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Abstract—Visual inspection is omnipresent and critical in
precision manufacturing. However, complex geometries of parts
hinder uniform illumination, and high reflectivity challenges
accurate focusing for digital visual data collection. This research
provides a novel adaptive illuminance distribution for consistent
lighting to facilitate quality imaging over complex-shaped, highly
reflective surfaces. The central approach entails using arrays
of independently controlled light sources to reliably generate
different lighting patterns, structures, and colors. Such results
consider the geometry, the 3D pose of parts in the environment,
and the surface topography of the work-piece to be inspected,
hence amplifying the capabilities of an image capturing system.
This paper discusses the mathematical problem formulation,
the analytic solution, the optimality of the proposed lighting,
and experimental results in imaging curved parts common in
aerospace manufacturing. The efficacy of the resulting defect
identification is tested using a deep neural network.

Keywords: Robotic Imaging, Controlled Lighting, Optimal
Lighting, Illuminance Distribution, Glare and Gradient Elimi-
nation, Machine Learning.

I. INTRODUCTION

Omnipresent in manufacturing and especially within
aerospace, visual inspection is a prime target for innovations in
automation for manufacturing. Modern precision manufactur-
ing must exclude parts with imperfections such as scratches,
discolorations, dents, and tool marks. When air flows into
a jet engine at 1.2 tons per second during takeoff, defects
as minor as scratches and pits in the turbine blades could
lead to imbalances in airflow and part fatigue, resulting in
premature engine wear and even engine failures [1]–[3]. Not
only is inspecting such complex shiny surfaces tiring and time-
consuming, but the inspection process is also burdensome,
subjective, and requires months to years of training. As a
result, automated inspection has become essential for gas
turbine production [4], [5].

At the core of automating precision visual inspection is the
proper data collection and controlled-environment imaging to
profile a 3-dimensional object under inspection. A good image
is the result of the most suitable focus and illumination of the
desired surface. However, complex geometries of parts hinder
uniform illumination, and high reflectivity challenges accurate
focusing (Fig. 1). Setting up a proper controlled environment
is thus key and potentially a transformative way to amplify
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contrast and sharpness for quality imaging [6], leading to
reliable and repeatable data collection for precision inspection.

Fig. 1: Example
complex metallic
parts in precision
manufacturing.

This paper proposes a novel adaptive
illuminance distribution for quality vi-
sual imaging and robotic inspections of
complex reflective parts. Small tolerance
for errors renders standard machine vi-
sion unreliable to inspect defects at mil-
limeter to micrometer scales. Directed
lighting has proven to benefit image
formation but is limited to incrementally
inspecting sections of a curved surface [7]. Leveraging arrays
of independently controllable light sources spatially arranged
over the part under inspection, however, the proposed op-
tomechatronics allow for the generation of different lighting
patterns, structures, and colors to cover a large surface area.
From there, we formulate a convex optimization, particularly
a constrained least-squares problem, that integrates (1) the
geometry and 3D pose of parts in the environment, and (2)
the surface topography of the work-piece to be inspected. In
particular, we propose five solutions of adaptive lighting and
benchmark each physical configuration. Images are captured
under the implemented lighting, and imaging data sets are
collected for a group of curved parts with characteristics
common in gas turbine industry. The efficacy of the methods is
compared under a machine-learning based defect identification
with transfer learning. The results appeared key in perfect-
ing the performance of the neural network. A visual-centric
workflow is also immediately interpretable for humans, and
traceable to other process steps from machining to polishing,
leading to cost-effective implementation and quality assurance
in the production of entire engines and aircraft.

The contributions of the paper are threefold. First, we
provide a new method of controlled illumination with multiple
spatially arranged light sources for precision visual inspec-
tion of complex reflective surfaces. Second, we elucidate an
automation workflow integrating controlled environment data
collection with machine learning to achieve a first-instance
defect detection at over 95% accuracy for a class of critical
aerospace metallic parts. Third, through extensive benchmark-
ing, the paper provides untapped insights to light objects
challenging to image even for experienced human inspectors.
More broadly, a diverse range of industries have benefited from
recent advances in machine vision technologies: e.g., general
manufacturing, robotic guidance, part identification, visual



inspection, process control, characterization, fault detection,
and inventory management [8]–[14]. Examples of industry-
specific applications include aerial refueling [15], disease/-
contamination identification, and leaf recognition [16]–[18].
Improvements resulting from this research have the potential
to empower machine vision to increase quality control stan-
dards in these important problem spaces, by eliminating glare
and lighting gradients, and emphasizing surface defects and
deviations over non-uniform and uneven topographies.

The remainder of this paper is organized as follows. Section
II discusses the different reflectivity of surfaces and lighting
structures. Section III presents a preliminary understanding of
lighting physics and illustrates an experimental proof of con-
cept, establishing a strategy for uneven topographies. Section
IV delivers the proposed adaptive lighting and experimentally
validates the defect identification. Section V extends the opti-
mal solution by considering the effect of scaling the numbers
of light sources and lighting angles. Section VI concludes the
paper and provides directions of future work.

II. BACKGROUND AND LIGHTING SELECTION

Automating the visual inspection process requires the em-
ployment of an optomechatronic system. Such a system must
capture images of a work-piece and then analyze the resulting
pixel-domain data, rather than analyzing the physical work-
piece itself. Therefore, it is critical to understand how the
light will reflect off the surface to be inspected. Factors
that characterize the reflected lights include the work-piece
material, its topography and surface characteristics such as
finish and color, the light source itself, and environmental
conditions [6], [19]. Below, we summarize the relevant physics
for inspection and along the process, provide the proposed
hardware component designs.

A. Reflectivity of Surfaces

Flat surfaces are uniform and easily illuminated, whereas
curved, uneven surfaces challenge illumination, and prismatic
surfaces have sharp edges and/or steep slopes that are difficult
to illuminate due to shadows and glints [6], [20]. In addition to
geometry, inspection must also consider surface finish of the
parts. Specular and highly polished surfaces cause the light
to be reflected at an angle equal and opposite to the angle
of incidence. Diffuse surfaces are rough and dull, causing the
incident light to be scattered in many directions. Directional
surfaces, on the other end, have fine and uniform grooves that
reflect light in a preferred direction dependent on the angle
of incidence. All three types of surfaces are encountered in
precision inspection, and are considered in our selection of
the light source and lighting structure in Section II-C.

B. Lighting Structure and Source

Interference and disturbances such as sunlight and excessive
room lighting substantially impact the quality and consistency
of inspection. High-power strobing can overwhelm the wash
out the ambient contribution, but is expensive and ergonom-
ically challenging. Additionally, not all light sources (e.g.,

Fig. 2: Surface reflection: (a) specular (b) diffuse

fluorescent lights) are capable of strobing. Another solution
entails using a physical enclosure to block environmental
lighting – a method that applies most suitably to small objects.
In both cases, the lighting must be controlled to maintain a
consistent luminosity.

The structure, location, and pattern of lighting also impact
the efficacy of a machine vision system. There are two parent
structures for placing light sources with respect to the work-
piece, source, and image capture system. The first is front
illumination, where the light source and the receiver are on
the same side of the part. The second is back illumination.

Front illumination applies direct or angled ring lights with
the image capture system at the center of the light source, lead-
ing to shadow-less illuminations. Sharper angles of incidence
on the surface lead to better detection of edges, scratches, and
embossing. Diffuse, flat, and coned ring lights are suitable for
inspecting specular surfaces with minimum glinting and shad-
ows. Dome lights use a dome-shaped concentrator to direct
the light beams and are used for curved and specular surfaces
(Fig. 3 top left). However, they require close proximity to
the part, making it difficult for complex geometries. Co-axial
lights apply a 2-way mirror to direct light at an angle of
90o onto the work-piece. These lights are used for specular
surfaces and often also require close proximity to the part
(Fig. 3 top right). The last two types of relevant front lighting
are dark and bright-field illumination. When trying to achieve
a dark focused region, and the surfaces being inspected are
uneven, dark-field lighting is most advisable to illuminate
bright defects. When the focus is on bright areas and flat
surfaces, bright-field lighting is most advisable [21].

For back illumination, two instances are shown in Fig. 4.
Dimensional analysis, hole inspection, and checking for the
absence of components are the core benefits here [22].

C. Proposed Lighting Shape and Source Selection

From Sections II-A and II-B, front and flat/dome diffuse
lighting rise as the most suitable options for uneven topogra-
phies and surface finishes. In this study, we select front and
flat diffuse lighting as the baseline illumination for inspecting
the targeted metallic objects.

After the pattern and lighting methodology, we move onto
the selection of the light source. For the targeted robotic
inspection, fluorescent lights produce diffuse lighting that is
cool and white, and provides a large illumination area at
low cost. However, they suffer from inflexible fixed shapes,
short lifetimes, significant temperature drift, rapid aging, and



Fig. 3: Front illumination: top left to bottom right: dome, co-axial,
bright-field and dark-field illumination.

Fig. 4: Back illumination: back and collimated configurations.

long switching transients. Also, if Pulse Width Modulation
(PWM) is used to control the brightness, a high frequency (22
kHz or more) ballast is required to reduce flicker interference
[21], [22]. Halogen lights provide high intensity and broad-
spectrum lighting, but suffer from a short lifetime and a
significant brightness drop near the end of the service life.
They also produce a large amount of heat, exhibit long
switching transients, and require robust stabilization. Light-
emitting diodes (LEDs) provide pulse and strobe capable
monochromatic light. They have long lifetimes and small
temperature drifts, produce relatively low heat, and are stable,
consistent, and cost-effective. Xenon lights provide pulse and
strobe capability, and monochromatic light capable of high-
color temperatures (5,500 to 12,000 K). On the downside,
they require high voltages and more expensive electronics than
LEDs to control. They also age faster than LEDs. Metal halide
(Mercury/High-Pressure Sodium) lights are used in large-scale
applications or when requiring very bright light sources. Still,
they suffer from high (e.g., 30 KV) working voltages, are
expensive, and produce substantial heat.

Table I summarizes the relative strength of different lighting
under performance criteria relevant to inspecting complex
metallic parts [19]–[21]. For the focused precision inspection,
based on the allowable work distance, intensity, stability and
on-time, we selected different weighting for each property. As
shown, the most suitable light source for complex reflective
parts are LEDs to supply flat diffuse lighting. We implemented

such a lighting source in the work-space by using a 120
LED shooting tent with a diffuser. This arrangement will be
utilized moving forward, and an additional set of auxiliary
(compensatory) LED lights will be employed in Section III-A.

TABLE I: Proposed lighting selection criteria.

Property (/5) Wts. LED Halogen Fluorescent Xenon
Life Exp. 0.1 5 1.5 3 3.5

App. Flexibility 0 4.5 3 2 2.5
Output Stability 0.20 5 1.5 3 2.5

Cost Eff./hr 0 4 2.5 3.5 2.5
Strobing 0 5 1 0 4
On time 0.20 5 5 5 5

Output Int. 0.1 4 4 3 5
Heat Output 0 4 1 3.5 3

Reaction Time 0 5 1 1 5
Robustness 0.1 5 1 3 1

Maintenance 0.1 5 1 3 4
Safety 0.1 5 3 4 1

Area/Distance 0.1 3 4 5 4
Score 1.00 4.70 2.75 3.70 3.35

III. PROPOSED LIGHTING CONTROL

This section summarizes the mathematical problem of light-
ing curved surfaces, explains the lighting physics, and develops
the proposed strategy for uneven topographies.

A. Light Physics and the Proposed Geometric Lighting Model

Light can be measured through different techniques, re-
sulting in different representations and metrics. Luminous
Intensity (measured in Candela, or in short, cd) represents the
amount of light emitted in the range of a three-dimensional
angular span. This is a property of the light source available
from the data-sheets. Since the angular span is constant
regardless of the source’s distance, the luminous intensity is
equal for surfaces A and B in Fig. 5a.

Fig. 5: (a) Lighting in angular span: A and B have the same
luminous intensity (b) Lighting on surface: illuminance of A larger

than that of B.

If the luminous intensity is not included in the data-sheet,
the aforementioned angular span, measured in steradians and
denoted as Ω, is used to calculate the luminous intensity.
Similar to radians, steradians are unit-less, and 1 steradian in a
sphere of 1-meter radius would produce a surface area of 1 m2,
which indicates that the sphere would have 4π steradians. This
angle is calculated using the apex angle of the light source,
denoted as α, through:

Ω = 2π(1− cos(α/2)) (1)



One can then calculate the luminous intensity by [23], [24]:

I = L/Ω (2)

where I is the luminous intensity, and L is the luminous flux
(in lumen) that measures the perceived power of light.

Fig. 6: Relationship between luminous intensity and illuminance.

The final critical property is illuminance, measured in Lux
and represents the illumination of a surface as opposed to that
of an angle. This measurement is the easiest to compare to,
since it is affected by the angle of incidence of the light (θ)
and the distance between the source and surface (r) (Fig. 6).
The more distant the surface is from the source, or the larger
the angle of incidence, the less the illumination will be. In
Fig. 5b, for example, surface A has greater illuminance values
than that of B. We calculate illuminance at a single point on
a surface by [23], [24]:

E =
I cos(θ)

r2
(3)

To calculate the illuminance at a point on a surface from the
proposed multi-source lighting, we generalize Eq. (3) to

E =

n∑
i=1

Ii cos(θi)

r2i
(4)

where n is the number of light sources, and Ii, θi and ri
are the luminous intensity, angle of incidence, and distance of
each light source, respectively (Fig. 6). The proposed lighting
with LEDs implements a WS2812B [25] 8 × 8 light array
integrated with a control circuit and RGB chip, allowing each
unit to provide independently controlled brightness and color.

TABLE II: WS2812B data-sheet luminous intensity.

Emitting
Color Model Wavelength

(nm)

Luminous
Intensity
(mcd)

Voltage (V)

Red 13CBAUP 620 - 630 550 - 700 1.8 - 2.2
Green 13CGAUP 515 - 530 1100 - 1400 3.0 - 3.2
Blue 10RIMUX 465 - 475 200 - 400 3.0 - 3.4

Since a white LED can consist of three smaller red green
and blue (RGB) diodes, each source has its luminous in-
tensity range as shown in Table II. For the focused while-
light illumination, to avoid using a spectrometer to identify
the contribution of each color, we created a performance

correction factor, Cl, that normalizes the weighted luminous
intensity by:

Ii = Cl(Rmax+Gmax+Bmax) = Cl(0.7+1.4+0.4) = 2.5Cl

where Cl and the maximum luminous intensity contribution
of each color (Rmax = 0.7cd, Gmax = 1.4cd and Bmax =
0.4cd) are used to approximate the 8 × 8 light source’s final
capabilities. We derived the performance correction factor by
installing the lights at a measured elevation above a work-
surface and comparing the calculated illuminance Ec using
Eq. (4) with the measured illuminance (Ea) at a given point.
The performance correction factor is then calculated via:

Cl =
Ea
Ec

Further generalizing the equation to cover any point in the
work-space when multiple lights are used, we introduce the
notation (i|j) to represent the relative position of the light
sources (i) to the point being studied (j). Then

Ej =

n∑
i=1

Ii cos(θ(i|j))

r2(i|j)

Putting the above into a vector and matrix form yields our
geometric model of multi-source lighting:E1

...
Em

 =


cos(θ(1|1))

r2
(1|1)

. . .
cos(θ(1|n))

r2
(1|n)

...
. . .

...
cos(θ(m|1))

r2
(m|1)

. . .
cos(θ(m|n))

r2
(m|n)


I1...
In

 (5)

where m represents the number of points on the desired
surface and n is the number of light sources being controlled.

B. Proposed Optimization-based Illuminance Distribution

Denoting Eq. (5) as E = AI and noting that m is usually
much larger than n, we can solve for the luminous intensity
vector I with the method of least-squares:

I ≈ (ATA)−1ATE

However, since the luminous intensity of any physical
light is bounded between 0 and a maximum value Imax, we
propose a box constrained least-squares and solve a convex
optimization problem:

I = arg min
I

1

2
||AI − E||22 (6)

subject to: 0 ≤ Ii ≤ Imax, i = 1, 2, . . . , n (7)

The optimization can be readily solved through the interior-
point method. Such a formulation enables taking an illu-
minance distribution as the input to produce the luminous
intensity and structure of the different light sources required
to supply the desired distribution. To illustrate the solution’s
validity we developed a model system in a smaller work-
space (Fig. 7). The controllable lights were fixed at a leveled
height off of a flat surface, and the coordinates of the lights
in relation to a local coordinate system were recorded. This



process was executed in the absence of ambient lights to
avoid external disturbances and emphasize the validity of the
proposed optimization-based solution.

Fig. 7: Prototype flat-surface inspection and experimental setup
(meter measuring 1,000 Lux).

Using the optimal solutions, we imposed two illuminance
distributions for performance validation: a constant 1,000 Lux
and a constant 5,000 Lux over the full surface in the physical
setup. The calculated luminous intensities and structure of the
light source were input into the lighting controller (Fig. 8
column 1), and the illuminance of the surface was measured at
random points for performance comparison (point 1 to point
8 in Fig. 8 column 2).

Fig. 8: Proposed optimal solution: top - 1,000 Lux [(a) intensity (b)
illuminance]; bottom - 5,000 Lux [(c) intensity (d) illuminance].

Fig. 7 shows the experimental setup where the 1,000 Lux
solution was imposed, where the meter reads an actual value
of 960 Lux. Table III shows the performance of the proposed
solution under two different target illuminance values. As can
be observed, for a target illuminance of 1,000 Lux, the actual
illuminance lies in a close range of 878 - 963 Lux with a small
7.9% mean error and a 3% standard deviation. For a 5,000 Lux
target illuminance, the proposed solution generates an effective
actual lighting distribution in the range of 4,620 - 5,040 Lux
with a 3.4% mean error and a 3% standard deviation.

C. Extension to Uneven Topographies

This section extends the proposed optimal lighting to a
three-dimensional object. Accommodating three-dimensional
surfaces requires the extraction of the pose and geometry
of the work-piece. Since the work-piece is suspended in the
work-space and has an uneven topography, it is challenging

TABLE III: Measured illuminance verifying design in Fig. 8.

Point 1,000 Lux 5,000 Lux
1 878 4,930
2 963 4,620
3 914 5,040
4 961 4,960
5 887 4,800
6 906 4,680
7 916 4,720
8 941 4,980

Min. 878 4,620
Max. 963 5,040
Mean 921 4,841

Std. Dev. 30 147
Mean err. 79 169

to accurately measure lighting in the physical work-space.
Simulations were executed to give further insight into the
behavior of illuminance over curved surfaces. Specifically, we
use Autodesk Revit to model a work-space of a 0.5m×0.5m×
0.5m shooting tent with 120 base LEDs fixed at the top with
a diffuser (Fig. 9).

Fig. 9: Design of work-space in Autodesk Revit.

1) Simulation Verification: We first verified the proposed
high-fidelity simulation in Revit by benchmarking the physics-
based calculations in the previous section. In Fig. 10, the
solution for the 1,000 Lux distribution on a flat surface is
imposed from Fig. 8 inside the recreated work-space. The
results of the simulation are compared with the experimentally
measured results (Table IV). We observe only minor deviations
from the physics based calculation (mean error: 3.6%, std:
6.7%), verifying the capabilities of Revit to produce accurate
illuminance distributions.

Fig. 10: Solution of 1,000 Lux illuminance distribution: (a)
Physics-based calculation (b) Revit high-fidelity simulation.



TABLE IV: Experimental verification of simulation in Fig. 10.

Point Measured Simulated
1 878 838
2 963 1,026
3 914 873
4 961 986
5 887 838
6 906 873
7 916 924
8 941 966

Min. 878 838
Max. 963 1,026
Avg. 921 916

Std. Dev. 30 67
Mean err. 79 36

2) Simulation Insight: With the successful verification of
the proposed simulation setup, we expose the work-piece to
different scenarios to extract useful insights. Fig. 11 shows
the illuminance distribution over the work-piece in Revit com-
pared to an actual captured image from the physical system.
There is a clear correlation between the simulated illuminance
distribution and the glare in the physically captured images.
We measure glare using the Unified Glare Rating, or UGR, for
Discomfort Glare [26], [27] and through contrast (Disability
Glare) [28]:

UGR = 8 log10

[
0.25

Lb

n∑
i=1

(
L2
iωi
p2i

)]
Contrast =

Lmax − Lmin
Lmax + Lmin

where Li is the luminous flux of a luminaire, ωi is the solid
angle of the luminaire as seen by the viewer, pi is the Guth
position index measuring the angular distance from the center
of the viewer’s line of sight to the luminaire, and Lb is the
luminous flux of the background. In both cases, there is a ratio
between different levels of luminous flux. As illustrated in
Section III-A, the luminous intensity I is directly proportional
to the luminous flux L with a factor of 1/Ω [Eq. (2)]. This in
turn is proportional to the illuminance E using Eq. (4).

Fig. 11: Glare/gradient comparison: (1) Revit simulation, (2)
captured images (pixelated and distorted for compliance policies).

Furthermore, different defect sizes and orientations were
implemented on the work-piece with varying widths x and

depths y (Fig. 12 and Table V) to visualize the interaction
between the illuminance distribution and defect orientation.
When the defect is perpendicular to the illuminance gradient,
visibility of the defect increases with the defect size. Whereas
in the parallel orientation, visibility of the defect remains
at the same level across different defect sizes. Maintaining
a consistent illuminance distribution over the surface will
eliminate the dependence of defect orientation with respect
to the gradient by increasing the contrast between lighting on
the surface and within the defect. Therefore, from Fig. 11 and
Table V, it is clear that enforcing a consistent illuminance
distribution on the inspection surface is key to eliminating
glare and light gradients.

Fig. 12: Design of experiments: engineered defect shape.

TABLE V: Modelled defect sizes (µm).

X
(µm)

Y
(µm) Parallel Perpendicular

50 250

10 50

5 2.5

3) Proposed Shape-Adaptive Lighting for Curved Parts:
When a curved part is subject to an existing illuminance ([E]E)
and we have a desired illuminance over the work-piece surface
([E]D), we calculate a compensatory illuminance ([E]C) to
balance the uneven existing distribution (Fig. 13). At the core
of the multi-source lighting, we have the superposition:E1

...
Em


D

=

E1

...
Em


C

+

E1

...
Em


E

which yields the target compensation from the assistive lights:E1

...
Em


C

=

E1

...
Em


D

−

E1

...
Em


E



Fig. 13: Outline of proposed lighting hardware configuration.

For the proposed LED array system, we have:E1

...
Em


C

=


cos(θ(1|1))

r2
(1|1)

. . .
cos(θ(1|n))

r2
(1|n)

...
. . .

...
cos(θ(m|1))

r2
(m|1)

. . .
cos(θ(m|n))

r2
(m|n)


I1...
In


Solutions of luminous intensity I can then be solved from

the aforementioned model-based optimization in Section III-B.
As highlighted earlier, the work-space has 120 base LEDs

which represent [E]E . Fig. 14 shows the work-space, the 15
proposed positions for the work-piece to be inspected, the line
of sight of the camera, and the 120 LEDs. Since the work-
piece is a 3D surface, the angle between the incident light and
the surface normal is used as an indicator of inclusion in the
calculation through conditioning the term cos(θi|j), to avoid
any negative contributions when the light ray enters from the
back of the point of interest, i.e. when cos(θ(i|j)) < 0 we
assign cos(θ(i|j)) = 0.

Fig. 14: Work-space and work-piece placement.

For a well-rounded comparison, six different configurations
(C0 - C5) were considered for [E]D:
• Case C0: Lighting in the shooting tent was tuned as best

as possible with diffused LED lighting at the ceiling of
Fig. 14. No compensatory lighting is applied, i.e., [E]D =
[E]E .

• Case C1: Setting the maximum value of [E]E as [E]D,
namely, we aim for uniform illuminance at the maximum
environment condition: [E]D = max [E]E .

• Case C2: Setting the maximum value of [E]E in a 1/8
sub-region (E(s)) as [E]D and focus in this sub-region
only: [E]D(s) = max[E]E(s) and [E]D(6=s) = 0.

• Case C3: Setting the maximum value of [E]E in a sub-
region (1/8) as [E]D and leave other regions uncon-
strained: [E]D = max[E]E(s).

• Case C4: Setting the maximum value of [E]E in a sub-
region (1/16) as [E]D and focus in this sub-region only:
[E]D(s) = max[E]E(s) and [E]D( 6=s) = 0.

• Case C5: Setting the maximum value of [E]E in a sub-
region (1/16) as [E]D: [E]D = max[E]E(s).

Using the chosen [E]D, we calculated the additional LED
mesh contribution [E]C . Then using the proposed boxed least-
squares, the required luminous intensity [I] was calculated.
An example of the optimal solution was calculated for con-
figuration C1 in the work-piece’s first position below. The
existing illuminance distribution [E]E was calculated over the
surface (Fig. 15b), following which the desired illuminance
[E]D and the needed compensatory illuminance [E]C were
derived (Fig. 16a). Fig. 16b presents the resulting optimal
luminous intensity and structure of the LED arrays. Fig. 17
shows the corresponding generated illuminance distribution
and the final illuminance of the work-piece. For this work,
15 solutions were derived, one for each work-piece position.
These were programmed into the LED controller to produce
the optimal lighting shape for each position.

Fig. 15: Validation of proposed adaptive illuminance on a demo
part: (a) work-space arrangement, (b) existing illuminance [E]E .

(Dimensions of the demo part do not scale.)

Fig. 16: Validation of proposed adaptive illuminance on a demo
part: (a) compensatory illuminance [E]C , (b) least-squares luminous

intensity [I].

Fig. 17: Validation of proposed adaptive illuminance on a demo
part: (a) actual compensation, (b) final calculated illuminance.

IV. RESULTS AND COMPARISONS

Comparing Figs. 15b, and 17b, we observe that indeed the
final distribution of illuminance over the surface is signifi-
cantly improved. Table VI compares all the focal areas on



the sample curved geometry under different lighting config-
urations. We calculated the means, standard deviations, and
absolute mean errors of the final illuminance values for all
15 positions within the proposed arrangements. Figs. 18, 19
and 20 compare the performances of C0 and C1, C2 and C3,
and C4 and C5 respectively with respect to the desired [E]D.
A summary of the average standard deviations and errors are
shown in Table VII.

TABLE VI: Adaptive lighting comparison. Positions 1 and 15 have
been distorted for date release compliance.

Pos. C0 C1 C2 C4 C5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TABLE VII: Average standard deviations and mean absolute errors.

Quantity C0 C1 C2 C3 C4 C5

Std. Dev. 1,235 1,277 1,081 1,245 1,240 1,283
Mean Err. 2,837 950 2,023 944 2,366 1,308

All the proposed optimal solutions successfully compen-

Fig. 18: Mean, standard deviation and error of C0 and C1.

Fig. 19: Mean, standard deviation and error of C2 and C3.

sated for the baseline lighting, exhibiting errors lower than
that of C0, with C1 and C3 having mean errors less than
1,000 Lux. Fig. 21 compares the performance of C1 and C3,
highlighting the similarity in the achieved illuminance.

With the improved image data, the efficacy testing of
the optimal solutions was assessed by examining the ease
and accuracy of defect identification on images of aerospace
curved metallic parts captured using the adaptive lighting.
Using 854 images of defective parts and 581 images of
good parts, the defect identification is achieved through a
Resnet 50 deep neural network under transfer learning, with
the following properties: images size for input: 448 pixels
by 448 pixels; training epochs (number of complete passes
through the training data-set): 20; learning rate: 0.0001; data
augmentation: scale (0.9∼1), flip-x, flip-y. The training data
include the images captured of the work-piece under lighting
configurations C0 - C5, together with another set of common
images captured at varying lighting conditions at a 3 : 7 ratio.
Five neural networks were subsequently trained, one for each
lighting configuration (due to the similarity in performance
shown in Fig. 21, C3 was omitted from this analysis). Table
VIII highlights the final defect detection performance. As can
be seen, compared to the C0 baseline, training and validation
accuracy is improved all around. C1 and C2 improve the
performance of the defect identification further than C4 and
C5. A reduction in false alarms and miss rates is also achieved.
Table. VI compares C0 to C5 (excluding C3) for all positions
of the work-piece in front of the camera, where the cropped
regions represent the focal areas of the image capture system.



Fig. 20: Mean, standard deviation and error of C4 and C5.

Fig. 21: Mean, standard deviation and error of C1 and C3.

The compensation is clearly visible with reduced gradients and
glare. Overall, C2 outperforms other solutions with the highest
training and validation accuracy, and lowest false alarm and
miss rates. However, the margin over C1 is sufficiently small
statistically that C1 and C2 are on the same performance level.

TABLE VIII: Results of proposed defect identification.

Light Valid. % Train. % False Alarm % Miss Rate %
C0 94.00 ±0.63 96.52 4.29 ±1.13 7.71 ±1.25
C1 95.51 ±0.46 97.67 3.35 ±0.98 5.62 ±0.96
C2 95.63 ±0.35 98.28 3.29 ±0.12 5.46 ±0.58
C4 94.19 ±0.13 97.73 3.85 ±0.70 7.77 ±0.10
C5 94.70 ±0.50 98.15 3.81 ±1.06 6.79 ±1.35

V. EXTENSION AND THE EFFECT OF SCALING

Using the results obtained for a fixed array of light sources
(64 LEDs), we extended the proposed method to cases with
a larger number of lights at different lighting angles to reveal
the effect of scaling and resolution. For example, consider two
additional forms with increased numbers of lighting angles: 1)
Four 8 × 8 LED arrays, surrounding the camera (256 LEDs
emitting from four flat surfaces), and 2) A single dome array
with the same spacing as the 8 × 8 LED array (252 LEDs
emitting from a curved surface). The structures considered
have the same granularity, but with a greater number of sources
at different angles. A representation in the work-space and a
sample of their boxed least-squares solutions are outlined in
Figs. 22 and 23.

Fig. 22: Light structures: (a) four 8× 8 arrays (b) dome array.

Fig. 23: Optimal solutions: (a) four 8× 8 arrays (b) dome array.

Fig. 24 and Table IX compare the standard deviations and
absolute mean errors of both arrangements. We observe an
approximate reduction by a factor of two in standard deviations
and errors due to the increased number of light sources and
lighting angles of attack. This increase in coverage allows the
compensatory lights to have a view of the whole surface. This
is further highlighted in Fig. 25 and Table X, which illustrate
the results of one position of the work-piece under C0, C1,
and the two extended structures of lighting.

Fig. 24: Performance of extended multi-source illumination.

TABLE IX: Performance gains across 15 positions.

Quantity C0 C1 Four Dome
Std. Dev. 1,235 1,277 642 638
Mean Err. 2,837 950 479 483

VI. CONCLUSIONS AND FUTURE WORK

This study has presented a novel adaptive lighting method-
ology for curved reflective surfaces, along with five design



Fig. 25: Final illuminance distribution: (top left) C0 (bottom left)
C1 (top right) four 8× 8 arrays (bottom right) dome array.

TABLE X: Average stds and mean absolute errors of C0, C1, four
array and dome array arrangements for position 10.

Configuration C0 C1 Four Panel Dome

Std. Dev. 1,353 1,036 480 450

Mean Err. 2,844 644 347 338

configurations, and two extensions to the lighting structure.
The results appeared key in perfecting the neural network
learning performance: using less than 1500 raw images, the
proposed lighting yielded over 95% identification accuracy
with less than a 5% false-alarm rate. In particular, at a nearly
saturated benchmark, the shape-adaptive lighting increased
training (+1.8%) and validation (+1.6%) accuracies, and re-
duced false alarms (-1.0%) and miss rates (-2.25%). This was
achieved while using 70% of the training data with no adaptive
lighting, and 30% using the proposed solutions.

All proposed adaptive solutions provide performance gains
over a well-tuned shooting tent configuration C0. The quan-
titative comparison of standard deviations and errors of the
five solutions showed C1 and C3 having the best distributions,
closely resembling the desired illuminance level. C1 and C2

exhibited the best defect identification performance, with C2

slightly outperforming C1. The result is understandable in
that for machine learning, a more localized approach (C2)
following the focus of the image capture system helps to
maintain the desired illuminance in the region of interest.
Such an effect is demonstrated in Fig. 26, which shows a
section of a captured work-piece outside the focal area under
the arrangements of lighting.

Fig. 26: Sample resulting images: (1) C0 (2) C1/C3 (3) C2 (4)
C4/C5 (pixelated and distorted for data release compliance).

Though the optimal lighting solution was capable of elim-
inating glare and gradient within the focal region (Table VI),
we have not considered the direct reflection of the light sources
in the work-piece. Direct reflection occurs when the angle of
incidence on the work-piece from the sources is equal and co-
planar with the angle of reflection into the camera. Therefore,
despite the optimal solutions of C1 and C3 being numerically
superior to C2, C4 and C5, the positioning of the work-piece
can cause the light sources to be directly reflected into the
camera, leading to glinting in images. As a result, the higher-
intensity solutions (C1, C2 and C3) can exhibit noise that in-
terferes with the defect identification. Furthermore, C4 and C5

are far more constrained than the remaining solutions due to
the large number of sub-regions, causing limited compensation
and improvements over the baseline. This is reflected in the
quantitative analysis (Fig. 20), the defect identification result
(Table VIII), as well as Fig. 26.1 and Fig. 26.4.

With the extension in Section V, the optimal solutions are
further enhanced significantly by a twofold improvement in
standard deviation and mean error (Figs. 24 and 25, and Tables
IX and X). The extensions apply an increased number of lights
and lighting angles, with the same light-source granularity
(10mm spacing) and luminous intensity capabilities. Studying
the standard deviation and error plots of all proposed solutions
and extensions with changing positioning of the work-piece
indicated a performance drop in the last four positions (Figs.
18, 19, 20 and 24). Here, the focus of the camera is on the
convex side of the work-piece in positions 12 - 15, which
creates a challenge in lighting the full surface due to the
reduced view factor between each light source and the full
surface. We can address this geometric constraint and the
direct light reflection by incorporating adaptive positioning to
the lighting, to increase the mobility and adaptability of the
inter-spatial relationship between the work-piece, the camera,
and the lighting. This would help eliminate blinding effects in
the captured images and further cancel glare and gradient. Fur-
thermore, a lower granularity and increased luminous intensity
would enhance the performance.

Including obstacles in the computing formulation would
allow for more elaborate and intricate lighting structures and
work-spaces, increasing the adaptability of the calculation.
Another future improvement would be the inclusion of Lam-
bertian reflections to account for all lighting in the work-
space that reflects off all surfaces. This would reduce the need
for correction factors. Finally, employing a spectrometer to
measure all the exact spectral response of the lights would
improve the analytical solution and alleviate the dependence
on correction factors.
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