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A B S T R A C T

Slip detection during object grasping and manipulation plays a vital role in object handling. Visual feedback
can help devise a strategy for grasping. However, for robotic systems to attain a proficiency comparable
to humans, integrating artificial tactile sensing is increasingly essential, especially in consistently handling
unfamiliar objects. We introduce a novel physics-informed, data-driven approach to detect slip continuously
for control-oriented tasks. Our work leverages the inhomogeneity of tactile sensor readings during slip events
to develop distinct features and formulates slip detection as a classification problem. We test multiple data-
driven models on 10 common objects under different loading conditions, textures, and materials to evaluate our
approach. The resulting best classification algorithm achieves a high average accuracy of 95.61%. Practical
application in dynamic robotic manipulation demonstrates the effectiveness of the proposed real-time slip
detection and prevention.
. Introduction

Tactile sensing, an essential sensory modality in humans, is pivotal
uring object manipulation and grasping [1]. Such sensing allows
ne to discern various object properties such as stiffness, weight, and
urface texture. Humans can adjust their grip force independent of
isual feedback, highlighting the crucial role of tactile sensing in this
rocess. Johansson et al. in their 1984 study [2], demonstrated how
umans utilize receptors in glabrous skin and sensorimotor memory for
utomatic precision grip control when handling objects with different
urface textures. This research underscores a synergistic use of tactile
eedback and sensorimotor memory in humans to predict and adjust to
otential slip.

In robotic systems, incorporating tactile-based slip detection has
roven vital in enhancing a robot’s grip stability across varied opera-
ional dynamics (cf. Section 2). The focus of this paper is on identifying
ey slip characteristics and developing a framework for real-time de-
ection and control of slips. Fig. 1 depicts the overall structure of
he proposed slip-learning workflow. To achieve these objectives, our
esearch introduces several innovations in the field of tactile-based slip
etection and control:

✩ This paper was recommended for publication by Associate Editor Dr. Oliver Sawodny.
✩ This research was supported by a UW + Amazon Science Hub Gift-funded Robotic Research Project.
∗ Corresponding author.
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N. Jawale), navneet@uw.edu (N. Kaur), chx@uw.edu (X. Chen), paubirkm@amazon.com (P. Birkmeyer).

(1) Physics-aware analysis: Our approach integrates the displace-
ment field at the object–gripper contact surface and its first
derivatives, reflecting the friction field and its variations.

(2) Entropy-based slip indication and its derivative: We incorporate
entropy as a measure of randomness in the distributed marker
displacements from tactile images, serving as a reliable indicator
of potential slip events. Furthermore, we reveal the importance
of the entropy derivative in understanding dynamic changes in
the object–gripper interaction, allowing for more sensitive and
timely indication of slip initiation.

(3) Reduced reliance on prior knowledge of objects: Similar to how
humans can still detect slippage with their eyes closed, our
approach focuses on the interface interaction forces without
requiring extensive prior knowledge of the object and its grasp-
ing conditions. This makes it potentially valuable for real-world
applications where complete information is often unavailable or
impractical to obtain.

(4) Real-time detection and control: We develop a framework that
enables swift corrective actions based on our slip detection
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Fig. 1. Overview of the proposed hardware and software configurations for slip
learning. Slip experiments were conducted using a UR5e robotic manipulator equipped
with a Robotiq parallel gripper, Gelsight tactile sensors and their custom housing
for data acquisition. Subsequent feature extraction and machine learning distill slip
instances and predict occurrences of slippage.

method, enhancing the robot’s ability to maintain stable grasps
across varied operational dynamics.

These innovations collectively elevate the performance and application
of slip detection in robotic systems. Our adoption of the entropy
derivative, in particular, significantly enhances our detection system’s
performance by directly quantifying the rate at which disorder changes,
providing an essential metric for the early detection of slips. In the
remainder of the paper, we will first introduce the basic working
principle of the tactile sensor and related works in Section 2, followed
by the hardware setup and the extraction of features from tactile images
in Section 3. Section 4 introduces how we collect the data and the
classification methods we chose. We will then present the results given
by various data-driven methods, comparison with existing method and
validate the generalizability and future selection efficiency evaluation
in Section 5. To demonstrate the real-world applicability of our pro-
posed method, we illustrate its deployment in a robotic system that
has been integrated with our slip detection and prevention algorithm,
particularly emphasizing its performance during dynamic manipulation
tasks. Section 6 concludes the paper and discusses the future work.

2. Background and related work

2.1. Tactile sensor

The growth of tactile sensing is pivotal in robotic dexterity. Tactile
sensing can be done intrinsically or extrinsically [3]. Examples of intrin-
sic tactile sensing include measuring contact forces via joint torques [4,
5] or transmission cable tension in equipped manipulators [6]. Extrinsic
sensors, mounted on the robot hand’s exterior, use such technologies
as piezoelectric sensors for force and pressure detection [7,8]. Multi-
modal sensors, such as BioTac [9], provide varied data like force and
temperature, but may lack resolution in complex force environments.
Optical tactile sensors like Tactip [10] and others [11] provide rep-
resentations of surface interactions for deducing force. Among these,
the GelSight sensor stands out for its precise measurement of contact
surface geometry [12,13]. The GelSight sensor utilizes a camera to
record the deformation of a reflective, gel-coated transparent elastomer
under applied force. This process generates images during surface
contact, facilitating the creation of a depth map for the contact region.
Specifically, our project employs the GelSight Mini sensor, featuring
marker dots on its cartridge.

2.2. Slip detection in robotics

Slip detection has been a focus in robotics for decades, with various
methods proposed over the years. Starting with the skin acceleration
2 
Fig. 2. Design of adapter for housing Gelsight tactile sensors. A 45-degree flange
extension was designed for the end-effector to extend the opening distance of the
gripper to 85 mm. The adapters are mounted on the Robotiq Hand-e adaptive gripper
through four M2.5 screws.

sensor for slip and texture detection by Howe et al.. in 1989 [14], the
field has evolved significantly. By 2004, methods like Ikeda et al.’s
camera-based slip detection [15], and by 2012, Maldonado et al.’s
fingertip sensing for object characteristics [16], have been introduced.
Recent advancements primarily employ tactile sensing. Veiga et al.
combined traditional tactile sensors with machine learning for a 75%
accurate slip detection in 2015 [17]. Later developments include James
et al.’s vision-based tactile sensors in 2018 [18], Dong et al.’s incipient
slip detection in 2018 [19], and Li et al.’s visual–tactile deep neural net-
work in 2019 [20]. Griffa et al.’s 2022 study used deep neural networks
for force distribution classification [11], while Juddy et al. explored
soft force sensors for deformable object grasping [21]. Yuan et al. [22]
concentrated on processing tactile data. Their investigation revealed a
correlation between the irregularity of gel deformation displacement
and the onset of slip, signifying an early stage of entropy-inspired slip
detection research. Despite these advancements, broader adoption of
entropy in slip detection remains underexplored, particularly within the
domain of machine learning. Drawing from statistical properties of a
vector field, the proposed method takes a step change to incorporate
not only entropy but also the derivative of entropy as core features
during a slip. Such insight turns out pivotal for successfully applying
machine learning classifiers in slip detection tasks.

3. Hardware setup and tactile data

3.1. Hardware setup

Our hardware setup includes a UR5e robotic arm, a Robotiq Hand-
E gripper, and custom adapters for two Gelsight tactile sensors. The
sensors are incorporated into tailored parallel end-effectors on the
Robotiq Hand-e gripper and secured with screws. As shown in Fig. 2,
the end-effectors were designed to extend outwards along the move-
ment directions of the gripper to create a large operational range of the
system for a wide variety of target objects. The end-effector adapters,
machined from 6061-T6 Aluminum for strength and stability, enable
firm grasping of diverse objects. The Gelsight mini sensor can capture
high-resolution imprints of the contact surface, with a resolution of
3840 × 2160. The sensor is coated with a Lambertian silicone gel
layer and has a surface area of 18.6(𝐻) × 14.3(𝑉 ) mm2. As the primary
objective of this paper is to learn the contact force field during slip, our
slip detection approach focuses on analyzing data from a single sensor
and depth camera images were not utilized in this current study. All
equipment was operated using Ubuntu 20.04 on a PC equipped with
an Intel Core i5-10210U CPU at a clock speed of 1.60 GHz × 8.
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Fig. 3. (a) Gripper grasping a T-handle hex key, (b) the displacement of individual
markers overlaid on the tactile image, and (c) zoomed-in section of GelSight image,
illustrates the gel deformation through arrows resulting from contact, denoted as 𝐷𝑥𝑖
and 𝐷𝑦𝑖, and referred to from hereon as the displacement field of the markers.

3.2. Translating tactile frames to features

The camera within the GelSight tactile sensor captures the surface
deformation dynamics as video sequences. This process is enhanced by
the presence of 63 black markers, strategically arranged in a 7 × 9
matrix on the sensor’s surface. These markers are crucial for enabling
precise measurements of surface deformation. By observing the dis-
placement of these markers over time, we can accurately determine
the extent of deformation. We process each video frame and compare it
to the initial frame to assess gel deformation. To quantitatively depict
this deformation, yellow arrows are drawn on each frame (Fig. 3). The
specific methodologies employed are enumerated as follows: We use
the canny filter for marker selection and OpenCV’s SimpleBlobDetector
algorithm to determine their centers. By comparing marker positions
from the initial to current frames, we compute each marker’s average
displacement. In a stable grasp, the gel moves uniformly under the
shear force indicated by evenly distributed arrows. However, during
slip, this uniformity is disrupted, leading to increased entropy and
inhomogeneity, as well as a significant rise in entropy derivative. This
increase in the derivative of entropy turns out to be a valuable feature
for the classifier in subsequent stages.

Feature 𝑉𝑥 and 𝑉𝑦: In addition to the raw displacement field, we have
observed that changes in the vector field magnitude serve as significant
indicators of slip. Given the sampling rate of 25 Hz for the tactile
sensor, we introduce features that capture the change in magnitude
between consecutive frames of tactile samples. These features, averaged
over horizontal and vertical directions, can be analogously regarded as
‘‘velocities’’ of the tactile surface. This approach aligns with the findings
reported by Jame [23], who demonstrated the efficacy of velocity-
based features in slip detection. To quantify these changes, we define
the discrete-time mean velocity features 𝑉𝑥 and 𝑉𝑦 for the 𝑥 and 𝑦
components. For the x-component:

𝑣𝑥𝑖 (𝑡) = 𝑓 ⋅ 𝛥𝐷𝑥𝑖 (𝑡) (1)

𝑉𝑥(𝑡) =
1
𝑛

𝑛
∑

𝑖=1
𝑣𝑥𝑖 (𝑡) (2)

Similarly, for the y-component:

𝑣 (𝑡) = 𝑓 ⋅ 𝛥𝐷 (𝑡) (3)
𝑦𝑖 𝑦𝑖

3 
𝑉𝑦(𝑡) =
1
𝑛

𝑛
∑

𝑖=1
𝑣𝑦𝑖 (𝑡) (4)

Here, 𝑓 (=25 Hz) is the sampling frequency, 𝑛(=63) represents the
number of data points, 𝐷𝑥𝑖 (𝑡) and 𝐷𝑦𝑖 (𝑡) represent the positions of the
𝑖th data point at time 𝑡, and 𝛥𝐷𝑥𝑖 (𝑡) is defined as 𝐷𝑥𝑖 (𝑡) − 𝐷𝑥𝑖 (𝑡 − 𝛿𝑡),
where 𝛿𝑡 is the time step between consecutive measurements

Feature 𝐸 and 𝛿𝐸
𝛿𝑡 : The marker flow displacement inhomogeneity,

quantified as entropy, serves as a key metric in our slip detection
approach. We define this entropy at time 𝑡, 𝐸(𝛤 (𝑡)), mathematically as:

𝐸(𝛤 (𝑡)) = −∫𝛤 (𝑡)
𝑝(𝑟(𝑡)) log 𝑝(𝑟(𝑡))𝑑𝑟 (5)

Our analysis employs the discrete version of Shannon entropy, a choice
validated by prior research such as Yuan et al. [22]. We define the
histogram 𝛤 to represent the frequency distribution of the displacement
field magnitude. The magnitude 𝛾 is calculated as:

𝛾 = 𝜉
√

𝐷𝑥
2 +𝐷𝑦

2 (6)

where 𝐷𝑥 and 𝐷𝑦 represent the displacements in the 𝑥 and 𝑦 directions,
respectively. The magnitude is scaled by a factor 𝜉 of 10, transforming
the original range of 0–3 mm to 0–30 units. This scaling facilitates
more granular categorization in the histogram. We classify 𝛾 into 30
categories using the floor function, (0, 1, ..29), such that each arrow
length falls into one of these categories. The corresponding probability
density function is represented by 𝑝(𝛾). Fig. 4 illustrates this concept,
depicting a tactile image with 63 arrows of varying lengths and its
corresponding histogram. In this particular instance, the data naturally
falls into 15 distinct bins. Our discrete entropy calculation is thus:

𝐸(𝛤 (𝑡)) = −
𝑛
∑

𝑖=1
𝑝(𝛾𝑖) log 𝑝(𝛾𝑖) (7)

where 𝑛 represents the number of observed distinct states (e.g., 15 in
Fig. 4), 𝛾1, 𝛾2,… , 𝛾𝑛 are the unique states, and 𝑝(𝛾1), 𝑝(𝛾2),… , 𝑝(𝛾𝑛) their
associated probabilities.

When an object begins to slip, the displacement field becomes
more inhomogeneous due to the non-uniform contact forces that arise
throughout the contact surface as the object moves. The inhomogeneity
is more significant around the edges of the contact region, resulting in
a non-uniform displacement field and increased entropy, as illustrated
in Fig. 5.

In Fig. 5, we see that the entropy increases when the grippers
initially come into contact with the object, and this value remains
relatively constant as long as the object is securely grasped. However,
when the object begins to slip, a sharp increase in entropy is observed.
Thus, it is evident that reasonably high entropy values can exist even
when an object is securely grasped. Additionally, the entropy remains
almost constant when a secure grasp is established. To further enhance
the classification of slip, we propose integrating the rate of change of
entropy as another feature to feed into the classifier. The rate of change
of entropy is calculated as follows:
𝛿𝐸
𝛿𝑡

≈ 𝑓 ⋅ [𝐸(𝛤 (𝑡)) − 𝐸(𝛤 (𝑡 − 𝛥𝑡))] (8)

where 𝐸 is the entropy and 𝛥𝑡 is the sampling time. Since entropy
varies with object characteristics, we trained a classifier using data
from objects of diverse shapes, sizes, and materials to categorize slips
effectively.

4. Method

4.1. Data acquisition

Our data acquisition protocol was designed to capture a com-
prehensive range of object manipulation scenarios, with a focus on
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Fig. 4. Histogram illustrating the distribution of marker flow. Each bar represents a
distinct state, with its height indicating the relative occurrence of that state within the
overall distribution.

Fig. 5. A slip trial was conducted to illustrate the change of entropy from the no
contact to object, through the initial grasp, to the incipient slip, and ultimately to the
loss of contact to object. Initially, a rectangular cardboard box was held between the
grippers (embedded with GelSight sensor) of the robot, at this stage the entropy was
almost zero. The grippers were brought closer together till there was an initial contact
and a gentle grasp of the box, leading to a notable increase and subsequent stabilization
of entropy. Following this, the robotic arm was maneuvered in a manner that induced
slippage of the object. At the moment of slip, a sharp spike in entropy was observed
and then the entropy returned zero once the robotic gripper with the tactile sensor lost
complete contact.

detecting object slippage. We selected 10 objects of varying materials
and shapes commonly encountered. To enhance the generalizability
of our findings, we positioned these objects at diverse locations on
a table. The data collection process followed a systematic approach.
First, we devised a predetermined grasping sequence incorporating 12
4 
Fig. 6. Illustration of the data acquisition process.

distinct motion primitives. These included translational and rotational
movements across all axes of the Cartesian coordinate system, as well
as complex planar and spherical motions. This diverse set of manipula-
tions was specifically designed to elicit a broad spectrum of potential
slip scenarios. For each trial, the manipulator was programmed to
approach the object with precision, grasp it, and lift it to a standardized
position to eliminate initial condition variability. Only after confirming
a secure grasp did we initiate the pre-defined manipulation sequence.
Throughout this process, we continuously collected tactile sensor data
(Fig. 6). To induce slip, we employed multiple methods. These in-
cluded the manual application of incremental external loads to the
object and the use of a precision rotary stage for controlled angular
displacements. This comprehensive approach enabled the capture of
both translational and rotational slip events. We also applied external
forces in our non-slip dataset to ensure our model could distinguish
between force application and actual slippage. Our data labeling pro-
cess involved a meticulous frame-by-frame manual classification of the
tactile sensor output as either ‘‘slip’’ or ‘‘non-slip’’. We paid particular
attention to transition points where the object state changed from
static to slip. When such a transition was identified, we precisely
marked the exact frame at which it occurred. All frames preceding this
transition point were labeled as non-slip, while those following it were
categorized as slip. This labeling continues until the object slips out
of grasp entirely, at which point the remaining data is truncated. To
ensure data integrity, we conducted post-collection verification through
thorough review of the collected data and corresponding high-speed
video recordings. Instances of unsuccessful grasps were identified and
excluded from the dataset.

4.2. Classification method

Following the feature extraction phase, we utilized machine learn-
ing classifiers to identify the states of object grasping. Given the inher-
ent nonlinearity in the task, we experimented with various classifiers
to understand the intricate slip dynamics. We selected four algorithms:

• Support Vector Machine (SVM): 𝑔(𝑥) = sign(𝑤𝑇 𝑥 + 𝑏).
• Random Forest (RF): 𝑔(𝑥) = 1

𝑇
∑𝑇

𝑡=1 ℎ𝑡(𝑥).
• K-Nearest Neighbor (KNN): 𝑔(𝑥) = mode(𝑦𝑖 ∶ 𝑥𝑖 ∈ 𝑁𝑘(𝑥)).
• Decision Tree (DT): 𝑔(𝐷,𝐴) = 𝐻(𝐷) −𝐻(𝐷|𝐴).

In this framework, the function 𝑔(𝑥) represents the probability that
the input 𝑥 belongs to a particular class. For Support Vector Machine
(SVM), the parameters 𝑤 and 𝑏 denote the weight vector and the bias,
respectively. In the context of Random Forest (RF), ℎ𝑡(𝑥) is the output
of the 𝑡th decision tree. The K-Nearest Neighbors (KNN) algorithm
determines the most common class among the 𝑘 closest neighbors to
𝑥 through the use of the mode function. Decision Trees (DT) assess the
significance of features by computing information gain, 𝑔(𝐷,𝐴), which
involves calculating the difference between the information entropy,
𝐻(𝐷), and the conditional entropy, 𝐻(𝐷|𝐴). In the next section, we
will assess these classifiers’ accuracy using our extracted features.
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Table 1
Performance of the developed slip detection for objects with different materials and surface characteristics.
5. Experiment results

Experiments are performed to analyze the proposed new features.
To thoroughly gauge their efficacy, we juxtapose these features against
basic alternatives such as 𝑉𝑥 and 𝑉𝑦. These experiments consist of two
parts: Part I focuses on classification accuracy, and Part II sheds light on
generalization capabilities. Additionally, we visualize the effectiveness
of feature selection, examine the computational time of inference, and
provide a demonstration of using the proposed method to slide a book
out of a shelf while preventing slip.

5.1. Experiment sets

We implemented the chosen classifiers via Python’s scikit-learn
library. Our dataset includes approximately 14,000 samples among ten
different objects. Here, a ‘‘sample’’ refers to a sequence of tactile images
extracted from the sensor’s video stream. From the samples, we derive
features for classifier training. The features of one sample consist of
one feature vector, which is the input of the machine learning model.
Thus, one sample has one feature vector and there are 14,000 feature
vectors in the dataset. To assess the accuracy and generalization of the
proposed features, we conducted two sets of experiments.

In our initial experiment, we employed four machine learning clas-
sifiers to evaluate the efficacy of our proposed method in comparison
to existing approaches. To comparative analysis, we implemented the
velocity-based method developed by James et al.’s [23] and adapted the
research of Yuan et al.’s [22] by focusing on the entropy feature they
proposed. James et al.’s approach primarily utilizes velocity-related
information for grasping state classification. We extended this concept
by incorporating the entropy feature (E) proposed by Yuan et al. into
what we term the ‘‘entropy-baseline’’ method. This method employs
features including mean velocity components 𝑉𝑥, 𝑉𝑦, and entropy (E).
Our proposed method builds upon these foundations by introducing
𝛿𝐸
𝛿𝑡 as a novel feature, ultimately utilizing 𝑉𝑥, 𝑉𝑦, E, and 𝛿𝐸

𝛿𝑡 in our
classifiers. By consolidating all samples, we adopted a five-fold cross-
validation technique. This method splits the samples into five sections,
each holding 2800 samples. During each iteration, four sections were
designated for classifier training, leaving one for evaluation. The final
accuracy was the average over the five cycles.

In the second experiment, we focus on KNN, the best-performing
classifier from the first experiment, to gauge the feature’s adaptability
across various objects. In this case, we divided the samples based on
object categories, resulting in ten distinct subsets of samples. Here,
samples were categorized based on object types, creating ten unique
sample subsets. In each test, nine subsets were used for training and
the tenth for evaluation. It is important to highlight that the classifiers
were tasked with categorizing samples from unfamiliar objects not
present in the training dataset. The accuracy thus reflects the feature’s
adaptability.

Accuracy assessment involved four metrics: accuracy, recall, pre-
cision, and F1 score. Accuracy signifies the percentage of correctly
classified instances relative to the total number of instances. Precision
measures the classifier’s ability to distinguish true positives from false
5 
Table 2
Comparative analysis.

Methods Metrics DT RF SVM KNN

James et al.

Accuracy 82.20 84.22 89.30 80.25
Precision 94.72 92.63 83.30 94.25
Recall 75.91 79.56 93.58 74.66
F1 83.94 85.15 88.13 82.68

𝐸 baseline

Accuracy 92.73 94.53 84.85 93.43
Precision 91.95 94.06 74.42 91.74
Recall 92.78 94.45 92.37 94.34
F1 92.35 94.26 82.42 93.02

Our methods

Accuracy 93.14 95.25 94.88 95.61
Precision 92.54 95.22 91.19 95.07
Recall 93.07 94.86 97.94 95.76
F1 92.80 95.04 94.44 95.40

positives, with both precision and accuracy ideally being high for
a perfect classifier. Recall assesses the classifier’s capacity to distin-
guish true positives from false negatives. The F1 score, the harmonic
mean of precision and recall, offers a balanced assessment of model
performance.

For hyperparameter tuning, a grid search was conducted during
training for each classification algorithm. The best results were ob-
served with KNN classifier, setting the nearest neighbor hyperparame-
ter to 1, and SVM using the RBF kernel and a regularization parameter
of 1. Hyperparameter adjustments did not enhance the performance of
the RF and DT classifiers, so their default settings were maintained.

5.2. Experiment I result: Accuracy of slip detection

The outcomes of Experiment I, as detailed in Table 2, reveal that
incorporating entropy and its rate of change significantly enhances
classifier accuracy across all models. In comparison to James et al.’s
method, the entropy-baseline method showed substantial accuracy im-
provements for DT, RF, and KNN by 10.53%, 10.31%, and 13.18%,
respectively. Similar trends were observed in other performance met-
rics, including precision, recall, and F1 score. Our proposed method,
which integrates the novel feature 𝛿𝐸

𝛿𝑡 , further improved classification
accuracy compared to the entropy-baseline method. Specifically, we
observed enhancements of 0.41%, 0.7%, 10.03%, and 2.18% for DT,
RF, SVM and KNN. Moreover, our method consistently outperformed
James et al.’s approach across all evaluated metrics.

Table 1 showcases the classification accuracy of different objects
using KNN. Most objects exhibit an accuracy greater than 95%, with
only the owl falling below 90%. The results show that the performance
of the classifier for each category is balanced, and the proposed features
have broader usage rather than can be used on specific objects.

5.3. Experiment II result: Generalizability of the method

The results of Experiment II, presented in Table 3, involved training
classifiers with samples from nine objects and testing them with sam-
ples from a different, single object each time. In the table, the object
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Table 3
Cross-validation results for 10 different objects.

Feature set Metric Experiment index and valid object

1 2 3 4 5 6 7 8 9 10

Ball Bear Box Duck Floss Highlighter Mouse Owl Screwdriver Sponge

𝑉𝑥 and 𝑉𝑦

Accuracy % 42.92 47.93 45.95 48.79 40.13 49.29 42.69 79.27 53.5 38.46
Precision % 89.81 88.82 75.38 90.1 91.78 86.5 89.42 77.43 89.42 88.2
Recall % 45.12 44.76 44.04 42.87 40.94 48.29 44.96 100.00 53.91 40.54
F1% 60.06 59.53 55.6 58.1 56.62 61.98 59.84 87.28 67.26 55.55

All features

Accuracy % 71.24 80.72 77.84 89.07 61.81 84.02 70.44 91.06 58.37 84.63
Precision % 93.52 94.57 92.31 96.25 91.17 93.09 90.41 90.27 96.96 91.15
Recall % 63.52 70.64 68.89 80.05 53.00 77.82 63.34 100.00 56.43 77.54
F1% 75.66 80.87 78.90 87.41 67.03 84.77 74.49 94.88 71.34 83.80

𝐸 and 𝛿𝐸
𝛿𝑡

Accuracy % 91.67 86.91 91.09 97.58 93.16 89.27 87.21 91.73 97.46 90.66
Precision % 90.43 88.18 90.35 94.45 92.15 91.99 91.26 91.00 95.90 89.60
Recall % 91.99 82.63 89.85 99.37 91.81 86.43 83.48 100.00 99.32 89.04
F1% 91.20 85.32 90.10 96.85 91.98 89.13 87.20 95.29 97.58 89.32
Table 4
Performance metrics for unseen objects.

Unseen object Accuracy % Precision % Recall % F1 %

Book 71.69 88.45 59.17 70.91
Raccoon 93.73 97.03 91.02 93.93
Contact solution 86.66 95.09 80.32 87.08

name indicates the test object. For instance, ‘‘box’’ implies training with
samples from all objects except the box and testing with box samples.

The findings suggest classifiers perform better with entropy (𝐸)
and its rate of change ( 𝛿𝐸𝛿𝑡 ) than with 𝑉𝑥 and 𝑉𝑦 when encountering
unfamiliar objects. A comparison of Tables 2 and 3 shows a decline
in accuracy when facing new objects. However, when using 𝐸 and 𝛿𝐸

𝛿𝑡

as features, the accuracy only decreases less than 6% compared with
the accuracy in experiment I. In contrast, reliance on 𝑉𝑥 and 𝑉𝑦 leads
to a more substantial decrease in accuracy; for example, accuracy for
‘‘sponge’’ drops to 38.46% and ‘‘mouse’’ to 42.69%. The decline is also
notable when all features are used together.

These results lead to the conclusion that 𝐸 and 𝛿𝐸
𝛿𝑡 offer better

generalization capabilities. They can be directly applied to new objects
without substantial performance reduction. Conversely, the generaliz-
ability of 𝑉𝑥 and 𝑉𝑦 is limited and can negatively impact classification.
The use of all features combined does not enhance model performance
compared to using only 𝐸 and 𝛿𝐸

𝛿𝑡 . Additionally, we assessed the
performance of the trained classifier on unseen objects, as shown in
Table 4. The results indicate that the classifier maintains good accuracy
with unfamiliar objects.

5.4. Feature visualization and analysis

As shown in Fig. 7, we employ t-SNE to visualize the extracted
features, where each point represents a sample characterized by its
respective features. In Fig. 7(a), the division between 𝐸 and 𝛿𝐸

𝛿𝑡 is
clearly evident. Despite some overlap, samples from different classes
predominantly occupy distinct areas. Conversely, Fig. 7(b) illustrates
that the visualization of 𝑉𝑥 and 𝑉𝑦 is less distinct. The points repre-
senting ‘‘static’’ and ‘‘slip’’ classes significantly overlap, indicating less
effective separation. This visualization suggests that 𝐸 and 𝛿𝐸

𝛿𝑡 lead to
more pronounced classification behavior.

5.5. Computational time of inference

During each of the 10 trials, we captured 200 prediction values and
evaluated the classifiers’ inference times using Python’s time.time()
function. With the GelSight mini tactile sensor operating at 25 FPS,
there is a 40 ms window for each frame processing. The average
inference times and their usage percentages are:
6 
Fig. 7. t-SNE visualization of features: (Left) Entropy (𝐸) and its rate of change ( 𝛿𝐸
𝛿𝑡

);
(Right) 𝑉𝑥 and 𝑉𝑦.

• Support Vector Machine (SVM): 0.33 ms (0.825% of frame time).
• Random Forest (RF): 0.54 ms (1.35% of frame time).
• K-Nearest Neighbor (KNN): 0.94 ms (2.35% of frame time).
• Decision Tree (DT): 0.29 ms (0.725% of frame time).

All classifiers efficiently fit within the available frame processing time,
making them suitable for real-time tactile image processing with the
GelSight mini sensor.

5.6. Sliding out a book from a shelf

This experiment involved a UR5e robot equipped with a Robotiq
parallel gripper, tasked with retrieving and repositioning a book from
a shelf. The robot had no prior knowledge of the book’s weight or stiff-
ness, necessitating a cautious approach with minimal initial clamping
force to prevent potential damage. The task began with positioning
the parallel gripper adjacent to the bookshelf without making initial
contact with the book. The gripper was then maneuvered towards the
book, and a safe grasp was executed using appropriate parameters,
which entailed a relatively low grasping force. No slip occurred during
the pre-manipulation phase. However, during the subsequent stage
of extracting the book, the absence of a slip detection method and
corresponding prevention led to slippage, hindering task completion.

Repeating the experiment with our slip detection algorithm and in-
tegrating a slip-prevention force control into the robotic system showed
significant improvement. Inspired by work in [17,24], we developed
a control system combining a Proportional–Derivative (PD) controller
with an integrator-structured adjustment. This system utilizes the mean
marker displacement (𝐷̄) as feedback, regulating it to a target value
(𝐷𝑡). The integrator adjusts 𝐷𝑡 based on the slip detector result (𝑆):

𝐷 [𝑛] = 𝐷 [𝑛 − 1] + 𝛼 ⋅ 𝑆 (9)
𝑡 𝑡
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Fig. 8. A demonstration of sliding a book out of a shelf is presented, consisting of multiple stages of grasping. The initial row of images portrays the progressive grasping stages,
commencing from (1) a static initial grasp, advancing towards (2) an incipient slip at the start of manipulation, further to (3) an actual slip, and culminating at (4) a stable grasp.
The subsequent row exhibits the data obtained from a tactile sensor and the corresponding real-time detection of slip. The third row displays the command gripper distance to
forestall slippage, whereas the fourth row depicts 𝐸 and 𝛿𝐸

𝛿𝑡
throughout the grasping procedure.
where 𝑆 is 1 for detected slip and 0 for non-slip, and 𝛼 is a fixed factor.
To regulate the clamping force, we implement a position control strat-
egy. It is noteworthy that the choice of position control is influenced
by the gripper’s lack of direct force adjusting capability and is subject
to the object’s impedance characteristics [25] The incremental control
input 𝛥𝑢 is expressed as:

𝛥𝑢[𝑛] = 𝐾𝑝 ⋅ 𝑒[𝑛] +𝐾𝑑 ⋅ (𝑒[𝑛] − 𝑒[𝑛 − 1]) (10)

where 𝑒[𝑛] = 𝐷̄[𝑛] − 𝐷𝑡[𝑛], 𝐾𝑝 and 𝐾𝑑 are proportional and derivative
coefficients, respectively. Upon slip detection, the algorithm incremen-
tally increases the gripper position value by 𝛥𝑢, typically 2–5 units per
control cycle, depending on slip magnitude. Given the gripper’s position
control API range (0–255 units) corresponding to a clamping force
range of 20–185 N, this translates to approximately 0.6–3 N increase in
clamping force per cycle. The control system along with the frame fresh
rate operate at 25 Hz, with each cycle lasting 40 ms. The algorithm
promptly detected the initial slip during book extraction. Despite the
increase in grasping force, the smooth book cover and the drag exerted
by the gripper caused the incipient slip to increase. The slip-prevention
algorithm responded by gradually increasing the grasping force until a
stable grasp was achieved, which was maintained for a brief duration
to ensure secure gripping of the book. While maintaining the grasping
force, the robot slid the book out of the bookshelf and adjusted the
force as necessary to prevent further slips. After the book is extracted,
the grasping force is gradually reduced to release the book. With the
slip detection and prevention algorithms implemented, the grasp was
continuously sustained, and the manipulation task was accomplished
using the same set of initial grasping parameters. Fig. 8 shows the
grasping stages of the book retrieval, along with corresponding 𝐸
and 𝛿𝐸

𝛿𝑡 . The figure indicates that 𝐸 and 𝛿𝐸
𝛿𝑡 were almost negligible

when the book is held with safe grasping parameters. However, as the
7 
manipulation process begins, 𝐸 and 𝛿𝐸
𝛿𝑡 slightly increased, indicating

the need for a grip adjustment. As the manipulation process proceeds,
those values rose, indicating the occurrence of more slips. To prevent
slip, the gripping pose was further modified until the 𝐸 reached a
constant value and 𝛿𝐸

𝛿𝑡 approached zero. Notably, the 𝐸 value is higher
at the end of the manipulation process than at the start, which can
be attributed to the dynamic forces acting on the book during the ma-
nipulation process, resulting in non-homogeneity in the marker field.
The classifier achieved a 71.69% accuracy in categorizing the book’s
grasping state. This experiment demonstrates that monitoring changes
in entropy profile serves as an effective method for slip detection and
prevention, thereby enhancing the success rate of manipulation tasks.

6. Conclusions and future work

This paper proposes a novel approach for continuous slip detection
using modern optical tactile sensors. Our method employs a physics-
informed, data-driven strategy that leverages the distributed contact
force field, its entropy, and the rate of change of entropy extracted from
tactile sensors.

The proposed method facilitates the monitoring of incipient slip and
the prediction of slip occurrences during object manipulation tasks.
Furthermore, we delineate a control strategy to mitigate slip events
upon detection. Upon training the slip detection classifier with a suf-
ficient corpus of objects across diverse categories, the method demon-
strates potential for generalization to slip detection and prevention on
previously unencountered objects.

Future work includes developing algorithms to control the slip of
objects while performing manipulation and grasping tasks. With the
identified good indicators of slip, work can be done to determine how
these parameters can be utilized to control slip. Further research can
be done to improve the synchronization of the sensor data from two
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input sensors [26]. Finally, exploring how to merge data from sparse
sensing to build an enhanced model for detecting and preventing slips
presents a compelling opportunity.
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