

.

.

.

+
𝑎𝐽𝑛 ,1
𝑛

𝑞−𝐽𝑛 + · · +
𝑎𝐽𝑛 ,𝑛𝑎

𝑛
𝑞−𝑛𝑎𝐽𝑛

Therefore, the auxiliary model can be directly identified since the
required measurements now match the available measurements af-
ter rewriting Eq. (10) in a predictor form. We will focus on the
case where two output sensors of different rates are used in the
remaining content for notational simplicity.

4 Recursive System Identification under Collaborative
Sensing

4.1 Recursive Least Squares (RLS) Formulation. We
present the recursive least squares formulation for the case where
two coprime sensors are deployed collaboratively in the scheme
above for the output measurement. First, we design transformation
polynomials for the characteristic equation of the original system
model as follows:

𝐹𝐽1 (𝑞
−1) =

𝑛𝑎∏︂
𝑖=1
(1 + (𝜆𝑖𝑞)−1 + · · · + (𝜆𝑖𝑞)1−𝐽1 )

𝐹𝐽2 (𝑞
−1) =

𝑛𝑎∏︂
𝑖=1
(1 + (𝜆𝑖𝑞)−1 + · · · + (𝜆𝑖𝑞)1−𝐽2 )

where 𝐽1 and 𝐽2 are coprime integers. Without loss of generality,
we assume a smaller index denotes the sensor with a faster sam-
pling rate (i.e., 𝐽1 < 𝐽2). Summing up the two polynomials above
and implementing the normalization in Eq. (9) yield

𝐹𝐽∗ (𝑞
−1) = 1

2
[𝐹𝐽1 (𝑞

−1) + 𝐹𝐽2 (𝑞
−1)] (11)

Next, multiplying the polynomial shown in Eq. (11) to
both side of the original system model in Eq. (2) yields
𝐹𝐽∗ (𝑞−1)𝐴(𝑞−1)𝑦(𝑘) = 𝑞−𝑑𝐹𝐽∗ (𝑞−1)𝐵(𝑞−1)𝑢(𝑘), or

𝐴𝐽∗ (𝑞
−𝐽1 , 𝑞−𝐽2 )𝑦(𝑘) = 𝑞−𝑑𝐵𝐽∗ (𝑞

−1)𝑢(𝑘) (12)

where

𝐴𝐽∗ (𝑞
−𝐽1 , 𝑞−𝐽2 ) = 1 +

𝑎𝐽1 ,1
2

𝑞−𝐽1 + · · · +
𝑎𝐽1 ,𝑛𝑎

2
𝑞−𝑛𝑎𝐽1

+
𝑎𝐽2 ,1

2
𝑞−𝐽2 + · · · +

𝑎𝐽2 ,𝑛𝑎

2
𝑞−𝑛𝑎𝐽2

𝐵𝐽∗ (𝑞
−1) = 𝑏𝐽∗ ,1𝑞

−1 + 𝑏𝐽∗ ,2𝑞
−2 + . . .

+ 𝑏𝐽∗ ,𝑛𝑎 (𝐽2−1)+𝑛𝑏𝑞
−𝑛𝑎 (𝐽2−1)−𝑛𝑏

The order of 𝐵𝐽∗ (𝑞−1) here comes from the sum of the order
of 𝐵(𝑞−1), i.e., 𝑛𝑏 , and that of 𝐹𝐽∗ (𝑞−1), i.e., 𝑛𝑎 (𝐽2 − 1). For
simplicity, let 𝜒 = 𝑛𝑎 (𝐽2−1)+𝑛𝑏 . Equation (12) can be rearranged
as:

𝑦(𝑘) = −
𝑎𝐽1 ,1

2
𝑦(𝑘 − 𝐽1) − · · · −

𝑎𝐽1 ,𝑛𝑎

2
𝑦(𝑘 − 𝑛𝑎𝐽1)

−
𝑎𝐽2 ,1

2
𝑦(𝑘 − 𝐽2) − · · · −

𝑎𝐽2 ,𝑛𝑎

2
𝑦(𝑘 − 𝑛𝑎𝐽2)

+ 𝑏𝐽∗ ,1𝑢(𝑘 − 𝑑 − 1) + · · · + 𝑏𝐽∗ ,𝜒𝑢(𝑘 − 𝑑 − 𝜒)

or in a vector form:
𝑦(𝑘) = 𝜃𝑇𝜙(𝑘) (13)

where

𝜃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝐽1 ,1
𝑎𝐽1 ,2
.
.
.

𝑎𝐽1 ,𝑛𝑎
𝑎𝐽2 ,1
𝑎𝐽2 ,2
.
.
.

𝑎𝐽2 ,𝑛𝑎
𝑏𝐽∗ ,1
𝑏𝐽∗ ,2
.
.
.

𝑏𝐽∗ ,𝜒

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝜙(𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 𝑦(𝑘 − 𝐽1)
− 1

2 𝑦(𝑘 − 2𝐽1)
.
.
.

− 1
2 𝑦(𝑘 − 𝑛𝑎𝐽1)
− 1

2 𝑦(𝑘 − 𝐽2)
− 1

2 𝑦(𝑘 − 2𝐽2)
.
.
.

− 1
2 𝑦(𝑘 − 𝑛𝑎𝐽2)
𝑢(𝑘 − 𝑑 − 1)
𝑢(𝑘 − 𝑑 − 2)

.

.

.

𝑢(𝑘 − 𝑑 − 𝜒)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜙𝐽1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜙𝐽2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜙𝑢

(14)

From the vector form of the predictor function in Eq. (13), we see
that the required historical output measurements are integer mul-
tiples of 𝐽1 or 𝐽2 steps behind the current instant 𝑘 . At time in-
stant 𝑖𝐽1𝐽2, we have �̂�(𝑖𝐽1𝐽2) = 𝜙𝑇 (𝑖𝐽1𝐽2)𝜃 (𝑖𝐽1𝐽2), 𝑖 = 0, 1, 2, . . .
Consider the performance index:

𝐽𝑘 =

𝑘∑︂
𝑖=1

𝑒(𝑖𝜘)2 =

𝑘∑︂
𝑖=1

[︂
𝑦(𝑖𝜘) − 𝜙𝑇 (𝑖𝜘)𝜃 (𝑘𝜘)

]︂2

where 𝜘 = 𝐽1𝐽2 for simplicity. The solution 𝜃 (𝑘𝜘) can then be ob-
tained by using techniques from single-rate recursive least squares,
and the parameter adaptation law is as follows:

𝜃 ((𝑘 + 1)𝜘) = 𝜃 (𝑘𝜘) + 𝐹 (𝑘 + 1)𝜙((𝑘 + 1)𝜘)𝜖𝑜 ((𝑘 + 1)𝜘) (15)

𝐹 (𝑘 + 1) = 𝐹 (𝑘) − 𝐹 (𝑘)𝜙((𝑘 + 1)𝜘)𝜙𝑇 ((𝑘 + 1)𝜘)𝐹 (𝑘)
1 + 𝜙𝑇 ((𝑘 + 1)𝜘)𝐹 (𝑘)𝜙((𝑘 + 1)𝜘)

(16)

where the a priori output estimation �̂�𝑜 and a priori output esti-
mation error 𝜖𝑜 are defined as:

�̂�𝑜 ((𝑘 + 1)𝜘) = 𝜙𝑇 ((𝑘 + 1)𝜘)𝜃 (𝑘𝜘)

𝜖𝑜 ((𝑘 + 1)𝜘) = 𝑦((𝑘 + 1)𝜘) − �̂�𝑜 ((𝑘 + 1)𝜘)

The stability of the parameter adaptation algorithm (PAA) fol-
lows from standard hyperstability analysis for system identifica-
tion and adaptive control [6]. Between 𝑘𝜘 and (𝑘 + 1)𝜘, we
keep the data asynchronous and hold the parameter estimate:
𝜃 (𝑘𝜘 + 𝑗) = 𝜃 (𝑘𝜘), 𝑗 = 1, 2, . . . , 𝜘 − 1.
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4.2 PAA Convergence and Identifiability Analysis. Parame-
ter convergence in standard system identification requires the model
to be irreducible, meaning that the polynomial orders cannot be fur-
ther reduced and there are no common factors between 𝐵(𝑞−1) and
𝐴(𝑞−1).

When the input signal persistently excites the system dynamics,
the convergence condition reduces to the existence of the solution to
the following Diophantine equation associated with the polynomial
parameters [6]

�̃�(𝑞−1)𝐵(𝑞−1) − 𝐴(𝑞−1)�̃�(𝑞−1) = 0

where �̃�(𝑞−1) and �̃�(𝑞−1) represent the difference between the
ground truth and the estimated system polynomials. In determinis-
tic cases, parameters converge to the true values when the only so-
lution to the Diophantine equation is �̃�(𝑞−1) = 0 and �̃�(𝑞−1) = 0.
For the proposed collaborative sensing, it can be shown that pa-
rameter convergence still holds due to the following lemma.

Lemma 1 (Diophantine multiplicative equations)

Given a polynomial of the following form:

𝐹 (𝑧−1) = 𝑓0 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 + · · · + 𝑓𝑚𝑧−𝑚

where not all 𝑓𝑖’s are zero, and

𝛼(𝑧−1) = 1 + 𝛼1𝑧
−1 + · · · + 𝛼𝑛𝑧−𝑛

𝛽(𝑧−1) = 𝛽1𝑧
−1 + 𝛽2𝑧

−2 + · · · + 𝛽𝑛𝑧−𝑛

Then the Diophantine equation

𝐹 (𝑧−1) [𝛼(𝑧−1) 𝜎(𝑧−1)⏞ˉ̄⏟⏟ˉ̄⏞
unknown

+𝛽(𝑧−1) 𝛾(𝑧−1)⏞ˉ̄⏟⏟ˉ̄⏞
unknown

] = 0 (17)

has the unique zero solution for 𝜎(𝑧−1) and 𝛾(𝑧−1) (i.e., 𝜎(𝑧−1) =
0 and 𝛾(𝑧−1) = 0), if the numerators of 𝛼(𝑧−1) and 𝛽(𝑧−1) are
coprime, and the orders of 𝜎 and 𝛾 are restricted to be less than 𝑛

as follows:

𝜎(𝑧−1) = 𝜎0 + 𝜎1𝑧
−1 + · · · + 𝜎𝑛−1𝑧

−(𝑛−1)

𝛾(𝑧−1) = 𝛾0 + 𝛾1𝑧
−1 + · · · + 𝛾𝑛−1𝑧

−(𝑛−1)

The proof is provided in Appendix A.

4.3 Parameter Recovery. Recall the reparameterized system
model:

𝑦(𝑘) =
𝑞−𝑑𝐵(𝑞−1)𝐹𝐽∗ (𝑞−1)
𝐴(𝑞−1)𝐹𝐽∗ (𝑞−1)

𝑢(𝑘) =
𝑞−𝑑𝐵𝐽∗ (𝑞−1)
𝐴𝐽∗ (𝑞−𝐽1 , 𝑞−𝐽2 )

𝑢(𝑘)

By applying the aforementioned RLS-system identification algo-
rithm, the intermediate parameter vector, i.e., the coefficients of
𝐵𝐽∗ (𝑞−1) and 𝐴𝐽∗ (𝑞−𝐽1 , 𝑞−𝐽2 ), can be identified directly. By
removing the highest-order common factor from 𝐵𝐽∗ (𝑞−1) and
𝐴𝐽∗ (𝑞−𝐽1 , 𝑞−𝐽2 ), the original fast model polynomials 𝐵(𝑞−1) and
𝐴(𝑞−1) can then be obtained.

5 Case Study
We present three cases with different system setups, including a

practical example in motion controls. We assume two sensors are
deployed for the output data collection. For the first two simulation
cases, 𝐽1 and 𝐽2 are 2 and 3 times slower than the input sampling
rate, respectively, and an input pseudo-random binary sequence
(PRBS) signal is generated at 1024Hz. A sufficiently long time
horizon is selected to ensure parameter convergence (within ten
iterations). For the third motion control example implemented on
a Hard Drive Drive (HDD) benchmark, we assume 𝐽1 and 𝐽2 are
9 and 13 times slower. The PRBS signal is generated at 50400Hz.
Algorithm 1 outlines the implementation steps for the proposed
algorithm.

Algorithm 1 Collaborative Sensing RLS-SYSID
Input: 𝑢(𝑘), 𝑦(𝑘), 𝐹, 𝐽1, 𝐽2, 𝑛𝑎 , 𝑛𝑏 , 𝑑
𝜃, 𝜙← 𝑛𝑎 , 𝑛𝑏 , 𝑑 while 𝑡 ≤ 𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do

if 𝑡 mod 𝐽1 · 𝐽2 = 0 then
Update 𝜃, 𝐹 ; // refer to Eq.(15) & Eq.(16)
Update 𝜙 ; // refer to(14)

else
if 𝑡 mod 𝐽1 = 0 then

Update 𝜙𝐽1 , 𝜙𝑢 ; // refer to Eq.(14)
end
if 𝑡 mod 𝐽2 = 0 then

Update 𝜙𝐽2 , 𝜙𝑢 ; // refer to Eq.(14)
end

end
end
𝐵𝐽∗ (𝑞−1), 𝐴𝐽∗ (𝑞−𝐽1 , 𝑞−𝐽2 ) ← 𝜃

𝐵(𝑞−1), 𝐴(𝑞−1) ← 𝐵𝐽∗ (𝑞−1), 𝐴𝐽∗ (𝑞−𝐽1 , 𝑞−𝐽2 )
Return: 𝐵(𝑞−1), 𝐴(𝑞−1)

5.1 3rd-order system. Consider

𝑦(𝑘) = 𝑞−2 + 0.5𝑞−3

1 + 0.9𝑞−1 + 0.26𝑞−2 + 0.024𝑞−3 𝑢(𝑘)

where the poles are at −0.2, −0.3, and −0.4, and the zero is at
−0.5. Rewrite the transfer function into the general form for system
identification as follows:

𝐺 (𝑞−1) ≜ 𝑞−𝑑𝐵(𝑞−1)
𝐴(𝑞−1)

=
𝑞−1 (𝑞−1 + 0.5𝑞−2)

1 + 0.9𝑞−1 + 0.26𝑞−2 + 0.024𝑞−3

From the general form, we record the hyperparameters for the
algorithm, which are 𝑑 = 1, 𝑛𝑎 = 3, and 𝑛𝑏 = 2. The
model parameters needed to be identified are �̃�(𝑞−1) : [1.0, 0.5],
�̃�(𝑞−1) : [1.0, 0.9, 0.26, 0.024]. The identified system response is
shown in Fig. 2 and the parameters convergence of the auxiliary
model is shown in Fig. 3. We also plotted the Nyquist frequen-
cies of the individual sensors, and observed the accurate model
identification beyond the limitations of the individual sensors.

5.2 Higher-order system. Consider a fourth-order system

𝐺 (𝑞−1) = 𝑞−1 (𝑞−1 + 1.5𝑞−2 + 0.56𝑞−3)
1 + 1.4𝑞−1 + 0.71𝑞−2 + 0.154𝑞−3 + 0.012𝑞−4

where the poles are at −0.2, −0.3, −0.4, and −0.5, and
the zeros are at −0.6 and −0.7. The hyperparameters are
𝑑 = 1, 𝑛𝑎 = 4, and 𝑛𝑏 = 3. The identified pa-
rameters are �̃�(𝑞−1) : [0.9999, 1.4999, 0.5602], �̃�(𝑞−1) :
[1.0000, 1.3999, 0.7102, 0.1541, 0.0120].

Figure 4 compares the original and identified system responses.
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Fig. 2 The frequency response comparison of the 3rd order
system, and the identification beyond the Nyquist criterion

Fig. 3 Illustration of parameter convergence of the auxiliary
model for 30 iterations

Fig. 4 Higher order system frequency response compari-
son, and the identification beyond the Nyquist criterion

Fig. 5 HDD benchmark system frequency response com-
parison, and the identification beyond the Nyquist criterion

5.3 HDD Benchmark System. Consider the major first two
modes in the voice coil motor of an HDD benchmark system [22]:

𝐺 (𝑞−1) = 0.00033𝑞−1 + 0.003𝑞−2 + 0.00264𝑞−3 + 0.00019𝑞−4

1 − 3.559𝑞−1 + 5.091𝑞−2 − 3.506𝑞−3 + 0.9739𝑞−4

where the poles are at 0.7792 + 0.6055𝑖, 0.7792 − 0.6055𝑖, 1, and
0.9999, and the zeros are at −8.2069, −0.0831 ,and −0.8835.
The plant has common characteristics that relate torque/force to
position in motion control. The hyperparameters are 𝑑 = 0,
𝑛𝑎 = 4, 𝑛𝑏 = 4, 𝑀 = 9, and 𝑁 = 13. The identified
parameters are �̃�(𝑞−1) : [0.00033, 0.00303, 0.00265, 0.00020],
�̃�(𝑞−1) : [1,−3.55851, 5.09094,−3.50634, 0.97391]. Figure 5
compares the original and identified system responses. In all cases,
we observe the proposed algorithm accurately identified the un-
derlying system dynamics beyond the individual sensor’s Nyquist
sampling limit.

6 Conclusion and Future Work
This paper presented a novel framework for non-uniformly sam-

pled system identification based on the proposed coprime collab-
orative sensing and the RLS-based algorithm. Leveraging a poly-
nomial transformation and characteristics of coprime numbers, we
showed how the algorithm can recover fast system models beyond
the Nyquist frequencies of multiple slow sensors. Example appli-
cations in motion control illustrate the effectiveness of the process.
Future work includes optimal sensor rate selection, minimum data
requirements, and addressing noise in stochastic environments.
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Appendix A: Diophantine Multiplicative Equations
Proof
Proof. Given

𝐹 (𝑧−1) = 𝑓0 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 + · · · + 𝑓𝑚𝑧−𝑚
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let
𝜂(𝑧−1) = 𝛼(𝑧−1)𝜎(𝑧−1) + 𝛽(𝑧−1)𝛾(𝑧−1) (A1)

where

𝛼(𝑧−1) = 1 + 𝛼1𝑧
−1 + · · · + 𝛼𝑛𝑧−𝑛

𝛽(𝑧−1) = 𝛽1𝑧
−1 + 𝛽2𝑧

−2 + · · · + 𝛽𝑛𝑧−𝑛

and

𝜎(𝑧−1) = 𝜎0 + 𝜎1𝑧
−1 + · · · + 𝜎𝑛−1𝑧

−(𝑛−1)

𝛾(𝑧−1) = 𝛾0 + 𝛾1𝑧
−1 + · · · + 𝛾𝑛−1𝑧

−(𝑛−1)

are unknown a priori.
We show that 𝐹 (𝑧−1)𝜂(𝑧−1) = 0 holds only when 𝜂(𝑧−1) =

0 and subsequently 𝜎(𝑧−1) and 𝛾(𝑧−1) must all be zero. After
forming the Sylvester matrix, Eq. (A1) is equivalent to the linear
equality:

𝑆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝛼1
.
.
.

𝛼𝑛−1
𝛾0
𝛾1
.
.
.

𝛾𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂0
𝜂1
.
.
.

𝜂𝑛−1
𝜂𝑛
𝜂𝑛+1
.
.
.

𝜂2𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . . . . 0

𝛼1
. . .

. . .
.
.
. 𝛽1

. . .
.
.
.

.

.

.
. . .

. . . 0
.
.
.

. . .
. . .

.

.

.

.

.

.
. . . 1

.

.

.
. . . 0

𝛼𝑛−1 𝛼1 𝛽𝑛−1 𝛽1

𝛼𝑛
. . .

.

.

. 𝛽𝑛
. . .

.

.

.

0
. . .

. . .
.
.
. 0

. . .
. . .

.

.

.

.

.

.
. . .

. . . 𝛼𝑛−1
.
.
.

. . .
. . . 𝛽𝑛−1

0 . . . 0 𝛼𝑛 0 . . . 0 𝛽𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2𝑛,2𝑛

Then, the coefficients of the filter product

𝐹 (𝑧−1)𝜂(𝑧−1) = 𝜂0 + 𝜂1𝑧
−1 + · · · + 𝜂𝑚+2𝑛−1𝑧

−𝑚−2𝑛+1

satisfies

⎡⎢⎢⎢⎢⎢⎢⎣
𝜂0
𝜂1
.
.
.

𝜂𝑚+2𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎦⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝜂∗

= 𝐹∗

⎡⎢⎢⎢⎢⎢⎢⎣
𝜂0
𝜂1
.
.
.

𝜂2𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎦⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
�̃�∗

= 𝐹∗𝑆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎0
𝜎1
.
.
.

𝜎𝑛−1
𝛾0
.
.
.

𝛾𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏞ˉ̄⏟⏟ˉ̄⏞
𝜉∗

where

𝐹∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓0 0 . . . 0

𝑓1
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0
.
.
.

. . . 𝑓0
𝑓𝑚−1 𝑓1

𝑓𝑚
. . .

.

.

.

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 𝑓𝑚−1
0 . . . 0 𝑓𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦𝑚+2𝑛−1,2𝑛

and all columns of 𝐹∗ are linearly independent. Thus, if 𝜂∗ = 0,
𝜂∗ must be a zero vector. If the numerators of 𝛼(𝑧−1) and 𝛽(𝑧−1)
are copirme, 𝑆 will be nonsingular and thus 𝜂∗ and 𝜉∗ form a one-
to-one mapping. The unique solution to Eq. (10) is thus 𝜉∗ = 0.
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