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Abstract

Fast Object Recognition by Selectively Examining Hypotheses

by

Clark Francis Olson

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Jitendra Malik, Chair

Several systems have been proposed to recognize three-dimensional objects in

(two-dimensional) intensity images by computer. A problem that has plagued most

object recognition systems for this problem is the low rate at which images are pro-

cessed unless the problem is constrained, due to the vast number of hypothetical

matches between sets of image features and sets of model features. Hypothetical

poses can be determined from a small number of model features appearing in the

image. The number of correct matches between these small sets of model features

and image features (and thus correct hypotheses) is combinatorial in the number of

model features appearing in the image. Since, ideally, only one of these correct hy-

potheses needs to be found to recognize the object, an exhaustive examination of all

hypothetical matches is not necessary. I describe techniques to obtain fast object

recognition through the selective examination of the possible hypotheses.

First, I describe how the pose clustering method of object recognition can be

decomposed into subproblems of much smaller size. In addition, I show that only a

small fraction of these subproblems need to be examined to recognize objects with

a negligible probability of introducing a false negative. This allows us to reduce the

computational complexity of the algorithm, as well as reducing the amount of space

necessary. I show how the clusters of poses that indicate a good hypothesis can be

found quickly in a space e�cient manner. A noise analysis and experiments on real

images indicate that this system has good performance.

Next, I describe a probabilistic indexing system to determine which of the initial

hypothesized matches between three model points and three image points are most

likely to be correct. This system takes advantage of the probabilistic peaking e�ect,
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which implies that if all viewing directions are equally likely, the distribution of angles

and ratios of distances in the image will have a sharp peak at the model value. This

e�ect can be used to select hypotheses to examine that are more likely to be correct

than others. The probabilistic indexing system is used with noise criteria to obtain a

speedup of two orders of magnitude in the alignmentmethod. It is expected that these

techniques will also result in a signi�cant speedup when applied to pose clustering.

The implementation of these ideas in a connectionist framework is discussed.

While alignment and pose clustering methods can be implemented in this framework,

the best approach for this case is to use election methods. Such methods allow much

of the computation to be performed o�-line, thus simplifying the processing elements

required. Election methods use indexing to generate hypothesized matches between

groups of points. Voting is then performed to determine which objects have the most

support in the image. My analysis shows that model-based object recognition can be

performed extremely quickly given a large number of simple processing elements.

These techniques vastly improve the speed at which model-based object recogni-

tion algorithms can be performed.
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Chapter 1

Introduction

1.1 Object recognition is a di�cult problem

The recognition of three-dimensional objects in images by computer has been an

active area of research since the seminal work of Roberts [1963]. Roberts provided

an early method of determining an object's position and orientation in an image

(hereafter called pose) from a set of matches between object points and image points

and determined criteria under which such a pose would be considered correct. This

formed a primitive version of a now-popular object recognition method called the

alignment method. He considered that not each set of points in the image is equally

likely to result in a correct pose and determined good sets for use through the use

of connectivity in edge maps in the image, setting the stage for grouping techniques

in later work. In fact, Roberts considered many problems that are still active topics

of research, such as pose estimation, feature matching, and grouping, as mentioned

above, as well as, occlusion of objects, edge detection and the problem of incomplete

edge maps, and hierarchical object recognition.

Despite considerable research since that time, we have only scratched the surface

of potential in object recognition, as demonstrated by comparing performance to

what can be considered the most powerful of computers, the human brain. Electronic

computers possess a small fraction of human capability in this problem. Since people

have been studying this problem for over 30 years, you might ask why we have not
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advanced further. The answer is that object recognition is a extremely complicated

task. It should be noted that the human brain is an extremely powerful computational

device with between 1010 and 1011 neurons. Approximately 30% of the cerebral cortex

is devoted to vision. Thus, humans expend a huge amount of computational resources

in visual processes.

Consider the image in Figure 1.1. While humans are immediately able to rec-

ognize the tree in the foreground, the grassy ground area, and the forest in the

background, consider the di�culty of determining that the object in the foreground

is a tree. Generic trees can take a wide variety of shapes, since we may see the

trunk, branches, leaves or any combination of these. Additionally, many di�erent

objects have a cylindrical shape similar to what we determine is the shape of the

trunks of the tree in the image. Furthermore, we determine this shape from only the

two-dimensional image data, with no prior information as to the boundaries between

objects, the illumination conditions in the image, or the nature of the scene. From

this two-dimensional array of brightness values we are able to determine the approxi-

mate shape and depth of most of the points in the scene, and are able to reason about

the general class of various objects in this scene, and if we were previously familiar

with them, we could often determine the location of the scene in the image, the type

of tree, or even the speci�c instance of a tree. Clearly, this process requires a large

amount of computation and reasoning.

In particular, the following problems make object recognition (and other machine

vision problems) very di�cult:

� Projection: The recognition of three-dimensional objects from two-dimensional

intensity images is complicated by the loss of information in the imaging process,

in which the three-dimensional structure of the object is projected onto the two-

dimensional image. This loss of information results in ambiguity in the position

of the objects in the image. In other words, we don't know the distance from

the camera to the imaged points. Each image could have been the result of an

in�nite number of scenes varying in the distances of the various points from the

camera.
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Figure 1.1: An image demonstrating the complexity of machine vision problems.

(This image is from the SRI Sequence from the IEEE Motion Workshop Database at

Sarno� Research Centre, courtesy of NASA-Ames Research Center and SRI Interna-

tional.)
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� Unrestricted viewpoint: When we capture an object in an image, the viewpoint

from which the object is seen is arbitrary. In general, there are six degrees of

freedom in the position of the camera with respect to an object: translation in

the x-, y-, and z-directions, and rotation about each axis. Thus, an object may

appear in an in�nite number of di�erent positions and orientations, giving rise

to widely varying appearances in images.

� Interaction of processes: The imaging process consists of the interaction of sev-

eral complex processes. The brightness of any point in a scene depends on

several factors including the position, orientation, and intensity of the illumi-

nation, the color and texture of the object, how the reectance of the object

changes with the viewing direction (e.g. specular vs. lambertian surfaces,) as

well as atmospheric considerations such as fog, and camera considerations that

cause blurring.

� Noise: The imaging process is not perfect. The image is discretized into cells

represented by pixel values. The average brightness intensity of the cell is the

desired pixel value, but even if we obtain this average, we are condensing infor-

mation and losing the precise location of various image phenomena. Further-

more, it is di�cult to sense brightness intensities accurately and such intensities

are also discretized resulting in further inaccuracy. Cameras often introduce im-

age distortion through imperfections in the lens, and some electronic imaging

devices are known to produce high-frequency noise in images.

� Information content: Images provide a wealth of speci�c information. A typical

size for an image is 512 � 512 pixels and each pixel value usually has a range

of 0 to 255. Thus, there are 256512
2
> 10630;000 possible images that could be

produced in this case. This wealth of information has to be transformed into

an understandable format at an abstract level. Condensing this volume of very

speci�c data into a few meaningful pieces of information is di�cult.

� Occlusion: Our ability to recognize an object in an image is limited if we are

not able see all of the object. Not only will self-occlusion be present in opaque
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objects, since we will not be able to see the back of the object, but other

objects may occlude some portion of the object we wish to recognize that would

otherwise be visible.

� Spurious features: Of course, not all of the features (such as edges or corners)

we will �nd in a typical image will result from the object we wish to recog-

nize. Other objects in the image (that we may also want to recognize) will also

produce features that we must examine and texture or undesirable image at-

tributes such as glare or noise can and will result in additional features. While

such spurious features don't necessarily hide the correct object features, they

make the recognition problem considerably more di�cult by introducing a large

number of hypothetical object positions that must be considered.

� Complex objects: Objects with subparts that are very similar to other objects

or subparts of objects can be di�cult to distinguish. Furthermore, object sym-

metries can cause a substantial amount of extra work to be performed, since

two or more distinct poses of the object will result in a very similar image.

Algorithms may spend considerable time examining each possibility.

To summarize, a wide variety of problems make the creation of a general object

recognition system an extremely di�cult task. While this area has been an active

area of research for some time, the current systems are still quite limited.

1.2 Is there hope?

Given these substantial di�culties you may ask why we attempt to solve the

problem at all, and indeed, if it is even solvable. To answer the second question, we

have the human brain as our existence proof that solving this problem can be done,

although researchers into human object perception still have little idea how this task

is performed in the brain. (In contrast, some low-level human vision tasks are fairly

well understood.) The answer to the �rst question is (at least) twofold. First, possi-

ble applications of object recognition systems are tremendous. A general robot vision
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system is the ultimate goal, but even the partial solutions currently available are use-

ful in industrial tasks such as the automatic registration and inspection of machined

parts. Commercial, medical, and military applications have also been explored. Sec-

ond, an understanding of computational techniques for object recognition by machine

may help us to understand human object recognition processes. While it not reason-

able to assume that human object recognition processes function in a manner similar

to current computer object recognition techniques, an understanding of the compu-

tational requirements of various techniques can give us insight into what techniques

would be feasible in the brain and thus help guide human vision researchers.

Some insights have been key to the partial solutions that have been obtained

to this time. Lowe [1987] argued that 21
2
- or 3-dimensional information from depth

reconstruction (using stereo, motion, shading, or texture) is not needed for object

recognition. In fact, while such depth reconstruction is important for other tasks,

human object recognition appears not to require it, since this information is often

not available. While Lowe gives additional arguments, let's just consider a typical

edge image (e.g. Figure 1.2.) This �gure yields very little information about the

three-dimensional shape of the scene, since there is no shading and little texture, and

motion and stereo don't apply to single images. It is true that some shape informa-

tion might be obtained through line drawing labeling [Clowes, 1971, Hu�man, 1971,

Mackworth, 1973, Malik, 1987] or other interpretation using line drawings [Barrow

and Tenenbaum, 1981, Stevens, 1981, Koenderink, 1984, Malik and Maydan, 1989],

but depth information derived strictly from line drawings is sparse and imprecise and

deriving it requires noise-free line drawings that are very di�cult to generate from real

images. Thus this information is not very useful in determining the relative depths

of the various points in the image.

Despite this lack of depth information, people have little problem recognizing

the object in the Figure 1.2 as a stapler. Since this information doesn't seem to be

necessary (or even useful [Biederman, 1985]) in human object recognition capability,

researchers in this area are now attempting to recognize objects directly from the

two-dimensional, geometrical information in images.

To alleviate the problems due to the interactions of complex processes and the
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Figure 1.2: A typical edge image illustrating the point that three-dimensional data is

not necessary to recognize objects.
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huge amount of speci�c data in the imaging process, the intensity images are typi-

cally reduced to a set of features such as edges or corners (typically through �ltering

and thresholding) or segmented regions (from region growing or split-and-merge al-

gorithms,) which can be used to recognize objects. To deal with occlusion, we want

these features to be local, so that if a part of the object is not seen, we can still

�nd features accurately in the portion of the object that does appear in the image.

Image noise is an omnipresent problem in the localization of image features, but an

understanding of the sources of noise allows us to model its e�ects and determine

which objects may be present under this noise model.

For some types of features, attributes that are invariant to the viewing direction

can be found to help recognize objects. In other cases, we might �nd a hypothetical

pose from some small set of possibly corresponding model and image features. Model-

based techniques can be used to guide the search for objects and exclude spurious

image features from undue consideration. Finally, hierarchical recognition techniques

can help prevent the complexity arising from similar subparts or symmetry.

Substantial gains have been made in the area of object recognition by computer,

but the distance that remains to be covered before we achieve our goal is considerably

further than the distance we have already covered.

1.3 Model-based object recognition

This thesis will be primarily concerned with a �eld of object recognition called

model-based recognition. This �eld simpli�es the problem by requiring the detec-

tion of only those objects in the image that are present in some database describing

their attributes. Many model-based object recognition systems require precise de-

scription (through feature locations, etc.) of the models in the database, possibly

from computer-aided design (CAD) models. Such algorithms are sometimes called

CAD-based recognition algorithms.

In model-based recognition, a set of object descriptions is predetermined in some

manner. This catalog of object models can then be actively used in the recognition

process. For example, we could match features in our model to hypothetically match-
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ing points in the image and use such matches to determine the hypothetical pose of

the object in the image. In addition, we could then transform addition features in

our model according to this pose and determine if the pose transforms them such

that they are aligned with corresponding image features. (This forms the basis of the

alignment method.) This and similar techniques use the object models to guide the

search for objects appearing in the image.

In a survey of model-based object recognition techniques, Chin and Dyer [1986]

describe three central issues that must be resolved in creating a model-based recog-

nition system. These are:

1. What features should be extracted from an image in order to describe
physical properties and their spatial relations in a scene adequately?

2. What constitutes an adequate representation of these features and their
relationships for characterizing a semanticallymeaningful class of objects?

3. How should the correspondence or matching be done between image
features and object models in order to recognize the parts in a complex
scene?

So, to paraphrase, the keys to designing a model-based recognition system are

determining what features to use, how they should be combined to form the object

models, and how to match the model and image features in recognizing the object

in the image. In this thesis, an object model is taken to be a set of object features

and geometrical relationships among them. Statistics generated from a model such

as moments or invariants that do not convey geometrical relationships between fea-

tures will not be considered object models, although such statistics can be useful for

generating hypotheses regarding which objects are present in the image.

The use of model-based techniques simpli�es the problem in several ways. First,

it limits the possibilities that must be examined, since we are considering only those

objects that are present in the database. If we didn't have these models to use, we

would be forced to determine the shape using depth reconstruction techniques and

reason about these shapes, both of which are di�cult problems. Thus, the active use

of this database prevents us from having to determine object shape in a bottom-up
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manner. The use of precise object models allows use to dispense with contextual

information and concentrate on the geometrical properties of the object and image.1

While using speci�c geometric models gives us much information to use in the

recognition process, the use of CAD-based models can also be somewhat limiting.

Many objects are hard to model precisely (e.g. a crumpled wad of newspaper or a

chocolate chip cookie.) In addition, the recognition of a previously unobserved object

as being in some class of objects is not possible in this framework, since we will not

have a precise description of the new object from which to recognize it.

It is important to note that some kind of model is almost necessary in object

recognition, since it can be proven that techniques that do not use models face limi-

tations in their ability to discriminate between objects [Moses and Ullman, 1992].

1.4 New techniques

While all three of the issues described by Chin and Dyer must be addressed,

my work has concentrated on improving algorithms for determining correspondences

between model and image features. A study of what are the best features to use and

how they should be combined to form the object models has not been undertaken.

My justi�cation for this is that while these issues need to be kept in mind, they can be

studied separately. The techniques that I describe, while focusing on speci�c features

and model representations, can be generalized to virtually any set of local features

that are stable with respect to viewpoint changes and any geometrically precise object

representation.

The limitations inherent in the approach I take are two-fold. The techniques

do not always generalize well to very complex image features and they do not all

apply well if a geometrically precise object representation is not available. The �rst

limitation is not, in fact, very limiting, since complex image features are di�cult to

�nd with precision and few complex features are typically present in models. The

use of simple, local features promotes robustness and exibility in the recognition

1While this simpli�es the problem at one level, it also limits us. If we are to build a general

system we must use this contextual information.
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process. While the the techniques I describe cannot be applied directly to smoothly

curved objects, it is my hope that generalizations of these techniques will be useful

in recognizing such objects. The second limitation is more damaging, although much

current research is on systems that demand such precise object models. As noted

above such systems cannot recognize many objects since they are di�cult to model

precisely and classi�cation of previous unobserved objects is not possible. While this

reliance is acceptable for many industrial tasks such as the automatic registration or

inspection of machine parts, it is a limitation that will need to be overcome if general

robot vision systems are to be achieved.

The primary problem that my techniques address is the low speed at which object

recognition techniques perform in �nding three-dimensional objects in unrestricted

two-dimensional (intensity) images. Many currently popular recognition systems (in-

cluding the alignment and pose clustering methods, and indirectly election methods,

such as geometric hashing) use matches of small sets of simple features in the image to

corresponding features in the model to generate hypothetical object poses. Of course,

correct matches aren't known in advance, so many matches must be examined, and

it must then be determined whether each hypothetical match is correct. The number

of correct small sets of image features (and thus correct hypotheses) is combinatorial

in the number of model features appearing in the image. Ideally, only one of these

correct hypotheses needs to be found to recognize the object, so an exhaustive exam-

ination of all hypothetical matches is not necessary. I describe techniques to obtain

fast object recognition through the selective examination of the possible hypotheses.

First, I describe how the pose clustering method of object recognition can be

decomposed into subproblems of much smaller size based on hypotheses using matches

between two model points and two image points. I then show that only a small

fraction of these subproblems must be examined to recognize objects with a negligible

probability of introducing a false negative (when an object appears in the image but

is not found.) In addition, I show how the clusters of poses that indicate a good

hypothesis can be found quickly in a space e�cient manner. This allows a reduction

in the computational complexity of the algorithm, as well as reducing the amount

of space necessary to perform the recognition. A noise analysis of this system and
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experiments on real and synthetic data show that this system has good performance.

Next, I describe a probabilistic indexing system to determine which of the initial

hypothesized matches of three model points to three image points are likely to be

correct. This system takes advantage of the probabilistic peaking e�ect, which implies

that if all viewing directions are equally likely, the distribution of angle and ratios of

distances in the image will have a sharp peak at the value taken by the features in the

three-dimensional object. This e�ect can be used to select hypotheses to examine that

are more likely to be correct that others. The probabilistic indexing system is used

with noise criteria to obtain a speedup of two orders of magnitude in the alignment

method.

The implementation of these ideas in a connectionist framework is then discussed.

While alignment and pose clustering can be implemented in this framework, the

best approach for this case appears to be election methods, since they allow much

of the computation to be shifted o�-line, thus simplifying the processing elements

required. Elections methods use indexing to generate hypothesized matches between

sets of features. Voting is then performed to determined which hypotheses are best.

My analysis shows that model-based object recognition can be performed extremely

quickly in this framework, given a large number of simple processing elements.

Finally, I conclude with a look at some of the future directions for this research

and object recognition in general.
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Chapter 2

Review of Previous Work

Many di�erent methods have been used to provide (partial) solutions to the

model-based object recognition problem. I certainly won't discuss all of them, due

to space limitations, but I will discuss several important algorithms and analyses.

I've divided these into several categories, these being: search, alignment, pose clus-

tering and invariance. More extensive surveys of recognition techniques can be found

elsewhere [Binford, 1982, Besl and Jain, 1985, Chin and Dyer, 1986].

2.1 Object transformations

Before discussing the techniques themselves, it is important to understand that

these techniques do not all solve the same problem. They vary in whether they

apply to two-dimensional (planar) or three-dimensional objects, as well as, the trans-

formations that are allowed in the imaging process. For example, for planar objects,

some algorithms may be limited to similarity transformations where others model full

three-dimensional rotation and translation. Researchers may assume rigid transfor-

mations or a�ne transformations that allowing skewing. Furthermore, while cameras

are generally governed by the perspective projection, many researchers use a linear

approximation to this called weak-perspective or scaled orthography. Finally, some

researchers recognize objects from range or tactile data that yields depth information,

rather than intensity images. These variations will be discussed in this section.
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2.1.1 Similarity transformations

Similarity transformations apply only to planar objects. The object is allowed to

be translated in the x- and y-directions, rotated about the z-axis, and scaled, so this

transformation has four degrees of freedom. This class of transformations accurately

models the case where the object is always perpendicular to the viewing direction.

Rotation about the x- and y-axes are not allowed. If object points are represented

by two parameters mx and my, and the similarity transform has translations tx and

ty, rotation � and scale s, then we can determine the coordinates of the transformed

point ix and iy by:

2
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2.1.2 Perspective transformations

Perspective transformations allow the full range of the six-dimensional trans-

formation space (three translations and three rotations) and accurately models the

imaging process. Let R�;�; 2 SO(3) be a 3 � 3 matrix denoting the rotations andh
tx ty tz

iT
be the translation. The transformed points (before projection) can be

found by:
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If f is the focal length of the camera, then applying the perspective projection

yields:
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Solving for the perspective projection given a set of matching points is di�cult

due to its nonlinearity. Furthermore, it requires knowing the focal length and center

point of the camera in advance. Alternately the focal length can be treated as an
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additional variable, but this case requires more feature matches to determine the

transformation and is somewhat unstable with respect to the calculated distance to

the object, since this can only be recovered from perspective e�ects [Alter, 1992].

This transformation can also be used with planar objects. In this case, we simply

have mz = 0 for each model point.

2.1.3 Weak-perspective transformations

Thompson and Mundy [1987] have shown that for objects that have little depth

with respect to their distance from the camera, the weak-perspective class of trans-

formations (also called scaled orthographic) is an accurate, linear approximation to

perspective transformations. It is assumed that each of the transformed model points

is approximately the same distance z0 from the camera. Like perspective transforma-

tions, weak-perspective transformations have six degrees of freedom. In this case, we

get the following for the full transformation and projection:
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where

2
4 R11 R12 R13

R21 R22 R23

3
5 is the �rst two rows of R�;�; . The focal length f and

average depth z0 are often condensed into a single scale factor.

It is also possible to use unscaled orthographic projections, where the f=z0 is one,

but this assumes that the object always has the same size (but not orientation) in

the image. In this case, the transformation only has �ve degrees of freedom.

2.1.4 A�ne transformations

The a�ne class of transformations consist of all fully linear transformations. We

no longer constrict the transformation to be rigid, in that we allow linear skewing

in the x- and y- directions, yielding a transformation with eight degrees of freedom.

An advantage to this class of transformations is that they model the transformations
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(neglecting perspective e�ects) that would take place when capturing an image of a

picture of an object [Jacobs, 1992]. The transformation is similar to weak-perspective

except that

2
4 R11 R12 R13

R21 R22 R23

3
5 is no longer constrained to be the �rst two rows of a

rotation matrix, thus allowing skewing and implicitly scaling the object.
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For planar objects, the a�ne class of transformations is equivalent to weak-

perspective, since R13 and R23 are irrelevant. The transformation has six degrees

of freedom and is given by the following equation:
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2.1.5 Summary

The class of transformations that is to be modeled is another parameter that

must be considered in the design of a model-based object recognition system. For

planar objects, similarity transformations may be su�cient if the orientation of the

objects is constrained, but perspective or weak-perspective is necessary if it is not.

Non-planar objects can sometimes be treated as planar objects if we view them from

a �nite number of viewpoints, but more general models are usually necessary.

Di�erent models of the imaging process yield varying degrees of di�culty in solv-

ing for the transformation from matches between model features and image features.

Perspective transformations are the most di�cult to compute, requiring prior knowl-

edge of the focal length and center point of the camera and then solution of a quartic

equation (see [Haralick et al., 1991] for a review of the solutions to this problem.)

The advantage to perspective transformations is that they model the imaging process

completely accurately.

Weak-perspective transformations are considerably easier to solve for [Hutten-
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locher and Ullman, 1990] due to the linearization of the transformation and prior

knowledge of camera parameters is no longer necessary, but they neglect perspective

e�ects in the imaging process. Quadratic constraints on the transformations (since

we are constrained to rigid rotations) complicate the solution slightly.

A�ne transformations are the simplest to determine. Since the transformation

has no nonlinear constraints simple linear algebra techniques are applicable. A�ne

transformations neglect perspective e�ects and require more feature matches to deter-

mine since they have two additional degrees of freedom for three-dimensional objects.

2.2 Search

While several researchers have done interesting work involving a tree search of the

space of possible matches (e.g. [Haralick and Shapiro, 1979, Ben-Arie and Meiri, 1987,

Flynn and Jain, 1991], I will discuss only the work of Grimson and Lozano-P�erez

[1984, 1987], since I concentrate on non-search methods. Their work is interesting

due to the in-depth analysis which has been performed on the complexity of this

system and search in general.

Grimson and Lozano-P�erez describe a constrained search method for recognizing

two-dimensional objects from intensity images and three-dimensional objects from

range or tactile data, generalizing previous work by Gaston and Lozano-P�erez [1984].

An interpretation tree is constructed that at each level of the tree expands each

unpruned node by matching an unexamined image feature to each possibly consistent

model feature. The basic idea is that local constraints on the distances and angles

between image features can be used to eliminate inconsistent interpretations in a

pairwise fashion. At each node of the interpretation tree, the new match is checked

for consistency with each of the previous matches and if any pair of matches does

not satisfy the local constraints, the node is pruned from the tree. The set of model

features is augmented by the null match to account for spurious image features.

Analysis by Grimson [1990, 1991] has shown that if not all of the image data is

from the model that is being recognized, the expected recognition time is generally

exponential, but the use of a heuristic search termination condition can reduce the
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expected time required to a polynomial function of the number of features under

certain noise and clutter limitations.

2.3 Alignment

The basic idea of the alignment method is to determine hypothesized poses from

small sets of matches between image features and model features. These poses can

then be tested to determine if they are correct. For this reason, such techniques

are sometimes called generate-and-test methods. As mentioned previously, Roberts

[1963] work uses a very basic form of this algorithm. Some other important results

for these techniques are given here.

2.3.1 RANSAC

Fischler and Bolles [1981] describe the RANSAC (for Random Sample Consensus)

system. They provide a closed-form solution to the perspective-3-point problem for

pose estimation (determining the pose under the perspective transformation from

matches between three model points and three image points,) and prove that no

more than four positive solutions exist for this problem. They randomly choose

sets of image points for use in determining hypothesized poses. Such random sets

are examined until the object is recognized or there is a small probability that the

object can be found. Fischler and Bolles accept a model as correct if some hypothesis

transforms some percentage of the model points close to corresponding image points.

2.3.2 HYPER

Ayache and Faugeras [1986] describe the HYPER system (for Hypotheses Pre-

dicted and Evaluated Recursively) for the recognition of partially occluded planar

objects undergoing similarity transformations. Hypotheses are generated by match-

ing a privileged model segment (the longest model segments are privileged) to an

image segment. This provides an initial estimate of the model transformation. Addi-

tional segments are added to the matching in order of their proximity to the initial
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segment, while updating the transformation at each step. Analysis is stopped when

a high quality matching is achieved or enough hypotheses have been examined. The

number of such hypotheses that need to be examined before stopping appears to be

determined heuristically.

Faugeras and Hebert [1986] describe a similar system for the recognition of three-

dimensional objects from range data. In this case, hypotheses are generated from

small sets of feature matches. Faugeras and Hebert provide various solutions for

object pose from sets of features, including a closed-form solution for the case of three

point matches. A special data structure is used to determine which model features are

brought into alignment with image features under the hypothesized transformation

and a tree-search method is used to determined the best overall matching. This

method is thus a hybrid alignment/search method; hypotheses are generated using

alignment, but search is used to verify and optimize the hypotheses.

2.3.3 SCERPO

The SCERPO system (for Spatial Correspondence, Evidential Reasoning, and

Perceptual Organization) has been developed by Lowe [1987]. This system is able to

recognize three-dimensional objects from two-dimensional images through alignment

techniques. Lowe uses Newton's method to iteratively solve for the pose of the ob-

ject using the perspective projection given a hypothesized set of matching features.

This method requires an initial guess to start iterating from and can encounter local

minima. Furthermore, since multiple solutions are possible for small sets of features,

several starting points must be tried. After initial hypotheses are generated, addi-

tional matches that are brought into alignment are added based on a probabilistic

evaluation of how likely it is that the match arose at random. The hypothesized pose

is updated at each step. Lowe's work [1985] on grouping (also known as perceptual

organization) has been exploited in this system to determine which sets of image

features are the best to use as the initial hypotheses.
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2.3.4 Huttenlocher and Ullman

Huttenlocher and Ullman [1990] describe an alignment method for the case of

weak-perspective transformations. They give a fast method for determining the two

transformations that exist under weak-perspective for matches between three model

points and three image points. They also prove that the number of solutions for this

case is always exactly two. (The solutions are the same if the plane of the model points

is perpendicular to the viewing direction.) Huttenlocher and Ullman also describe

how an additional virtual point can be computed from two model or image points and

associated orientations (although this requires that rays emanating from the point in

the direction of the orientations intersect and are thus coplanar.) The computation

of virtual points allows the algorithm to examine fewer hypotheses. The overall

method of Huttenlocher and Ullman is to examine each possible hypothesis and then

use two veri�cation techniques to determine if each hypothesis is correct. The �rst

veri�cation technique examines where the remaining model points are transformed

by the hypothesized pose. If enough of these are transformed close to image points,

the second veri�cation is also used. This more extensive veri�cation step examines

where the model edges are transformed by the hypothesized pose and uses evidence

accumulation techniques to try to ensure that the object is actually present in the

image.

2.3.5 Basri and Ullman

Basri and Ullman [1988] describe a curvature method of aligning objects with

smooth surfaces. Objects are represented by a small number of two-dimensional

contours with an associated depth and curvature at each point. Experiments indicate

that smooth three-dimensional objects can be modeled e�ectively in this manner

and the appearance of the object from all viewpoints can be accurately predicted.

In recognizing objects, the method of Huttenlocher and Ullman [1990] was used to

determine hypothesized poses. Basri [1992] analyzes the error in the curvature method

of aligning objects with smooth surfaces. He concludes that a small number of models

is required to predict how an ellipsoid will appear from all possible viewpoints in an
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image.

A related system [Ullman and Basri, 1991] described models using linear combi-

nations of a small set of model images. Under an a�ne transformation, objects with

sharp edges can be modeled exactly in this manner. The curvature method is also

used with this system for smooth objects.

2.3.6 Error analyses

Error analyses of alignment systems have been performed by several researchers

[Grimson et al., 1992a, Grimson et al., 1992b, Alter and Grimson, 1993].

Grimson et al. [1992b] analyze the e�ects of noise on systems recognizing pla-

nar objects undergoing a�ne transformations from point features. They give exact

bounds on the location a fourth model point may be in the image given correct

matches between three model and image points, where the image points are localized

up to a disk of radius �. Similarly, they determine the `selectivity' of sets of four model

points. This is the probability that a random set of four image points could be the

projection of the four model points to within the error radii. Their conclusion is that

techniques that examine such small sets of points will often produce false positive

matches for moderate levels of noise and image complexity.

An extension of this work to three-dimensional models [Grimson et al., 1992a]

determines overestimates of the range of transformations that take a set of four

three-dimensional model points to within error boundaries of corresponding image

points. The occurance of false positives in the three-dimensional case is shown to be

signi�cant.

Alter and Grimson [1993] analyze the use of line segment features in the alignment

method. They show that the selectivity is expected to be lower for this case and thus

false positives will be less common. They also show how to tighten the bounds on

the propagated uncertainty regions from [Grimson et al., 1992a] using a numerical

technique.
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2.4 Pose clustering

The basic idea of pose clustering systems is that if we calculate the pose from every

possible combination of the minimal amount data necessary, many of the matches will

be correct if the object is present in the image. Each of these will yield a pose close

to the correct pose of the object. So, �nding clusters of these poses in the pose space

will yield hypotheses for the location of the object in the image.

2.4.1 Generalized Hough transform

Ballard [1981] showed how the Hough transform [Hough, 1962, Duda and Hart,

1972] could be generalized to detect arbitrary two-dimensional shapes undergoing

translation. First, a mapping between image space and pose space is constructed.

Then, a table is created quantizing pose space. Cells of this table that are consistent

with each edge pixel are then incremented. Peaks in the table correspond to possible

instances of the object in the image. This system was generalized to rotations and

scaling in the plane, but since individual pixels are examined independently, a two-

dimensional surface in the quantized pose space must then be incremented for each

edge pixel.

2.4.2 Stockman et al.

Stockman et al. [1982] describe a pose clustering system for two-dimensional ob-

jects undergoing similarity transformations. This system examines matches between

image segments and model segments to reduce the subset of the four-dimensional

pose space consistent with a hypothesis to a single point. Clustering is performed by

conceptually moving a box around pose space to determine if there is a position with

a large number of points inside the box and is implemented by multi-dimensional

histograming. This histograming is performed in a coarse-to-�ne manner to reduce

the overall number of bins that must be examined.
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2.4.3 Thompson and Mundy

Thompson and Mundy [1987] use `vertex-pairs' in the image and model to deter-

mine the transformation aligning a three-dimensional model with the image. Each

vertex pair consists of two feature points and two angles (�1; �2) at one of the fea-

ture points corresponding to the direction of edges terminating at the point. They

quantize the two-dimensional space of the possible image angles (�1; �2) and for each

model vertex-pair, they precompute some of the transformation parameters for each

of the quantized angles. At run-time, the precomputed transformation parameters

are used to quickly determine the transformation aligning each model vertex-pair

with an image vertex-pair and histograming is used to determine where large clusters

of transformations lie in transformation space, which are assumed to correspond to

correct transformations.

2.4.4 Linnainmaa et al.

Linnainmaa et al. [1988] describe another pose clustering method for recognizing

three-dimensional objects. They �rst give a method of determining object pose un-

der the perspective projection from matches of three image and model feature points

(which they call triangle pairs.) They cluster poses determined from such triangle

pairs in a three-dimensional space quantizing the translational portion of the pose.

The rotational parameters and geometric constraints are then used to eliminate in-

correct triangle pairs from each cluster. Optimization techniques are described that

determine the pose corresponding to each cluster accurately.

2.4.5 Transformation sampling

Cass [1988] describes a method similar to pose clustering that uses transforma-

tion sampling for the case of two-dimensional objects undergoing similarity trans-

formations. Cass uses line segments as the features to recognize objects. Instead

of histograming each transformation, Cass samples the pose space at many points

within the subspaces that align each hypothetical feature match to within some error
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bounds. The number of features brought into alignment by each sampled point is

determined and the object's position is determined from the sample points with max-

imum value. This method may miss a pose that brings many matches into alignment

if the sampling is not �ne enough, but it ensures that the transformations found for

any single sample point are mutually compatible.

2.4.6 Analyses

Grimson and Huttenlocher [1990a] show that noise, occlusion, and clutter cause

a signi�cant rate of false positive hypotheses in pose clustering algorithms when us-

ing line segments or surface patches as features in two- and three-dimensional data.

Thus, pose clustering should be used a means of detecting possible poses for further

veri�cation, not as the sole means of object recognition. In addition, they show that

conventional histograming methods of clustering must examine a very large number

of hash buckets even when using coarse-to-�ne clustering or sequential histograming

in orthogonal spaces.

Grimson et al. [1992a] examine the e�ect of noise, occlusion, and clutter for the

speci�c case of recognizing three-dimensional objects from two-dimensional images us-

ing point features. They determine overestimates of the range of transformations that

take a group of model points to within error bounds of hypothetically corresponding

image points. Using this analysis, they show that pose clustering for this case also

su�ers from a signi�cant rate of false positive hypotheses. A positive sign for pose

clustering from the work of Grimson et al. is that the alignment method [Huttenlocher

and Ullman, 1990] produces false positive hypotheses with a higher frequency than

pose clustering when both techniques use only feature points to recognize objects.

2.4.7 Pose constraint methods

Another related technique is to decompose pose space into regions that bring

the same set of model and image features into agreement up to error bounds [Cass,

1993]. For two-dimensional models undergoing similarity transformations, if each

image point is localized up to an uncertainty region described by a k-sided polygon
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then each of the mn possible matches corresponds to the intersection of k half-spaces

in four-dimensions. The equivalence classes with respect to which model and image

features are brought into agreement can be enumerated using computational geometry

techniques [Edelsbrunner, 1987] in O(k4m4n4) time. The case of three-dimensional

objects and two-dimensional images is harder since the transformations do not form

a vector space. But, by embedding the six-dimensional a�ne pose space in an eight-

dimensional space, it can be seen that there are O(k8m8n8) equivalence classes. Not

all of these equivalence classes must be examined to determine the regions producing

the largest matches. For example, Cass describes a method of �nding the maximal

match sets for two-dimensional objects undergoing similarity transformations with

expected time O(n2m3) using square uncertainty regions.

Jacobs [1991] describes a method for recognizing two-dimensional objects un-

dergoing a�ne transformations. Given three correct matches this system can quickly

determine the maximal set of matches that includes those matches. Jacobs discretizes

the six-dimensional space of possible errors in the locations of the three image feature

points. Each bin in this discretization represents a small volume of feature space

where the true locations of the three image features could be. There exists a set of

additional matches which can be brought into alignment while constraining the image

features to lie in the space represented by the bin. The bin where the most matches

are brought into alignment is considered optimal.

Breuel [1992] has proposed an algorithm that recursively subdivides pose space to

�nd volumes where the most matches are brought into alignment. While this method

has an exponential worst case complexity, Breuel's experiments provide evidence that

for the case of two-dimensional objects undergoing similarity transformations the

expected time complexity is O(mn) for line segment features (or O(m2n2) for point

features.) The case of three-dimensional objects and two-dimensional data is not

discussed at length, but if the expected running time remained proportional to number

of constraint regions then it would be O(m3n3) for point features.
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2.5 Indexing

Indexing systems for machine vision attempt to generate a single number (or a

�nite set of numbers) from an image or images that can be used to index a table and

determine the set of models that could have generated the data. Ideally, one is able

to represent the set of features comprising all or part of the object as a single number

which remains the same regardless of transformation or projection. Such a number

is called an invariant.

Once invariants have been found, an index table can be created by discretizing

the space of invariant parameters. Model features are then stored in the table at

locations corresponding to their parameters. At recognition time, the parameters

associated with the image features can be used to look up the model features in the

index table that may correspond to them.

2.5.1 Lamdan et al.

Lamdan et al. [1988] describe invariants for two-dimensional point sets (of size

four or more) undergoing general three-dimensional a�ne transformations and or-

thographic projection. They represent a group of four points in a look-up table by

the coordinates of the fourth point p4 in a coordinate system with origin p1 and unit

axes p1p2 and p1p3. These relative coordinates are invariant to a�ne transformations.

Model groups are then indexed by selecting three image points as a basis and using

the relative coordinates of the remaining image points as keys into the index table.

Voting is done to determine which objects might be present in the image.

They have extended their system such that it can also deal with the case of three-

dimensional models and two-dimensional data. Their system accomplishes this by

indexing on groups of �ve image points. While each model group is represented only

once, each image group must index a line in the look-up table. Clemens and Jacobs

[1991] show that this method does not take advantage of all of the constraints available

and thus unnecessarily produces false positive group matches. The requirement of

groups of �ve points also means that there are O(n5) image groups and O(m5) model
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groups to consider.

2.5.2 Clemens and Jacobs

Despite the lack of general invariants for the three-dimensional case, Clemens and

Jacobs [1991] have shown that an indexing system for this problem can be built that

(in the noiseless case) indexes exactly those groups that could have projected to a

speci�c image group in the weak-perspective imaging model. This system requires

groups to be of (at least) four points. It uses a four-dimensional index table and each

group of four points must be represented over a two-dimensional space in this table.

The requirement of four points per group means that there are O(n4) image groups

and O(m4) model groups to consider. While this system achieves greater relative

speedup by increasing the size of the point groups examined and the dimensionality

of the index table, Clemens and Jacobs show that grouping is necessary for larger

point groups to be of signi�cant use, due to the larger number of groups found when

the size of the point group is increased.

The four dimensions of the index table used by Clemens and Jacobs are as follows:

the relative coordinates (x
0

4; y
0

4) of the orthographic projection of the fourth point

using the projections of the �rst three as a basis (note that after projection these two

parameters are the same representation used by Lamdan et al.,) the angle formed

by the projections of the �rst three points, and the ratio of vector lengths of the

projections of the �rst to second and �rst to third points. These four parameters are

invariant for any group of four points over translation, scaling, and rotation about

the viewing direction. These parameters are not invariant over the remaining viewing

parameters (i.e. viewing direction,) thus they must represent each group from each

viewing direction in their index table. Since the viewing direction has two degrees

of freedom, this means that each group must be represented on a two-dimensional

surface in the table.

Jacobs [1992] has shown that groups of �ve three-dimensional points undergoing

a�ne transformations can be indexed from two-dimensional data by representing each

group as lines in two orthogonal two-dimensional tables. To determine which model
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groups may have projected to an image group, model groups are indexed in both of

the tables. The intersection of the two sets of indexed groups then corresponds to

the possible model groups.

2.5.3 Rothwell et al.

Rothwell et al. [1993] demonstrate that invariants exist for some constrained

classes of three-dimensional point sets. In particular, they describe invariants for

point sets that contain several subsets of four coplanar points and point sets that

possess bilateral symmetry. Seven feature point matches are required to determine

invariants for the �rst case and eight feature point matches are required for the second.

2.5.4 Stein and Medioni

Stein and Medioni have described systems to index two-dimensional objects from

two-dimensional data [Stein and Medioni, 1990] and three-dimensional objects from

three-dimensional data [Stein and Medioni, 1992]. Their two-dimensional system

approximates objects as polygons. A sequence of consecutive line segments in the

approximation is called a super-segment. Super-segments are encoded and stored in

a table for lookup at recognition time. The three-dimensional system uses a repre-

sentation of local surface properties called a splash. Each splash is comprised of the

surface normal at a reference point and the surface normals at discrete points on a

circle around the reference point. A super-splash consists of several splashes with

circles a di�erent radii with the same reference point. Stein and Medioni encode the

features of super-splashes for lookup at recognition time.

2.5.5 Model-based invariants

Weinshall [1993] describes invariants for three-dimensional objects that vary with

the model (a set of points.) These are functions (that are di�erent for each model)

that are invariant to the rotation, translation and projection of the model points onto

the image. These invariants can be formulated despite the proof that no invariants
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exist, because they explicitly use the relevant model parameters in the formulation,

and the invariant function is di�erent for each model. While Weinshall describes

how indexing tables can be built using them, the dependence of the invariant on the

model parameters complicates this somewhat. The model-based invariant is basically

a formula that describes when a minimal set of overconstraining matches between

model features and image features can be brought into alignment exactly in the

noiseless case for both rigid and a�ne transformations. Noise will cause the invariant

to vary from the ideal value.

Weinshall and Basri [1993] investigate a similar concept. They describe a trans-

formation metric that determines how well a set of points can be brought into align-

ment using rigid transformations. This metric can be used to determine which sets

of matches can be brought into alignment in a similar manner to the model-based

invariants.

2.5.6 Invariant descriptors

Forsyth et al. [1991] describe descriptor functions for planar curves that are in-

variant to the object's pose under the perspective projection. After describing a

number of invariants for various transformations, they show how invariants can be

developed using techniques from invariant theory. They then show how recognition

can be performed using an invariant for objects consisting of two rigidly coupled

planar conics.
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Chapter 3

E�cient Pose Clustering

The �rst application of the concept of selective examination of hypotheses that

will be examined in this thesis is based on the idea that the pose clustering method

of object recognition can be decomposed into small subproblems. In this chapter, I

show how such a decomposition can be obtained without loss of accuracy. This de-

composition allows pose clustering to be formulated as a generate-and-test algorithm.

Each subproblem examines a hypothesis that a match between two image points and

two corresponding model points is correct.

In addition, randomization techniques can then be used to limit the number of

such hypotheses that need to be examined to gain accurate recognition. While no

criterion is yet used to determine which hypotheses are best to examine prior to the

clustering stage, only a selected number of the hypotheses are examined, and the

decomposition techniques allow the incorporation of probabilistic information about

the likelihoods of the hypotheses prior to the pose estimation and clustering step

where the bulk of the computation is performed.

3.1 Introduction

Pose clustering is a technique that is used to recognize objects in images from hy-

pothesized matching between feature groups [Ballard, 1981, Stockman, 1987, Thomp-

son and Mundy, 1987, Linnainmaa et al., 1988, Grimson et al., 1992a]. In this method,
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the transformation parameters that align groups of model features with groups of

image features are determined. Under a rigid-body assumption, all of the correct

hypotheses will yield a transformation close to the correct pose of the object. Ob-

jects can thus be recognized by �nding clusters among these transformations in the

pose space. Since we do not know which of the hypothesized matches are correct in

advance, pose clustering methods have typically examined the poses from all possible

matches. Unfortunately, Grimson et al. [1990a, 1992a] have shown that this method

will �nd a signi�cant number of false positives for complex images with substantial

noise and/or occlusion. Thus, pose clustering should be used to determine hypothe-

ses for further veri�cation, not as the sole means of detection. Further discussion of

previous work on pose clustering can be found in Chapter 2.

For the remainder of this chapter, I will focus on the recognition of general three-

dimensional objects undergoing unrestricted rotation and translation from single two-

dimensional images. To simplify matters, the only features used for recognition are

feature points in the model and the image, but the results here can be generalized to

any features from which we can estimate the pose of the object.

If m is the number of model feature points and n is the number of image feature

points then there are O(m3n3) possible transformations to consider for this problem.

I demonstrate that if we are given two correct matches, performing pose clustering on

only the O(mn) transformations that can be determined using these correct matches

yields equivalent accuracy to clustering all O(m3n3) transformations, due to corre-

lations between the transformations. Since we do not know two correct matches in

advance, we must examineO(n2) such initial matches to ensure an insigni�cant prob-

ability of missing a correct object, yielding an algorithm that requires O(mn3) total

time. Additional speedup can be achieved by using grouping to generate the initial

matches.

Previous pose clustering methods have required a large amount of memory and/or

time to �nd clusters, due to the large number of transformations and the size of pose

space. Since we can now examine subsets of only size O(mn) at a time, we require

much less storage to perform clustering.

The remainder of this chapter will be structured as follows. Section 3.2 discusses
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some previous techniques used to perform pose clustering. Section 3.3 proves that

examining small subsets of the possible transformations is adequate to determine if

a cluster exists with optimal accuracy and discusses the implications of this result

on pose clustering algorithms. Section 3.4 discusses the computational complexity of

these techniques and compares it to other algorithms for this problem. Section 3.5

gives an analysis of the frequency of false positives using the results on the correlation

between transformations to achieve more accuracy than previous work. Section 3.6

describes how clustering can be performed e�ciently and discusses the implementa-

tion of these ideas. Experiments that have been performed to demonstrate the utility

of the system are presented in Section 3.7. Section 3.8 discusses some interesting

issues and a summary can be found in Section 3.9.

3.2 Recognizing objects by clustering poses

As mentioned above, pose clustering is an object recognition technique where

the poses that align hypothesized matches between feature groups are determined.

Clusters of these poses indicate the possible presence of an object in the image.

To prevent a combinatorial explosion in the number of poses considered, we want

to use as few as possible matches between image and model points to determine

the hypothetical poses of the object. It is well known that three matches between

model points and three image points is the smallest number of matches that yield

a �nite number of transformations that bring three-dimensional model points into

alignment with two-dimensional image points using the perspective projection and

several approximations [Fischler and Bolles, 1981, Huttenlocher and Ullman, 1990,

DeMenthon and Davis, 1992, Alter, 1992] (Figure 3.1.) A pose clustering algorithm

can thus use matches between three model points and image points to determine

hypothetical poses.

Let us call a set of three model features f�1; �2; �3g a model group and a set of

three image points f�1; �2; �3g an image group. A hypothesized matching of a single

model feature to an image feature � = (�; �) will be called a point match and three

point matches of distinct image and model features  = f(�1; �1); (�2; �2); (�3; �3)g
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Model
Image

Figure 3.1: There exist a �nite number of transformations that align three non-

collinear model points with three image points.

will be called a group match.

If there are m model features and n image features then there are 6(m3 )(
n
3 ) distinct

group matches (since each group of three model points may match any group of three

image points in six di�erent ways,) each of which yields up to four transformations.

Ideally, we would �nd exactly those points in pose space that would bring a large

number of model points into alignment with image points up to some error bounds.

Work in this direction has been undertaken by Cass [1988, 1990], but these methods

can be time consuming and are di�cult for the case of three-dimensional objects.

Most pose clustering algorithms �nd clusters less accurately by histograming the

poses in the multi-dimensional transformation space (Figure 3.2.) In this method,

each pose is represented by a single point in pose space. The pose space is discretized

into bins and the poses are histogramed in these bins to �nd large clusters. Since

pose space is six-dimensional for general rigid transformations, the discretized pose

space is enormous for the �neness of discretization necessary to perform accurate pose
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Figure 3.2: Clusters representing good hypotheses are found by performing multi-

dimensional histograming on the poses. This �gure represents a coarsely quantized

three-dimensional pose space.
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Figure 3.3: In coarse-to-�ne clustering, the bins at a coarse scale that contain many

transformations are examined at a �ner scale.

clustering.

Two techniques that have been proposed to reduce this problem are coarse-to-

�ne clustering [Stockman et al., 1982] and decomposing the pose space into orthogo-

nal subspaces in which histograming can be performed sequentially [Thompson and

Mundy, 1987, Linnainmaa et al., 1988]. In coarse-to-�ne clustering (Figure 3.3,) pose

space is quantized in a coarse manner and the large clusters found in this quantiza-

tion are then clustered in a more �nely quantized pose space. Pose space can also

be decomposed such that clustering is performed in two or more steps, each of which

examines a projection of the transformation parameters onto a subspace of the pose

space (Figure 3.4.) The clusters found in a projection of the pose space are then

examined with respect to the remaining transformation parameters.

These techniques can lead to additional problems. The largest clusters in the �rst

clustering step do not necessarily correspond to the largest clusters in the entire pose

space. We could examine all of the bins in the �rst space that contain some minimum

number of transformations, but Grimson and Huttenlocher [1990a] have shown that

for cluttered images, an extremely large number of bins would need to be examined

due to saturation of the coarse or decomposed table. In addition, we must either

store with each bin the group matches that contributed to a cluster there (so that

we can perform the recursive histograming steps on them) or we must reexamine all

of the group matches (and redetermine the transformations aligning them) for each

subsequent histograming step. The �rst possibility requires an enormous amount of
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Figure 3.4: Pose space can be decomposed into orthogonal spaces. Clustering is then

performed in one of the decomposed spaces. Bins that contain many transformations

are examined with respect to the remaining spaces.

storage for previous methods and the second requires considerable extra time.

We will see that these problems can be solved through a decomposition of the

pose clustering problem. Furthermore, randomization can be used to achieve a low

computational complexity while still achieving high accuracy. Similar techniques in

the context of transformation equivalence analysis can be found in [Cass, 1993].

3.3 Decomposition of the problem

Let � be the space of legal poses. Each p 2 � can be considered a function

p : IR3 ! IR2 that takes a model point to its corresponding image point. Each group

match  = f(�1; �1); (�2; �2); (�3; �3)g yields some subset of pose space �() � � that

brings each of the model points in the group match to within the error bounds of the
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corresponding image point. I will consider a generalization of this function �() that

applies to sets of point matches of any size.

Let's assume that the feature points are localized with error bounded by a circle

of radius � (though the following analysis is not dependent on any choice of error

boundary.) We can de�ne �() as follows:

De�nition :

�() � fp 2 � : jjp(�i)� �ijj2 � �, for 1 � i � jjg

The following theorem is the key to showing that examining the subproblems has

equivalent accuracy to examining the original pose clustering problem.

Theorem 1:

The following statements are equivalent for each p 2 �:

1. There exist g = (x3) distinct group matches that pose p brings into alignment

up to the error bounds. Formally,

91; :::; g s.t. p 2 �(i) for 1 � i � g

2. There exist x distinct point matches �1; :::; �x that pose p brings into alignment

up to the error bounds:

9�1; :::; �x s.t. p 2 �(f�ig) for 1 � i � x

3. There exist x � 2 distinct group matches sharing some pair of point matches

that pose p brings into alignment up to the error bounds:

9�1; :::; �x s.t. p 2 �(f�1; �2; �ig) for 3 � i � x

Proof :

The proof of this theorem has three steps. I will prove (a) Statement 1 im-

plies Statement 2, (b) Statement 2 implies Statement 3, and (c) Statement 3 implies

Statement 1. Therefore the three statements must be equivalent.
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(a) Each of the group matches is composed of a set of three point matches. The

fewest point matches from which we can choose (x3) group matches is clearly x. The

de�nition of �() guarantees that each of the individual point matches of any group

match that is brought into alignment are also brought into alignment. Thus each of

these x point matches must be brought into alignment up to the error bounds.

(b) Choose any two of the point matches that are brought into alignment. Form

all of the x� 2 group matches composed of these two point matches and each of the

additional point matches. Since each of the point matches is brought into alignment,

each of the group matches composed of them also must be from the de�nition of �().

(c) There are x distinct point matches that compose the x � 2 group matches

each of which must be brought into alignment. Any of the (x3) distinct group matches

that can be formed from them must therefore also be brought into alignment. 2

This theorem implies that we can achieve accuracy equivalent to the examining

all of the group matches when we examine subproblems in which only those group

matches that share some basis of two point matches are considered. So, instead of

�nding a cluster of size (x3) among all of the group matches, we simply need to �nd

a cluster of size x� 2 within any set of group matches that all share the same basis

of two point matches. Furthermore, it is clear that any two correct point matches

can be used as this basis. For each basis, we must examine O(mn) group matches,

since there are (m� 2)(n� 2) group matches for a single basis such that no feature is

used more than once. Of course, examining just one image basis will not be su�cient

to rule out the appearance of an object in an image. We could simply examine all

2(n2 )(
m
2 ) possible pairs of point matches, but we will see in the next section that we

can examineO(n2) pairs of matches and achieve accuracy arbitrarily close to optimal.

Figure 3.5 gives the updated pose clustering algorithm.

3.4 Computational complexity

This section discusses the computational complexity necessary to perform pose

clustering using the techniques described above. We can use a randomization tech-
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Function recognize(input: model-points, image-points)

Repeat:

Choose two random image points �1 and �2.

For all pairs of model points �1 and �2:

For all point matches (�3; �3):

Determine the poses aligning the group match  = f(�1; �1); (�2; �2); (�3; �3)g.

Find and output clusters among these poses.

End

Figure 3.5: New pose clustering algorithm.

nique proposed by Fischler and Bolles [1981] and also used by Lamdan et al. [1988]

and Cass [1993] to limit the number of pairs of matches that must be examined. A

random pair of image points is chosen to examine as the image basis points. All basis

matches using these image points are examined and if one of them leads to recognition

of the object then we may stop. Otherwise, we continue choosing image basis points

at random until we have reached a su�cient probability of recognizing the object if

it is present in the image.

If we require fm model points to be present in the image to ensure recognition (f

is the fraction of model points appearing,) we can determine an upper bound on the

probability of not choosing a correct image basis in k trials, where each trial consists

of examining a random basis of two image points. Since the probability of a single

image point being a correct model point is at least fm

n
, the maximum probability

of a basis being incorrect is approximately 1 � (fm
n
)2. Thus, the probability that k

random trials will all be unsuccessful is:

p �
0
@1 �

 
fm

n

!2
1
A
k

If we require the probability of a false negative to be less than � we get:
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(To a �rst-order approximation: kmin = n2

(fm)2 ln
1
�
)

For each image basis, we must examine each of the 2(m2 ) = O(m2) permutations

of model points which may match them. So, in total we must examine O( n
2

m2 ) �
O(m2) = O(n2) basis matches to achieve accuracy 1 � �. The time bound varies

with the logarithm of the desired accuracy, so very high accuracies can be achieved

without greatly increasing the running time of the algorithm. Since we must examine

O(mn) group matches for each basis, this method requires O(mn3) time per object in

the database, where previously O(m3n3) was required. A comparison against other

algorithms for the problem of recognizing three-dimensional objects may be useful.

The alignment method [Huttenlocher and Ullman, 1990] examines each of the

O(m3n3) matches between three model points and three image points and determines

the transformation that aligns each of them. An O(m log n) step is performed for each

match to determine if enough model points are brought into alignment with image

points by this transformation, yielding a total time of O(m4n3 log n). Randomization

can be used to limit the number of group matches examined. In this case, the running

time of the alignment method is O(mn3 log n). Huttenlocher and Ullman use virtual

points from directional information at the feature points to reduce the complexity

when this information is available to O(m3n2 log n) without randomization, and it

can be further reduced to O(mn2 log n) with randomization. When this directional

information is available we can use it to generate virtual points for our algorithm as

well, reducing the complexity to O(mn2).

Since Thompson and Mundy [1987] examine pairs of image features, they have

only O(m2n2) initial matches that must be examined. Their system assumes that
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directional information from edges can be reliably determined at each of the feature

points. Our system can by easily modi�ed to use the same features as used by

Thompson and Mundy, when they are available. This would reduce the complexity

of our algorithm to O(mn2) in this case.

3.5 Frequency of false positives

While the above analysis has been interpreted in terms of the correct clusters so

far, it also applies to incorrect clusters. Let t be our threshold for the number of

model points that must be brought into alignment for us to output a hypothesis. If

a pose clustering system that examines all of the poses �nds a false positive cluster

of size ( t3), we would expect the new techniques to yield a false positive cluster of size

t� 2. We will thus �nd false positives with the same frequency as previous systems.

Grimson et al. analyze the pose clustering approach to object recognition to

determine the probability of a false match having a large peak in transformation

space for the case of recognition of three-dimensional objects from two-dimensional

images. They use the Bose-Einstein occupancy model (see, for example, [Feller, 1968])

to estimate this probability. This analysis assumes independence in the locations of

the transformations, which is not correct. Consider two group matches composed of

a total of six distinct point matches. If there is some pose p 2 � that brings both

group matches into alignment up to the error conditions, then any of the (63) = 20

group matches that can be formed using the six point matches is also brought into

alignment by this pose. Thus the poses determined from these group matches are

highly correlated.

Theorem 1 indicates that we will �nd a false positive only in the case where there

is a pose that brings t model points into alignment with corresponding image points.

This result allows us to perform a more accurate analysis of the likelihood of false

positive hypotheses. I'll summarize the results of Grimson et al. before describing

modi�cations to their analysis to account for the correlations between transformations

and achieve more accuracy.

The Bose-Einstein occupancy model yields the following approximation of the
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probability that a bin will receive l or more votes due to random accumulation:

p�l � �l

(1 + �)�l

In this equation, � is the average number of votes in a single bin (including

redundancy due to uncertainty in the image.) For their analysis � = 6bg(m3 )(
n
3) �

bgm
3n3

6
, where bg is the average fraction of bins that contain a pose bringing a group

match into alignment (called the redundancy factor,) m is the number of model

features, and n is the number of image features.

Grimson et al. determine the maximum number of image features that can be

tolerated without surpassing a given error rate �. Each correct object is expected to

have (fm3 ) � (fm)3

6
correct transformations, since each distinct group of model features

will include the correct bin among those it votes for. The probability that an incorrect

point match will have a cluster of at least this size is:

q �
 

�

1 + �

! (fm)3

6

Setting q � � and solving for n, they get:

nmax � f

3
q
bg ln

1
�

As noted above, this analysis can be made more accurate by considering the

correlations between the transformations. Theorem 1 indicates that there exist (fm3 )

group matches and some point p in transformation space that brings each of the

group matches into alignment if and only if there are fm point matches that p brings

into alignment. So, we must determine the likelihood that there exists a point in

transformation space that brings into alignment fm of the nm point matches. I'll

call the average fraction of transformation space that brings a single point match into

alignment bp.

If we otherwise follow the analysis of Grimson et al. , we get:

p =

 
bpmn

1 + bpmn

!fm
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We can set p � � and solve for n as follows:

fm ln

 
1 +

1

bpmn

!
� ln

1

�

Using the approximation ln(1 + �) � � for small � we get:

fm

bpmn
� ln

1

�

Actually, 1
bpmn

isn't always small, but this approximation yields a conservative

estimate.)

n � f

bp ln
1
�

Note that this is not very di�erent from the result derived by Grimson et al. since

bp = 3
q
bg if the clustering is performed exactly as in the method of Cass [1990]. The

primary di�erence is a change from a factor of 3
q
ln 1

�
to ln 1

�
, which means that the

new estimate of the allowable number of image features before a given rate of false

positives is produced is lower than that obtained by Grimson et al.

It should be noted that this result is a fundamental limitation of all object recog-

nition systems that use only point features to recognize objects, not of this system

alone. Any time there exists a transformation that brings fm model points into align-

ment with image points, a system dealing only with feature points must recognize

this as a possible instance of the object.

One solution to this problem would be to use more descriptive features. The

results presented here, are easily generalized to encompass features conveying more

information. This will increase the allowable clutter, but some bound will still be

applicable. Grimson and Huttenlocher [1991] have performed a similar calculation

for line segment features from planar models undergoing rigid planar transformations.

This analysis does not su�er from the problem of correlated transformations since, in

this case, each hypothesis consisted of a single match between a model feature and

an image feature.

The primary implication of these results is that unless we are limited to simple

images or use more descriptive features than points to determine the transformations,
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we must still use pose clustering as a method of �nding likely hypotheses for further

veri�cation. As an additional veri�cation step, we could, for example, verify the

presence of edge information in the image as done by Huttenlocher and Ullman [1990].

3.6 E�cient clustering

This section discusses how my system performs clustering of the poses e�ciently

with respect to both time and space. This analysis will assume that we are considering

a single object model. Multiple objects are handled sequentially by this system.

Clustering methods other than histograming have been largely avoided due to

their considerable time requirement. For example, algorithms based on nearest-

neighbors [Sibson, 1973, Defays, 1977, Day and Edelsbrunner, 1984] require O(p2)

time where p is the number of points to cluster. Since there are p = O(m3n3) trans-

formations to cluster in previous methods this means the overall time for clustering

would be O(m6n6). While most pose clustering methods have used histograming to

�nd large clusters in pose space, less e�cient, but more accurate, clustering meth-

ods become more feasible with this method, since only O(mn) transformations are

clustered at a time, rather than O(m3n3).

I still use histograming to achieve the fastest possible clustering. Each trans-

formation is represented by a single point in pose space. Overlapping bins that are

large enough to contain most, if not all, of the transformations consistent with the

bounded error are used. This is to prevent any clusters from being missed due to them

falling on a boundary between bins. This method should be able to �nd almost all

of the correct transformations, but it does not have optimal accuracy. More accurate

techniques (e.g. [Cass, 1990]) may be used at the cost of lower speed.

My implementation uses the method of Huttenlocher and Ullman [1990] to de-

termine the transformation parameters that bring three model points into alignment

with three image points in the weak-perspective imaging model. Varying image noise

levels are accounted for in my implementation by varying the size of the bins used in

the histograming procedure.

Since histograming is used to �nd clusters, either coarse-to-�ne clustering or de-
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composition of the pose space is required, since the six-dimensional pose space is

immense. I use the decomposition approach. Pose space can be decomposed into the

six orthogonal spaces corresponding to each of the transformation parameters. To

solve the clustering problem, histograming can be performed recursively using a sin-

gle transformational parameter at a time. In the �rst step, all of the transformations

are histogramed in a one-dimensional array, using just the �rst parameter. Each bin

that contains more than fm�2 transformations1 is retained for further examination,

where f is some predetermined fraction of model features that must be present in

the image for us to recognize the object. For each bin with enough transformations,

we recursively cluster the poses in that bin using the remaining parameters. Since

this procedure continues until all six parameters have been examined, the bins in the

�nal step contain transformations that agree closely in all six of the transformational

parameters and thus form a cluster in the complete pose space.

This method can be formulated as a variant of depth-�rst tree search. The root of

the tree corresponds to the entire pose space, each node corresponds to some volume

of the pose space, and the leaves correspond to individual bins in the six-dimensional

pose space. At each level of the tree, the nodes from the previous level are expanded by

histograming the poses in those nodes using a previously unexamined transformation

parameter. The tree has height six, since there are six pose parameters to examine.

At each level, we can prune every node of the tree that does not correspond to a

volume of transformation space containing at least fm� 2 transformations.

Figure 3.6 gives an outline of this algorithm. If unexamined parameters remain

at the current branch of the tree, we histogram the remaining poses using one of these

parameters. Each of the bins that contains at least fm � 2 poses is then clustered

recursively using the remaining parameters. The other bins are pruned. When we

reach a leaf bin (after all of the parameters have been examined) that contains enough

poses, we output the location of the cluster.

Although this decomposition of the cluster algorithm has not previously been

1For the moment, let's neglect the possibility that we may not �nd some of the correct transfor-

mations. In this case, if fm model points are present in the image, a correct basis will yield fm� 2

correct transformations
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Function �nd-clusters( input: P - set of poses, � - set of pose parameters)

If j�j > 0 then

Choose some � 2 �.

Histogram poses in P by parameter �.

For each bin b in the histogram:

If jbj > fm� 2 then

Find-clusters(fp 2 P : p 2 bg,� n �);

Else

Output the cluster location.

End

Figure 3.6: Recursive clustering algorithm. (See text.)

formulated as a tree search, the analysis of Grimson and Huttenlocher [1990a] im-

plies that previous pose clustering methods saturate such decomposed transformation

spaces at the levels of the tree near the root, due to the large number of transforma-

tions that need to be clustered. For those methods, virtually none of the branches

near the root of the tree can be pruned.

Since previous systems would histogram O(m3n3) transformations, there are

O(n3) bins that could hold as many as (fm3 ) transformations at each level of the

tree. Thus, despite histograming in a high-dimensional space, these systems may

have a large number of unpruned bins at even low levels of the tree, since they are

clustering so many transformations. Using the techniques presented here, we have

only O(n) bins that contain as many as fm � 2 transformations at any level of the

tree, since there are O(mn) transformations clustered at a time. This means that

there can be only O(n) unpruned bins at each level and these bins contain O(mn)

total transformations. Thus, we do not have saturation near the root of the tree for

this system. O(mn) time and space is required per clustering step.

Once clusters are found, I use a method described by Huttenlocher and Cass [1992]

to determine an estimate of the number of consistent matches. They argue that the
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number of matches in a cluster is not necessarily a good measure of the quality of

the cluster, since di�erent matches in the cluster may match the same image point

to multiple model points, or vice versa, which we do not wish to allow. Huttenlocher

and Cass recommend counting the lesser of the number of distinct model points and

distinct image points matched in the cluster, since it can be determined quickly (as

opposed to the maximal bipartite matching) and is reasonably accurate.

Note that the alignment method [Huttenlocher and Ullman, 1990] cannot use this

method of reducing the number of false positives without increasing the time bound.

This is because the O(m log n) step to determine how many points are brought into

alignment by a given transformation checks only to see if each transformed model

point is close to any image point. It cannot �nd the maximumnumber of image points

that are covered by the transformed model points without increasing the complexity

of the algorithm.

3.7 Results

This section describes experiments performed on real and synthetic data to test

the system.

3.7.1 Synthetic data

Models and images have been generated for these experiments using the following

methodology:

1. Model points were determined randomly inside a 200 � 200 � 200 cube.

2. The model was transformed by a random rotation and translation and was

projected using the perspective projection onto the image plane.

3. Bounded noise (� = 1:0) was added to each image point.

4. In some experiments, additional random image points were added.
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System 1 System 2
m optimal average % optimal average %
10 120 95.5 .796 8 6.64 .831
20 1140 882.2 .774 18 15.02 .834
30 4060 3046.9 .750 28 23.23 .830
40 9880 7400.78 .749 38 30.79 .810
50 19600 14569.93 .743 48 40.47 .843

Table 3.1: The performance �nding correct clusters. m=the number of object points;

optimal=the size of the optimal cluster; average=the average size of clusters found;

%=the average fraction found of the optimal cluster.

The �rst experiment determined whether the correct clusters were found. Ta-

ble 3.1 shows the performance of two systems at �nding correct clusters. The �rst

system uses the old method of clustering all of the poses simultaneously. The second

system uses the new method of clustering only those poses from group matches shar-

ing a pair of point matches. The old method �nds much larger clusters, of course,

since it clusters many more correct transformations, but the size of the incorrect clus-

ters is expected to rise at the same rate. The new techniques actually �nd a larger

percentage of the correct poses in the best cluster. This is because these clusters are

smaller. When using a basis set of two matches, the noise associated with those two

image points stays constant over the entire cluster. This noise may move the cluster

from the true location, but does not increase the size of the cluster, as it does when

we do not use a basis set.

Experiments were run to determine the size of false hypotheses generated by the

new system for models of 20 random model points and various image complexities.

Table 3.2 shows the average size of the largest cluster found for each image basis, the

standard deviation among these clusters, and the size of the largest cluster over all

of the image bases. Since the system found correct clusters of average size 15.02 for

models of twenty points and false positive clusters of average size 8.68 for 160 random

image points, these levels of complexity do not appear to cause a large number of

false positives to be found.
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n average std. dev. maximum
20 3.79 0.81 6
40 5.32 1.20 10
60 6.35 1.49 12
80 7.23 1.66 12
100 7.91 1.86 13
120 8.22 2.02 14
140 8.51 2.14 14
160 8.68 2.19 15

Table 3.2: The size of false positive clusters found for objects with 20 feature points.

n=the number of image points; average=the average size of largest cluster for each

image basis; std. dev.=the standard deviation among the size of the largest cluster

for each image basis; maximum=the largest cluster found for any image basis.

An experiment determining the number of trials necessary to recognize objects

in the presence of random extraneous image points was run. Table 3.3 shows the

results of this experiment. To generate a hypothesis of the model being present in

the image, this experiment required a cluster to be at least 80% of the optimal size

(14 for models of size 20.) We cannot assume that each correct basis will result in the

algorithm �nding a clustering cluster of even 80% of the optimal size. If we estimate

that in pathological models and/or images, only 50% of the correct bases will result

in a su�ciently large cluster, then we have:

klimit =
ln �

ln
�
1 � 1

2

�
fm

n

�2�

For each value of n, Table 3.3 shows klimit for � = 0:01, the average number of

trials necessary to generate a correct hypothesis that the object was present in the

image, the maximum number of trials necessary to generate such a hypothesis, and

the number of objects (out of 100) that required more than klimit trials. For each

case, at least 98 of the 100 objects were recognized within klimit trials. Overall, 99.3

percent of the objects were recognized within klimit trials, with the expectation of

recognizing 1� � = 99:0 percent of the objects.
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n klimit average max over
20 6.65 1.51 11 2
40 34.52 5.28 20 0
60 80.65 14.50 165 2
80 145.20 25.24 270 1
100 228.19 33.39 223 0
120 329.61 51.70 412 1
140 449.47 55.86 280 0
160 587.77 109.97 2321 1
180 744.51 113.31 556 0
200 919.69 145.95 697 0

Table 3.3: The number of trials required to �nd objects with 20 points. n=the number

of image points; klimit=the number of trials the analysis says is necessary for � = 1:0;

average=the average number of trials necessary to recognize the object; max=the

maximum number of trials necessary to recognize an object; over=the number of

objects (out of 100) that required more than klimit trials to recognize.

To summarize the results on synthetic data, the new pose clustering method

has been determined to �nd a larger fraction of the optimal cluster than previous

methods and result in very few false negatives for images of moderate complexity. In

addition, the number of basis matches we must examined to recognize objects has

been con�rmed experimentally to be O(n2), justifying the claim that the total time

required by this algorithm is O(mn3).

3.7.2 Real images

This pose clustering system has also been tested on several real images from two

data sets. The �rst data set consists entirely of planar �gures, the second consists of

three-dimensional objects. Note that when applied to the �rst data set, this algorithm

makes no use of the fact that the �gures are planar. No bene�t is gained from using

this data set, except that corners are easy to detect on them. Furthermore, the only

features used in either data set to generate hypotheses are the locations of corner

points in the image.
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Hypothesis generation followed these steps:

1. Object models were created. For the �rst data set this was done by capturing

images of the object and measuring the location of corners. For the second data

set this was done by hand.

2. Images including the object models were captured.

3. Corners were detected in the images using a fast and precise interest operator

[F�orstner and G�ulch, 1987, F�orstner, 1993].

4. The model and image feature points were used by the pose clustering system

to generate hypotheses as speci�ed in this chapter.

5. For each hypothesis, the pose was determined by averaging the poses in the

cluster.

Figure 3.7 shows an example of recognizing objects from the �rst data set in an

image. The top image shows the 84 feature points found by the interest operator.

The bottom image shows the best hypotheses found for this image. Figure 3.8 shows

an example of recognizing a stapler from the second data set. The top image shows

the 70 feature points used to recognize the stapler. The bottom image shows the best

hypothesis found.

The largest source of error in many of the experiments on real images is the

use of weak-perspective as the imaging model. It appears that the assumption that

this model is adequate for most problems may prove incorrect as the accuracy of

algorithms improves.

3.8 Discussion

Some of the techniques described in this chapter can be used with recognition

strategies other the pose clustering if these strategies examine pose space to deter-

mine where the transformations aligning several groups of points lie. For example,

Breuel [1992] recursively subdivides pose space to �nd volumes that intersect the
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Figure 3.7: Recognition example for 2D objects. Top: The corners found in an image.

Bottom: The four best hypotheses found, with edges drawn in. (The nose of the plane

and the head of the person do not appear because they were not in the models.)
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Figure 3.8: Recognition example for a 3D object. Top: The features found in the

image. Bottom: The best hypothesis found.
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most consistent matches. These volumes are found by intersecting the subdivisions

of pose space with bounded constraint regions arising from hypothesized matches be-

tween sets of model and image features. The expected time was found to be linear

in the number of constraint regions. To recognize three-dimensional objects from

two-dimensional images using point features, matches of three points are necessary

to generate bounded constraint regions. Thus, there are O(m3n3) such constraint

regions for this case.

Theorem 1 implies that Breuel's algorithm will still �nd the best match if it ex-

amines only the O(mn) constraint regions associated with a given basis of two correct

matches of feature points. Since we don't know two correct matches in advance, we

must examine O(n2) of them (using randomization) yielding a total time of O(mn3),

as with our pose clustering algorithm. Of course, this introduces a probability � that

a correct basis will not be chosen, and thus recognition may fail where it would not

in the original algorithm.

Another point worthy of discussion is that some previous researchers in pose

clustering have claimed that �nding a large enough peak in the pose space is su�cient

to consider the object present in the image, while others have claimed that pose

clustering is more sensitive to noise and clutter than other algorithms. Grimson

et al. [1990a, 1992a] have shown that we should not simply assume large clusters

are instances of the object; additional veri�cation is needed to ensure against false

negatives. But, while it is clear that further veri�cation is required for hypotheses

generated by pose clustering, other methods, such as alignment, also require this

additional veri�cation step. The analysis of Section 3.5 shows that pose clustering is

not inherently more sensitive to noise and clutter than other algorithms.

Clutter appears to a�ect pose clustering similarly to other algorithms. On the

other hand, noise is handled in considerably di�erent ways among various algorithms.

While considerable research has gone into analyzing how to best handle noise in

the alignment method [Jacobs, 1991, Grimson et al., 1992b, Alter and Grimson,

1993], very little has been done in this regard for pose clustering. Work by Cass

[1990, 1992] shows how to handle noise exactly in the context of transformation

equivalence analysis for the case where the noise is bounded by a polygon, but this
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is not directly applicable to pose clustering. At present, my system handles noise

heuristically and further study in this area will be bene�cial.

We can compare the noise sensitivity of pose clustering to alignment. While the

alignment method ensures that each of the additional point matches for each basis

match can be brought into alignment simultaneously with the basis point matches up

to some error bounds, it does not guarantee that all of the additional point matches

can be brought into alignment simultaneously with each other. Ideally, a pose clus-

tering system could guarantee this, but due to the limitations imposed by discretizing

the pose space and the heuristic handling of noise it is not achieved by my system.

The analysis of Grimson et al. [1992a] indicates that pose clustering techniques will

�nd fewer false negatives than the alignment method for similar levels of noise and

clutter.

3.9 Summary

This chapter has shown that pose clustering can be performed much more e�-

ciently than previously thought. The key to this e�ciency gain has been the decompo-

sition of the problem into small subproblems, corresponding to examining hypotheses

that matches between two model points and corresponding image points are correct.

Randomization has been used to limit the number of such hypotheses that need to be

examined to gain accurate recognition. Since far fewer transformations are clustered

at a time, this method can be implemented using much less memory than previous

pose clustering systems. Analysis has shown that a fundamental bound exists on the

accuracy that can be achieved by algorithms that recognize objects by �nding sets

of features that can be brought into alignment. Within the limitations of the bound,

pose clustering performs well.
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Chapter 4

Probabilistic Indexing for Object

Recognition

This chapter discusses a method of determining which hypothetical matches be-

tween three model points and three images points are likely to be correct using only

the information given by the locations of the points. Thus, if we are interested in

hypotheses between matches of three model and image points, this technique gives us

a method of selectively examining the hypotheses that are most likely to be correct.

4.1 Introduction

Indexing systems determine which groups of model points could have projected

to speci�c groups of image points, eliminating the need to consider other groups of

model points as possible matches for that image group. Indexing is key to the fast

implementation of generate-and-test techniques, since indexing allows us to determine

a priori which of the generated hypotheses are most likely to be correct.

Indexing systems require point groups to be of some minimum cardinality to

perform their function correctly. A previous indexing system for indexing general

three-dimensional model groups from two-dimensional image groups [Clemens and

Jacobs, 1991] required groups of size at least four and each group was represented

on a two-dimensional surface in a four-dimensional table. By using a probabilistic
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method that allows false negatives (matches between sets of model features and image

features that are correct, but are not indexed), I have designed a system which can

index using groups of size three, and represents each group in a single bucket in a

two-dimensional look-up table. These false negatives are overcome by ensuring that

we examine several correct hypotheses.

The ability to index on groups of size three is very important. If there are n

image points and m image points, then there are O(nk) image groups and O(mk)

model groups of size k, so reducing the required group cardinality necessary reduces

the number of groups to consider immensely. Several algorithms (e.g. [Huttenlocher

and Ullman, 1990, Lowe, 1987, Lamdan et al., 1988]) use matches of three image

points to three model points as the initial hypotheses because this is the minimum

number necessary to determine a �nite set of transformations that bring the points

into alignment. Indexing systems that require groups of larger than three points

cannot generate ideal initial matches for these algorithms.

I use the probabilistic peaking e�ect [Ben-Arie, 1990, Binford et al., 1989, Burns et

al., 1990] to discriminate between likely matches and unlikely matches. The principle

of the probabilistic peaking e�ect is that angles and ratios of distances between points

in the model groups do not vary much as the viewpoint changes over much of the

viewing sphere. This means that the probability density functions of these angles

and ratios of distances of projected (image) points have a strong peak at the pre-

projection (model) value. Binford et al. call such features `quasi-invariants' because

of their relative lack of variation with the change of viewpoint.

Let us now call a set of image points hypothetically grouped for use in indexing

the table an image group, and the model points hypothetically matched to them a

model group. If each of the points in the image group is a result of the projection of its

corresponding model group point then we will say that the two groups are in actual

correspondence. The premise of this system is that the probabilistic peaking e�ect

is a strong enough indicator of model feature values to eliminate the vast majority

of model groups which are not in actual correspondence with a speci�c image group

while keeping a signi�cant percentage of those that are in actual correspondence.

Ben-Arie [1990] gives an equation to approximate the joint probability density
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function of features for model groups of size three, but this approximation does not

vary explicitly with the angle formed by the model group, only with the ratio of

image angle to model angle, while the true e�ect varies over both quantities. I have

recreated the experiments for determining the probabilistic peaking e�ect using the

model angle as an additional parameter to achieve more accuracy modeling the e�ects

of varying the model angle.

To incorporate the probabilistic peaking e�ect into a probabilistic indexing sys-

tem, we can use the joint probability density functions to determine what ranges of

parameters a model group may have and still be likely to have generated a speci�c

image group. This determines which groups are indexed. This system can be ex-

tended to model and image groups larger than three points. This allows us to achieve

better accuracy in discriminating between correct and incorrect matches, although it

will take longer to index these matches.

The remainder of this chapter will be structured as follows: Section 4.2 describes

the probabilistic peaking e�ect. Section 4.3 discusses how this e�ect can be used to

build an indexing system. This is followed by a description of how the system can

be extended to use image and model groups larger than three points in Section 4.4.

Section 4.5 gives indexing results on real images. Finally, I discuss interesting issues

and summarize the chapter in Sections 4.6 and 4.7.

4.2 The probabilistic peaking e�ect

While it has been proven that there is no a�ne or projective invariant for general

three-dimensional point sets [Burns et al., 1990, Clemens and Jacobs, 1991], it has

been observed that there is a strong peaking e�ect in the probability densities of

many angles and ratios of lengths in images at the values taken by the features in

the model [Ben-Arie, 1990, Binford et al., 1989, Burns et al., 1990]. For example,

the probability density of an angle formed by three ordered points in an image has

a strong peak at the actual angle formed by the points in real space, assuming that

every viewing direction is equally likely. This means that there is a large range of

viewing directions over which the angle formed by these points in the image changes
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Figure 4.1: An example of a model group projected onto the image plane using the

perspective projection.

little. Binford et al. called such values `quasi-invariants.' This information can be

used to discard matches between groups of image points and model points that have

a small likelihood of being in actual correspondence.

The values used to determined which feature groups are likely to match in this

system are determined as follows. Let p1, p2, and p3 be the points in the model

group and p
0

1, p
0

2, and p
0

3, be the corresponding image points. Also, let � be the

angle 6 p1p2p3 and � be the angle 6 p
0

1p
0

2p
0

3. De�ne the segment lengths as follows:

a1 = jp1p2j; a2 = jp2p3j; b1 = jp01p02j; b2 = jp02p03j. See Figure 4.1. The features used are:

1. The angles formed by the points in the model (�) and in the image (�).

2. The ratios of the lengths of the segments in the model and in the image (a1
a2

and

b1
b2
).

Ben-Arie [1990] gives an equation to approximate the probabilistic peaking e�ect

as it varies over �

�
and b1a2

b2a1
. It should be noted that the peaking e�ect varies not
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only with the ratios �

�
and b1a2

b2a1
, but also with � (or alternatively with �, �, and

b1a2
b2a1

). Ben-Arie's approximation of the joint probability density does not model this

e�ect. To better model the probabilistic peaking e�ect, I have created probability

histograms with the additional variable � through numerical integration. Like the

experiments performed by Ben-Arie, the viewing sphere was tessellated and the area

of each tessellation was added to the bucket corresponding to the image angle � and

the logarithm of the ratio of lengths (log b1a2
b2a1

) from the viewing direction at the center

of the tessellation. Ben-Arie uses buckets that vary uniformly with log �

�
to measure

the angle variation. I use buckets varying uniformly in � because it has explicit

bounds (0,180) and because the variation in � is modeled explicitly. Since it is unclear

how the objects in the images will be distributed with respect to distance from the

camera, the orthographic projection was used in these experiments. Note that using

the orthographic project, the probability density varies only with b1a2
b2a1

. Changing the

pre-projection ratio of lengths a1
a2

has no e�ect on this probability density.

The result of these numerical integrations is an array of two-dimensional joint

probability histograms, where Ben-Arie had a single joint probability density. Fig-

ure 4.2 shows the probability histograms in the noiseless case for selected values of

�. As expected, the closer the model angle � is to 0 or 180 degrees, the stronger the

peak.

To account for noise, I have also generated the probability histograms with

bounded noise (� = 1:0 and 3:0) added to the image parameters. The bounded noise

model speci�es that the true location of each image feature is within some distance

� of the measured location. The bounded noise model is used here for simplicity, but

any noise model can be accommodated with in this fashion. This method averages the

e�ects of noise on groups at di�erent scales. It is possible that more accuracy could

be obtained by treating each scale separately, but the gain would be small for the

considerable extra work necessary. Figure 4.3 shows the joint probability histograms

for the case with noise (� = 1:0).

This method of accounting for noise should be adequate if we are dealing with

images with approximately the same noise distribution. If we examine a number of
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Figure 4.2: The joint probability histograms describing the probabilistic peaking

e�ect for selected values of model angle � with no noise. The x-axis is the image

angle �. The y-axis is the logarithm of the ratio of lengths log b1a2
b2a1

. The z-axis is the

probability. (a) � = 30� (b) � = 90� (c) � = 140� (d) � = 160�.
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Figure 4.3: The joint probability histograms describing the probabilistic peaking e�ect

for selected values of model angle � with noise (� = 1:0). The x-axis is the image

angle �. The y-axis is the logarithm of the ratio of lengths log b1a2
b2a1

. The z-axis is the

probability. (a) � = 30� (b) � = 90� (c) � = 140� (d) � = 160�.
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images with di�erent noise distributions we may not want to store several of the joint

probability histograms, since they are large. An alternative would be to determine

the possible ranges of the true values of the image features at run time from the

observed values and the noise distribution. We would then determine which look-up

table buckets must be examined using these ranges of values. This alternative has

the disadvantage of slower run-time operation.

4.3 Probabilistic indexing

The probabilistic peaking e�ect can be used to create a probabilistic indexing

system to determine which model groups are most likely to have projected to speci�c

image groups. The �rst step is to create a look-up table containing the model group

information. The angle (�) and ratio of lengths (a1
a2
) are determined for each model

group in each model and the necessary information about these model groups is stored

in the appropriate bucket in the table. This table is quantized in the same manner as

the peaking e�ect probability histograms to facilitate indexing. Note that this table

is two-dimensional and each model group is stored in a single bucket.

To determine which model groups are likely to have projected to an image group,

we search the probability histograms described in the previous section. The parame-

ters over which this search must vary are the angle � (this determines which histogram

we examine) and the ratio b1a2
b2a1

within each histogram. We do not need to vary the

angle � within each histogram because this is �xed by the image group angle. Since

the probability of a particular set of image features is highest when the model values

are the same as the image features, we search outward from the bucket corresponding

to the image feature values to determine which buckets in the look-up table we must

examine. This search determines an area of buckets in the index table that I call a

cloud. Each bucket in the cloud is examined for model groups that may match this

image group.

Let r(�) be the row of the index table corresponding to the image angle and c( b1
b2
)

be the column corresponding to the image ratio of lengths. Figure 4.4 shows an ex-

ample cloud in the look-up table. Note that it is centered at the bucket corresponding
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0

...

r(�)
r(�) + 1
r(�) + 2

r(�)� 1
r(�)� 2

...

na
c( b1
b2
)0 nr� � � � � �

Figure 4.4: An example cloud of buckets in the index table. The hash marks along

the x-axis represent the discretization of the possible values of b1
b2
. The hash marks

along the y-axis represent the discretization of the possible values of �. The marked

bins in the middle are the bins that were found to have large enough probability of

holding a correct match (i.e. the cloud.)

to the image feature values.

The extent of a cloud is determined as follows: for each angle �, we examine

the row corresponding to the image group angle � and determine what range (if

any) of ratios b1a2
b2a1

has a probability above a predetermined constant. (This constant

is determined a priori to eliminate most groups not in actual correspondence, while

keeping a large number of those that are. See below.) This provides the information to

determine which buckets in the look-up table contain the model groups most likely to

match this image group. For each �, we determine the range of ratios a1
a2

that should

be examined in the look-up table from the range of b1a2
b2a1

determined as described

above and b1
b2
from the image group. Each model group contained in these buckets is

considered as a possible match for the current image group. We do not need to worry

about noise in the index features when indexing because we have already accounted

for it in the probabilistic peaking e�ect probability histograms.
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Figure 4.5: The ow of information in the indexing process.

Figure 4.5 illustrates the ow of information in the probabilistic indexing process.

The index table is created by storing the model groups in the appropriate buckets.

Image groups and probability histograms are used to determine which buckets in the

index table are most likely to contain the matching model group. These buckets are

then examined in the index table to �nd possible matches for the image group.

Table 4.1 shows the percentage of total matches and matches in actual corre-

spondence indexed for various probability thresholds as determined by experiments

on objects of random three-dimensional points. These experiments transformed the

models by a random three-dimensional rotation and projected them using the perspec-

tive projection. Bounded noise (� = 1:0) was added to each of the feature coordinates.

The probability of indexing a correct match is expected to be better for observed
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Kt p � �

p

1
p

.001 .0663 .468 7.06 15.08

.002 .0282 .335 11.88 35.46

.003 .0164 .265 16.16 60.98

.004 .0114 .226 19.82 87.72

.005 .0085 .193 22.71 117.65

.006 .0066 .173 26.21 151.52

.007 .0054 .159 29.44 185.19

.008 .0044 .140 31.82 227.27

.009 .0036 .128 35.56 277.78

.010 .0031 .115 37.10 322.58

Table 4.1: The percent of correct and incorrect matches eliminated for various peaking

parameter cuto�s with noise. Kt is the the probability threshold used to determine if

the matches is eliminated, p is the percentage of incorrect matches eliminated, � is the

percentage of of correct matches eliminated. �

p
is the relative frequency of indexing

correct and incorrect matches and 1
p
is the speedup attained if we simply used these

techniques to determine matches that are likely to be in actual correspondence in

conjunction with an algorithm that hypothesizes matches, such as alignment.
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image points than for the random points used in these experiments. This is because

model groups that appear in unlikely positions (i.e. such that they are highly fore-

shortened) are more likely to have one or more points occluded by the object itself,

while my experiments assume no self-occlusion. It is therefore expected that groups

of observed image points from real objects will produce a higher rate of indexing the

correct group than random points.

If we know the prior probability distribution of image group features we can use

the probabilities in Bayes' rule. Let bi denote the bin that corresponds to the image

group features and let h be the hypothesis that the model group and the image group

are in actual correspondence.

P (h j b = bi) =
P (h)P (b = bi j h)

P (b = bi)

P (b = bi j h) is given by the peaking e�ect joint probability histograms and

P (b = bi) is given by the prior probability histogram. I have assumed that the prior

probability of each possible match (and thus each possible hypothesis h) is the same,

so we can drop the P (h) term without changing the ranking of the hypotheses. Of

course, if we had knowledge that models were not equally likely to appear in the

image we could use it here.

The joint prior probability histogram of the image group parameters � and log b1
b2

for feature points that are the result of model feature points in the database (and

not random image points) can be determined by averaging the probabilistic peaking

histograms for the set of model groups. For each random model group, we add to

the average the joint probability histogram for the correct � shifted on the ratio axis

by log a2
a1
. (A shift is required since the peaking histograms are for log b1a2

b2a1
and we

want the probability of log b1
b2
.) Again, these can be weighted if we know the prior

probability of each model group appearing in the image.

This does not account for random extraneous points in the image. We can es-

timate the distribution of these points by examining the distribution of feature pa-

rameters for a large set of randomly selected image points. The prior probability

histogram for image parameters for both model points and random points is shown
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Figure 4.6: The prior probability histograms describing the likelihood of groups of

image points falling into each bin. The x-axis is the image angle �. The y-axis is

the logarithm of the ratio of distances log b1a2
b2a1

. The z-axis is the probability. (a)

projected random model points (b) random image points.
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Kt  g 

g

.001 31.35 6.08 5.15

.002 40.89 10.41 3.93

.003 48.88 13.86 3.53

.004 54.62 16.80 3.25

.005 60.40 19.32 3.13

.006 65.16 21.84 2.98

.007 68.36 24.08 2.83

.008 72.64 25.81 2.81

.009 75.67 27.72 2.73

.010 81.37 29.86 2.72

Table 4.2: The average posterior probabilities of matching for correct and incorrect

groups that are indexed for various probability thresholds. Kt is the probability

thresholds,  is the average posterior probability of correctly indexed matches, g is

the average posterior probability of incorrectly indexed matches, and 

g
describes their

relative size.

in Figure 4.6. Since they are very close, we can use the histogram for the projected

model points as the prior probability histogram of the image group parameters for

all image points.

I have found that even among groups with high prior probability of matching

(those that surpass the threshold, and thus are indexed), matches in actual corre-

spondence have, on average, considerably higher posterior probability. Let's call the

expected posterior probability of a correct match that is indexed  and the expected

posterior probability of an incorrect indexed match g. Table 4.2 shows the values these

take (neglecting the constant P (H) term both have) for several indexing thresholds

along with the ratio 

g
. Since the matches in actual correspondence have a consid-

erably higher expected posterior probability, we can use the posterior probability to

order the matches based on likelihood, if desired.



70

4.4 Using larger groups

Some algorithms require hypothesized point group matches of more than three

points. Probabilistic indexing can be extended to accommodate these algorithms.

This has the additional bene�t of increasing our ability to discriminate between cor-

rect and incorrect matches. To incorporate larger groups into probabilistic indexing,

we must be able to index model groups of size k using keys determined from image

groups of size k. This is accomplished by examining each subgroup of three points

in the k point image groups in the manner of the previous section. If some predeter-

mined constant number x0 of the subgroups from a model group have high enough

probability of matching, then the model group is considered a possible match. To

determine if this is the case, we must index the look-up table with each combination

of three points in the k point image group and determine which k point model groups

are indexed at least x0 times. The model groups are examined to ensure that each

image point corresponds a model point consistently in the matches it was found in.

That is, we don't want a particular model point to correspond to one image point

when indexed by one subgroup and then correspond to a di�erent image point when

indexed by another subgroup and yet still be considered as a possible match.

Call p0 and �0 the values of p and � we had for indexing groups of size three.

Table 4.3 shows the new values of p and � for larger groups determined experimentally

using random model groups and transformations for various values of p0, �0, k, and x0.

Since, for larger point groups � increases or stays about the same and p substantially

decreases, increasing the size of groups used increases the ability of probabilistic

indexing to discriminate between correct matches and incorrect matches. The price

we pay for this accuracy is the speed with which we index groups. While we will

index a smaller percentage of the larger groups, grouping processes will typically �nd

more potential groups when the size of the group is increased, and for each group

we must now index (k3) =
k!

3!(k�3)! subgroups of three points. This can be alleviated

somewhat by bookkeeping techniques since there are at most (n3) total subgroups in

the image, where n is the number of feature points in the image.

Clemens and Jacobs [1991] are able to increase the speedup of their system by
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�0 p0 � p �

p

k = 4 .292 .0263 .289 .00788 36.68
x0 = 2 .196 .0103 .176 .00172 102.33

.155 .0059 .127 .00075 169.33
k = 5 .313 .0286 .530 .00792 66.92
x0 = 3 .204 .0113 .315 .00124 254.03

.152 .0065 .206 .00039 528.21
k = 6 .311 .0276 .736 .00823 89.43
x0 = 4 .209 .0109 .515 .00114 451.75

.153 .0062 .348 .00040 870.00

Table 4.3: The percentages of correct and incorrect matches indexed for groups with

more than three points: k is the size of the group, x0 is the required number of

indexed subgroups to index the group, �0 is the fraction of correct point subgroups

indexed, p0 is the fraction of incorrect point subgroups indexed, � is the fraction of

correct groups indexed and p is the fraction of incorrect groups indexed.

increasing the size of the groups and the dimensionality of the index table because

they are able to canonically order the points in each group. This means they don't

need to test each of the k! orderings of each group. They can canonically order

their points since each representation of a model group in the index table is from a

single viewpoint. This makes the implicit assumption that localization error will not

disturb the image feature points enough to change the canonical ordering. In the

general case, each of the k! orderings must be stored in the index table. This method

cannot be used with probabilistic indexing because we can't order the image points

in a canonical manner (viewing the points from a di�erent direction would generally

lead to a di�erent ordering.) This means we would have to examine each of the k!

orderings. In addition, we would need to store each of the

0
@ (k3)

x0

1
A combinations of

subgroups that would indicate that a model group should be indexed separately in

the index table. This extra cost would negate any extra speedup that increasing the

dimensionality of our index table could produce.

I argue that using larger groups will not be as bene�cial as Clemens and Jacobs
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Figure 4.7: Testing probabilistic indexing on real images. (a) An sample image used

(b) The stapler model with visible edges drawn in.

claim. The larger the group a grouping process must �nd, the less likely all of the

points in a group will arise from the same object (a point Clemens and Jacobs do not

consider.) Any group of points that do not all arise from the same object is useless for

indexing. This means that even though the speedup may be increased considerably

by examining larger groups, a smaller percentage of the groups that are examined

will be useful.

4.5 Results on real images

Probabilistic indexing has been tested on several real images. For these tests,

model points on each of the objects were measured by hand. Several images of these

objects were captured. Corners were determined with the help of an edge detector.

Figure 4.7.a shows an image used in the tests containing a disk, a stapler, and a hand

rendering of a symbol from mythology (which I'll call cross.) Figure 4.7.b displays an

sample object model (a stapler.) The location of many of the feature points on the

model are shown with the visible edges drawn in.

Table 4.4 gives the results of using the feature points from real images to index

a database of 6 real objects. The average percentage of correct groups (�) and per-

centage of incorrect groups (p) that were indexed is shown from experiments using 5
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images of the stapler, 3 images of the disk, and 3 images of the cross. Also given are

the results showing how often random points indexed these model groups.

In each of the cases, the real feature point groups indexed the correct model group

with frequency higher than was obtained for models of random points (see Table 1.)

The frequency of indexing incorrect model groups was also slightly greater in many

cases, except for the stapler where it is substantially greater. The random image

points indexed the real model groups with comparable, although higher, frequency

than random image points indexed random model groups.

The rendering of the mythological symbol is a two-dimensional model. Fig-

ure 4.7.a shows the image of this object that I tested that had the most foreshortening.

While the percentage of correct matches indexed was below the average for this in-

stance of this object, over 10% of the correct matches were indexed, even when the

probability threshold was high (Kt =.010).

4.6 Discussion

Probabilistic indexing should not be viewed as a method of using randomization

in the indexing problem, since the orientations from which each group is correctly

indexed are correlated. We rely on the fact that there are so many (approximately

m3

6 ) model groups that all viewing directions will have some model groups that are

viewed in a likely orientation. If there is not a wide variety of orientation of the groups

themselves, this may not be the case. In the extreme case, at objects will have only a

single orientation that all of the model groups share. Model groups from such objects

will not be indexed correctly for many viewing directions, but we can easily determine

which objects are at or nearly at prior to recognition time. For such objects we can

either reduce the probability threshold or use special case techniques for at [Lamdan

et al., 1988] or nearly at [Arbter et al., 1990] objects.

Contrasting indexing to grouping techniques [Ahuja and Tuceryan, 1989, Hut-

tenlocher and Wayner, 1992, Lowe, 1985, Mohan and Nevatia, 1992] may be useful.

Grouping techniques determine sets of image features that are likely to come from

the same object. These techniques can also be applied to models to determine which



74

Object Kt � p

Stapler .337 .0473
Disk .002 .416 .0277
Cross .597 .0261
Random - .0291
Stapler .257 .0270
Disk .004 .323 .0128
Cross .459 .0124
Random - .0144
Stapler .205 .0181
Disk .006 .271 .0074
Cross .382 .0078
Random - .0090
Stapler .182 .0138
Disk .008 .230 .0053
Cross .326 .0057
Random - .0066
Stapler .152 .0103
Disk .010 .204 .0037
Cross .282 .0043
Random - .0053

Table 4.4: The results of experiments on indexing using real objects and images: Kt

is the probability threshold, � is the percentage of correct matches indexed, and p is

the percentage of incorrect matches indexed.

sets of points are likely to be found by grouping in the image. Grouping techniques

can thus drastically lower the number of groups in the image and model that must

be examined. Rather than examining groups of model points and groups of image

points separately as grouping techniques do, indexing systems examine these groups

together to determine which matches between them are most likely to be correct.

Grouping can be used to predetermine which sets of model and image points are ex-

amined by the indexing systems to further reduce the number of matches that must

be examined.

Probabilistic indexing can be easily modi�ed to incorporate indexing using infor-

mation other than geometrical. For example, if the feature points are known to have
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some property such as color or type, we can store this information with the point and

use it to discard matches that are not feasible due to these constraints. Indeed, a

model of image illumination should provide adequate information to give probabilistic

information regarding the likelihood of matching based on colors assigned to features.

The inclusion of this and other probabilistic information and the extension to curved

surfaces provides opportunity for further study.

4.7 Summary

In this chapter, I have described an indexing system for use in solving the problem

of recognizing three-dimensional objects in single two-dimensional images. The prob-

abilistic peaking e�ect has been shown to be e�ective for use in indexing model groups

undergoing general rigid transformations in three-dimensions from image group pa-

rameters in images generated using the perspective projection. Its use has allowed

us to reduce the cardinality of the sets of image and model points necessary in an

indexing system, while retaining the indexing speedup. The disadvantage to this

system is that not all correct matches between image groups and model groups are

indexed. Since a far higher percentage of correct matches than incorrect matches

are indexed, probabilistic indexing is usually quite useful. Probabilistic indexing can

be used as a pre-processing step for any algorithm that generates matches between

groups of image and model points to perform veri�cation on. By selecting only those

matches that are likely to produce good results, probabilistic indexing can speed up

and improve the performance of such algorithms considerably.
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Chapter 5

Fast Alignment

This chapter further explores the concept of fast object recognition through the

selective examination of hypotheses. The probabilistic indexing techniques described

in the previous chapter and a set of error criteria are used to select likely hypotheses

for the alignment method. These techniques result in a considerable speedup without

greatly increasing the chance of missing an object.

5.1 Introduction

The alignment method [Huttenlocher and Ullman, 1990] is a model-based object

recognition technique for recognizing three-dimensional objects from a single view

in two-dimensional images. For each model in the database, triples of image points

are matched with triples of model points. For each match, the weak-perspective

transformation that brings them into alignment is determined. The remaining model

points (and/or other model features) are then transformed by this transformation

and compared against the remaining image points (and/or other image features) to

verify the correctness of the transformation.

If every match of three model points to three image points is considered, the

alignment method requires O(m4n3 log n) time due to a O(m log n) veri�cation step,

where m is the number of model features and n is the number of image features.

Huttenlocher and Ullman propose techniques that in some cases can reduce this to
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O(m3n2 log n). Unless these time bounds have a very small leading constant, the

running time will be considerable, since a model with 20 features and an image with

50 features is a relatively simple problem.

If a model object is present in the image, it is likely that a substantial number

triples of model points can be detected. Ideally, only one of these triples needs to be

found to recognize the object. If all image triples are examined, then much extra work

is being done that is not necessary. Even if we can stop once a close enough match

has been found, ordering the matches based on some likelihood of a good match can

reduce the number of matches examined considerably.

This chapter examines techniques to eliminate hypotheses from consideration in

the alignment method. The techniques that are used to eliminate matches are based

on the following two principles:

1. The probability density functions of angles and distance ratios in images peak

strongly at the pre-projection (model) value [Ben-Arie, 1990, Binford et al.,

1989, Burns et al., 1990]. The previous chapter showed how a probabilistic

indexing system could be built using this e�ect.

2. Matches that produce a transformation with a large uncertainty are unlikely to

result in a good correspondence between the model and the image and are less

likely to result in the veri�cation routine determining that the object is present

in the image. Examples of the use of similar principles can be found in Mundy

et al. [1988] and Costa et al. [1989].

In the next section, I'll discuss the alignment method in more detail and sum-

marize the algorithm. Section 5.3 will discuss how probabilistic indexing is used to

eliminate many matches between groups of image points and model points. Sec-

tions 5.4-5.6 describe how we can determine which matches result in transformations

with large uncertainties. Section 5.7 will present experimental results including results

on the e�cacy of the a�ne approximation to the perspective projection. Section 5.8

discusses the techniques and results and gives an analysis of the speedup produced

under various conditions. Finally, Section 5.9 summarizes the results.
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5.2 The alignment method

The alignment method [Huttenlocher and Ullman, 1987, 1988, 1990] is a model-

based technique for recognizing rigid three-dimensional objects from a monocular

two-dimensional image. The premise of the alignment method is that a unique (up to

a reection) a�ne transformation between the model and image of the model can be

found by matching three model points with three image points. This transformation

is given by pi = �(sR(pm � pm0)) + pi0. Here, pm is a model point and pi is its

corresponding image point, pm0 and pi0 are relative o�sets, s is a scale factor, R is a

three-dimensional rotation and �(�) is the orthographic projection.
Once again, let's call the set of model points being matched (three points per

group for alignment) the model group and the image points hypothetically matched

to them the image group. If each of the points in the image group is a result of the

projection of its corresponding model group point then the two groups are in actual

correspondence. For the rest of this chapter, I will consider a single object model. In

practice, each model must be examined separately in the alignment method.

If the model is present in the image and we consider all possible matches be-

tween three model points and three image points it is very likely that many matches

will be in actual correspondence. The transformations determined from the matches

in actual correspondence should then be close to the correct transformation. Each

transformation computed must be veri�ed against the image to determine if it is valid.

It is not advisable to examine each combination of three image points and three

model points. If there are m model points and n image points, the entire algo-

rithm would require O(m4n3 log n) operations, since the veri�cation routine requires

O(m log n) operations. Huttenlocher and Ullman have proposed various techniques

to lower the complexity of the algorithm. In Huttenlocher and Ullman [1990], virtual

points found by using the orientations at two model and image points are used to

reduce the complexity to O(m3n2 log n) operations.

The algorithm can be summarized as follows:

1. For each group of model points, rotate and translate the group such that the

�rst point lies at the origin and the other points lie in the x � y plane. This
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step is performed o�-line for each model group and the new coordinates for the

second and third points, b
0

m and c
0

m, are stored, as is am, which is the relative

o�set pm0 in the transformation described above.

2. For each possible match between and image group (ai; bi; ci) and a model group

(am; b
0

m; c
0

m), solve for the 2 � 2 linear transformation matrix L, that brings

the points into alignment in two dimensions, given by the following system of

equations:

Lb
0

m = b
0

i Lc
0

m = c
0

i

where

b
0

i = bi � ai c
0

i = ci � ai

3. Determine the 3x3 linear transformation matrix sR+ (due to the reective am-

biguity sR� also exists and is described below) that maps the model onto the

image, given by:

sR+ =

2
66664
l11 l12 (c2l21 � c1l22)=s

l21 l22 (c1l12 � c2l11)=s

c1 c2 (l11l22 � l21l12)=s

3
77775

where

w = l212 + l222 � l211 � l221 q = l11l12 + l21l22

c1 =
q

1
2(w +

p
w2 + 4q2) c2 = �q=c1

s =
q
l211 + l221 + c21
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4. Perform a veri�cation procedure to determine if the transformation is correct.

Veri�cation has two steps. The �rst examines whether the remaining model

points are transformed close to corresponding image points. The transformed

model points can be found by pi = �(sR+(pm�am))+ai where pm is the model

point, pi is its transformed location in the image, and sR+, am, and ai are as

given above. Since there is a reective ambiguity, two transformations must

be examined. The second, sR�, is the same as sR+, except that the terms at

positions (1; 3), (2; 3), (3; 1), and (3; 2) in the matrix are negated. If enough

model points are transformed close to image points, then a second veri�cation

step is performed that examines whether edges are transformed close to image

edges.

Note that the a�ne transformation is used in this algorithm as an approximation

to the full perspective projection, and is valid only when the distance to the object

is large compared to the size of the object in the z direction (after transformation)

[Thompson and Mundy, 1987]. Experiments determining when the approximation is

valid in practice are presented in Section 5.7.

5.3 Probabilistic indexing

We saw in the previous chapter that, while it has been proven that there is no

invariant for three-dimensional point sets seen from a single view [Burns et al., 1990,

Clemens and Jacobs, 1991], it has been observed that there is a strong peaking e�ect

for many angles and ratios of lengths in images at the values taken by the features in

the model [Ben-Arie, 1990, Binford et al., 1989, Burns et al., 1990]. This information

was used to create a system capable of indexing likely matches using sets of three

model and image points.

Ben-Arie presents two recognition schemes using the probabilistic peaking e�ect.

The �rst uses an A� search technique [Hart et al., 1968] as in Ben-Arie and Meiri

[1987] but uses as a cost function the result of a stochastic labeling algorithm based

on relaxation [Rosenfeld et al., 1976] that uses the probabilistic peaking e�ect. For
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Figure 5.1: A model group projected onto the image plane.

objects with 12 features the stochastic labeling algorithm labeled 91% of the features

correctly, with worse results for larger objects. No extraneous features were considered

in these experiments. The second algorithm matches angular primitives based on

which has the largest bayesian probability of matching. The angular primitives of

the algorithm consist of an angle and the ratio of lengths of two arms. Three points

are necessary to determine this information. So, unless other information is used,

O(m3) model features and O(n3) image features exist. Note that any additional

information used would be of equal value in the alignment method. In addition, each

feature is labeled correctly only 53% of the time. The experiments on synthetic data

were performed by projecting the model points using the orthographic projection and

without noise or extraneous points.

I use probabilistic indexing to eliminate hypotheses in the alignment method

based on their likelihood of being correct. I'll briey review how the probabilistic

index system works. Let's again refer to a generic model group projected onto the

image plane (Figure 5.1.) The probabilistic indexing system creates an index table

by discretizing the �-a1
a2

space and placing each model group into the cell of the table

corresponding to its parameters. Let bi denote the bin that corresponds to the image
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group features and let h be the hypothesis that the model group and the image group

are in actual correspondence. We can determine the probability of h being correct by

applying Bayes' rule:

P (h j b = bi) =
P (h)P (b = bi j h)

P (b = bi)

P (b = bi j h) is given by the peaking e�ect joint probability histograms and

P (b = bi) is given by the prior probability histogram. P (h) is assumed to be the

same for each hypothesis, so it is ignored.

When presented with an image group, the system determines � and b1
b2
and exam-

ines the probability histograms to determine the index table cells that contain model

groups that have a large enough probability of generating the image features. The

model groups at those locations are then considered as possible matches for the image

group. So, for a speci�c image group k, a model group is eliminated if:

P (b = b
(k)
i j h)

P (b = b
(k)
i )

< p

where b
(k)
i is the bin for the kth image group and p is an empirically determined

constant.

5.4 Eliminating matches using the condition num-

ber

Section 5.2 gave the solution for the two-dimensional a�ne transformation as

follows:

L =

2
4 l11 l12

l21 l22

3
5

Lb
0

m = b
0

i Lc
0

m = c
0

i

These equations can be transformed into:
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ML1 = I1 ML2 = I2

where

M =

2
4 b

0

mx
b
0

my

c
0

mx
c
0

my

3
5

L1 =

"
l11
l12

#
L2 =

"
l21
l22

#

I1 =

"
b
0

ix

c
0

ix

#
I2 =

"
b
0

iy

c
0

iy

#

Our localization of the image points will have some error, of course. Therefore,

our solutions for L1 and L2 will also have some error. Let I1, I2, L1, and L2 denote

the correct values of I1, I2, L1, and L2, and let �I1, �I2, �L1, and �L2 denote their

errors such that:

I1 = I1 + �I1 I2 = I2 + �I2

L1 = L1 + �L1 L2 = L2 + �L2

From basic matrix computations [Watkins, 1991] we can bound the error on �L1

and �L2 as follows:

jj�L1jj
jjL1jj

� �(M) jj�I1jj
jjI1jj

jj�L2jj
jjL2jj

� �(M) jj�I2jj
jjI2jj

where jj�jj is any vector norm (and its inducedmatrix norm) and �(M) = jjM jj�jjM�1jj
is the condition number of M .

So, if M has a large condition number, we may have large errors �L1 and �L2.

The bounds given are tight. For some vectors �I1 and �I2 we have equality. For

others, these bounds are far less accurate. Still, it is more likely that a model group

will result in accurate values of L1 and L2 if the group has a small condition number,

as the experiments I describe in Section 5.7 demonstrate.
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5.5 Eliminating matches using the norm of image

points

From the error bounds in the previous section, we see that if jj�I1jj
jjI1jj

or jj�I2jj
jjI2jj

is large,

we may have a large relative error in L1 or L2. Speci�cally, small values of jjI1jj and
jjI2jj may produce large errors. Actually, neither of these alone is enough to produce

large e�ect, as I will show here. The equations to solve for L1 and L2 from Section 5.4

may be transformed into:

2
4 M 0

0 M

3
5
2
4 L1

L2

3
5 =

2
4 I1

I2

3
5

Small values of jjI1jj or jjI2jj can result in large relative error of L1 or L2, but

this is partially a consequence of jjL1jj or jjL2jj being small. If one of these is small

compared to the other (e.g. jjL1jj << jjL2jj) a large relative error in the small one

will not be signi�cant in the computation of sR+(pm � pm0). So, we see it is only

when both jjI1jj and jjI2jj are both small that we may experience problems. Using

this analysis we can eliminate an image group k if:

������
������
2
4 I1k

I2k

3
5
������
������
2

< Kmax
i

������
������
2
4 I1i

I2i

3
5
������
������
2

where I1i refers to the image values for the ith image group and K � 1:0 is an

empirically determined constant.

Note that eliminating matches using this technique may be counterproductive if

individual objects occupy a small local portion of the image, since the points in the

correct hypotheses will be close together with respect overall size of the image and

thus will have small norms as calculated above.
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5.6 Eliminating matches using the model group

area

Even when the model group produces a condition number of one (the best case),

it is possible that the group leads to a large error in the computation of the trans-

formation matrix, as can be seen from the following analysis, similar to that done

for the a�ne coordinates of Lamdan et al. [1988] in Costa et al. [1989]. Assuming

non-singularity we have:

2
4 l11

l12

3
5 =

2
4 b

0

mx
b
0

my

c
0

mx
c
0

my

3
5
�1 2
4 b

0

ix

c
0

ix

3
5

Computing this inverse we get:

l11 =
c
0

my
b
0

ix
� b

0

my
c
0

ix

b0mx
c0my

� b0my
c0mx

Substituting the original model and image values, this becomes:

l11 =
(cmy � amy)(bix � aix)� (bmy � amy)(cix � aix)

(bmx � amx)(cmy � amy)� (bmy � amy)(cmx � amx)

Similarly, l12, l21, and l22 are:

l12 =
(cmx � amx)(bix � aix)� (bmx � amx)(cix � aix)

(bmx � amx)(cmy � amy)� (bmy � amy)(cmx � amx)

l21 =
(cmy � amy)(biy � aiy)� (bmy � amy)(ciy � aiy)

(bmx � amx)(cmy � amy)� (bmy � amy)(cmx � amx)

l22 =
(cmx � amx)(biy � aiy)� (bmx � amx)(ciy � aiy)

(bmx � amx)(cmy � amy)� (bmy � amy)(cmx � amx)

The area of the triangle formed by am, bm, and cm is given [Thomas and Finney,

1984] by

area(4ambmcm) = �1

2

�������
amx amy 1
bmx bmy 1
cmx cmy 1

�������
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which is half the absolute value of the denominator of each of the above equations.

Interestingly, the size of the numerator is twice the area of a triangle in a plane where

one axis is in model coordinates and one axis is in image coordinates. For l11, the

triangle points for the numerator are:

at =

"
aix
amy

#
bt =

"
bix
bmy

#
ct =

"
cix
cmy

#

l11 = � area(4atbtct)

area(4ambmcm)

If the denominator area is small, this will have the e�ect of magnifying the errors

present in the numerator and the denominator. So, we can eliminate a model group

k if it satis�es

area(4amk
bmk

cmk
) < K max

i
area(4ami

bmi
cmi

)

where ami
refers to the �rst point of the ith model group and K � 1:0 is an empirically

determined constant.

5.7 Experimental results

These techniques have been tested on both randomly generated and real data.

This section presents those experiments and results.

5.7.1 Synthetic data

To determine the e�cacy of the a�ne transformation as an approximation to

the perspective transformation and to determine the best parameters for eliminating

unlikely matches, tests were carried out on random point sets. All of the experiments

were conducted on sets of ten points with x, y, and z coordinates randomly distributed

between -100 and 100. For each point set a random transformation was generated as

follows:
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1. Three random angles, uniformly distributed between 0 and 360 were generated

and the points were rotated about the x, y and z axes by these angles.

2. Three random displacements, uniformly distributed between -100 and 100 were

generated, and the points were displaced by these values.

3. The points were projected by the full perspective projection onto the image

plane using subpixel accuracy. Various object distances were used to test the

e�cacy of the a�ne approximation to the perspective projection. In these

experiments the focal length was varied with the distance to keep the size of

the images approximately the same.

4. Gaussian noise was added to the each image point's x and y coordinates. Various

standard deviations were used in the tests of the a�ne approximation to the

perspective project. A standard deviation of � = 2:0 was used for the remaining

tests.

Each experiment counted the number of transformations for which the closest

transformed model point to each image point is the correct match. Thus, a transfor-

mation was only considered successful if each corresponding model and image point

were brought close together. For these experiments each model point was projected

onto the image and no extraneous image points were included. Since we examine

every possible group of three image points, and each has a model group in actual

correspondence with it, there are

10X
i=1

10X
j=i+1

10X
k=j+1

1 = 120

actual correspondences examined for each random object. Each experiment was per-

formed on 100 random objects.

Figure 5.2 shows the fraction of actual correspondences which produced successful

transformations using objects at varying ratios of object distance to object depth.

The three plots are for images with no noise, images with gaussian noise of standard

deviation 2.0 added to the image feature coordinates, and images with gaussian noise
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of standard deviation 5.0 added to the image feature coordinates. The x-axis is

the ratio of object distance to the thickness of the object. We see that for each of

the three plots serious degradation of the fraction correct begins at approximately a

ratio of 8, which I conclude is the maximum ratio for which the a�ne approximation

to the perspective projection is accurate for use with the alignment method. Since

there are usually many correct image groups, the alignment method can �nd correct

transformations even if this ratio is less than 8.

For the remainder of the experiments, I use gaussian noise with standard deviation

2.0, and objects at a distance such that the ratio of object distance to object depth

is 10. Figure 5.3 shows the fraction of total matches examined (not eliminated) and

the fraction of correct matches examined for various values of each of the elimination

parameters. The most powerful parameter is the peaking probability, as seen by

the large distance between the plots. The condition number and model group area

parameters appear to be useful for elimination as well, while the image group norm

appears to be of little use.

Figure 5.4 displays the ratio of incorrect matches examined to correct matches

examined for various values of each of the elimination parameters. The total remain-

ing ratio and the marginal change from the previous point are shown. Each of the

parameters appears to have a graceful degradation, except for the norm of image

points (Figure 5.4.d), which is also the only parameter where the marginal ratio falls

below the remaining ratio (indicating that the total remaining ratio rose for that data

point.)

Using all of the above parameters at reasonable values (peaking probability: 0.08,

condition number: 6.0, fraction of max area: 0.3, fraction of max norm: 0.3), 3.1% of

all possible matches were examined while 17.9% of correct matches were examined.

So, the algorithm examined less than 1/30 of the total matches, yet still examined

more than enough correct matches to produce a correct transformation.
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Figure 5.2: Percentage of correct hypotheses resulting in successful transformations

at various object distances. 2: no noise, 4: noise (� = 2:0), +: noise (� = 5:0)
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Figure 5.3: Percentage of total and correct matches examined for various values of

each elimination parameter. 2: total, 4: correct.
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Figure 5.4: Marginal and remaining ratios of incorrect matches to correct matches

for various values of each elimination parameter. 2: marginal, 4: remaining.
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5.7.2 Real images

The techniques were tested on real images (see Figure 5.5 for an example.) The

procedure to recognize the model was as follows:

1. Selected model points were measured by hand.

2. The edges were found using a Canny [1986] edge detector.

3. Corners were selected by hand.

4. For each group not eliminated, the alignment transformation was found.

5. A quick veri�cation routine determined if the rest of model points were trans-

formed close to image points.

6. If the quick veri�cation routine scored high enough, a more detailed veri�cation

routine was executed. This routine determined if edges present in the model

were also present in the image.

7. For the best scoring transformation, additional matches were determined and

the least-squared error a�ne transformation was determined using a method

similar to that of Stein and Medioni [1992].

Figure 5.5 (top left) shows an image of a stapler that was used to test the elim-

ination techniques. Figure 5.5 (top right) shows the Canny edges of this image, and

5.5 (bottom left) shows the model points as transformed by the highest scoring trans-

formation with some edges drawn in. Figure 5.5 (bottom right) is the transformed

model overlaid on the Canny edges. For this image, the algorithm using elimination

examined 1.8% of the total matches and 37.0% of the correct matches (compared with

3.1% and 17.9% for the random points.) The explanation for the better performance

for the real image points sets lies in the fact that the model groups that would appear

in unlikely positions (i.e. such that they are highly foreshortened) very often have

one or more points occluded by the object itself, while our experiments on random

point sets assume no self-occlusion.
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Figure 5.5: Testing fast alignment techniques. (Top left) Input image, (Top right)

Canny edges, (Bottom left) Recognized model with edges drawn in, (Bottom right)

Recognized model overlaid on Canny edges
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5.8 Discussion

I examine the speedup and probability of a false negative produced by these

techniques under three recognition models:

1. Each possible match between an image group and a model group that is not

eliminated receives a score from some veri�cation process. The best scoring

match is accepted as correct if the score meets some criterion.

2. Matches are examined in some order. Matches that are not eliminated receive a

score from the veri�cation process. As soon as the score for one of the matches

meets some criterion, it is accepted as correct and the remainder of the matches

are not examined.

3. Matches are examined in some order. Only enough matches (that are not elim-

inated) are examined until the probability of having missed an object is arbi-

trarily low using the randomization technique described in Chapter 3.

The speedup will be de�ned as the expected number matches that must be ver-

i�ed by algorithm without using the elimination techniques divided by the expected

number when using the techniques. I do not consider the overhead necessary to de-

termine if a match is eliminated in the speedup since this process is O(1) per match

and the veri�cation step is O(m log n). Let h be the total number of matches ex-

amined, p be the fraction of total matches not eliminated, � be the total number of

matches examined that produce a correct transformation, and � be the fraction of

these matches not eliminated.

In the �rst model, we examine hp matches when using these techniques and h

matches when not using these techniques, so the speedup is simply 1
p
.

In the second model, if we assume that there is an equal chance of each possible

match being chosen, we have a hypergeometric distribution. For large values of h,

this can be approximated by the binomial distribution. The expected number of

matches that must be veri�ed when not using the elimination techniques is then

approximately h

�
. When using the elimination techniques the expected number of
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matches that must be veri�ed is approximately ph

��
. The expected speedup is thus �

p
.

This analysis assumes that � > 0 (that a correct match exists to be found.) If � = 0

either because the model is not present in the image or because none of the matches

in actual correspondence produces a good enough transformation, then the speedup

is the same as for model 1 (1
p
).

When randomization is used (the third model) the number of hypotheses that

must be examined to achieve probability 1�� of �nding a correct match is n3

(fm)3
log 1

�

where f is the fraction of model points appearing in the image. When probabilistic

indexing is used the probability that each examined match is correct increases by a

factor of �
p
. When this is used to limit the bound on the number of matches we must

examined we obtain a speedup of �

p
.

Table 5.1 shows the expected speedup for some values of the elimination parame-

ters. Impressive speedups are attained for recognition model 1 and for model 2 when

� = 0. The speedups for recognition model 2 when � > 0 and model 3 are more

modest.

Assuming that the probability of a correct match being eliminated is indepen-

dent of whether other correct matches have been eliminated (this assumption will be

discussed below), the probability of a false negative as a result of eliminating correct

matches is (1 � �)� for the �rst two models. In the third model, the probability of

a false negative remains � (assuming independence,) so these techniques should not

adversely a�ect this case.

Table 5.2 shows the probability of a false negative resulting from eliminated

matches for the values of � in Table 5.1 and various values of �. As might be expected,

for small values of � there is a non-negligible probability of our techniques causing

a false negative. But, it is expected that a large number of correct matches will be

found since, if even 10 points from a model are present in an image, there are 120

model groups. Grouping algorithms should be able to �nd a signi�cant number of

these model groups. For reasonable values of �, the probability of a false negative

from eliminating correct matches becomes negligible.
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peaking condition model image 1 �
prob. number area norm � p p p
0.20 4 0.5 0.5 .054 .006 179.81 9.71
0.15 5 0.4 0.4 .092 .012 83.47 7.70
0.10 6 0.3 0.3 .118 .018 55.24 6.52
0.05 7 0.2 0.2 .279 .058 17.17 4.79

Table 5.1: The speedups for various elimination parameters

� � =50 � =75 � =100
.054 .062 .016 3.88x10�3

.092 8.02x10�3 7.18x10�4 6.44x10�5

.118 1.88x10�3 8.13x10�5 3.52x10�6

.279 7.88x10�8 2.21x10�11 6.22x10�15

Table 5.2: The probability of a false negative for various values of � (the fraction of

correct matches indexed) and � (the number of correct model groups appearing in

the image.)

Let's now consider the question of the independence of the probability of correct

matches being eliminated. More speci�cally, we want to know if it is possible for

some object to be in an orientation for which all model groups appear in unlikely

con�gurations in an image. A model group appears in an unlikely con�guration when

it is viewed from a position with some proximity to the plane in which the points in

the group lie. Objects that are not nearly at cannot have the viewing direction nearly

coplanar with each model group, so these objects are not expected to be a problem. A

nearly at object rotated such that it is very foreshortened in the image may produce

angles and/or distance ratios far from the probability peaks. Such images would not

bene�t much from the elimination of matches based on the peaking parameter, but

problems with such images are common to most object recognition systems including

the human visual system. Two methods that could help alleviate this problem are

to continue relaxing the parameters until most matches have been examined or using

special case techniques for recognizing at [Lamdan et al., 1988] or nearly-at objects

[Arbter et al., 1990].
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5.9 Summary

This chapter has presented techniques that greatly reduce the number of matches

that must be examined in the alignment method. The probabilistic peaking e�ect

and error criteria have been used to eliminate unlikely hypotheses, greatly increasing

the speed at which objects can be recognized. Experimental results were given that

showed that these techniques work in practice and still result in a correct transfor-

mation being found.
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Chapter 6

A Connectionist Approach to

Model-Based Object Recognition

This chapter discusses how model-based object recognition techniques can be

implemented in a connectionist fashion to run extremely quickly, assuming a su�cient

number of simple processing elements are available.

6.1 Introduction

Connectionist algorithms have been an interesting area of study due to the mas-

sive parallelism possible and the similarity to biological processing of information.

Such biological systems provide evidence that such a system is capable of extremely

powerful computation. Connectionism has been applied to many interesting prob-

lems. This chapter presents an approach to recognize objects in the model-based

paradigm.

Techniques using groups of image points to index groups of model points that

may match them [Lamdan et al., 1990, Clemens and Jacobs, 1991, Jacobs, 1992,

Weinshall, 1993, Olson, 1993b] are promising for object recognition because of their

ability to eliminate many point groups from consideration without expending much

computation. This work will exploit another bene�cial property of these indexing

systems. Indexing systems have inherently parallel structure and extremely fast con-
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nectionist implementations are possible. In fact, in a connectionist implementation,

eliminating groups from consideration is no longer necessary for quick recognition,

since this work on separate groups is done in parallel. Matches are simply given vary-

ing levels of likelihood, which are then used to determine which objects are present

in the image.

This approach assumes that feature points have already been extracted from the

image, and it uses feature points as the primary tool for recognition. Determining

feature points in a connectionist framework is not di�cult, but is outside the scope of

the work. The use of feature points as the primary means of recognition is somewhat

limiting on the performance of a recognition system (see Chapter 3.) A conservative

recognition system will �nd false positives in complex images, but active veri�cation

techniques can be used to discard incorrect hypotheses. In addition, these techniques

can be extended to features other than points.

Each indexing system requires some �xed size of point groups to generate keys for

indexing. I will call this size k. For all of the systems examined in this work k � 5,

so I will treat k as a constant when possible. I will show that as much accuracy

as desired (up to the limits of using feature points to generate hypotheses) can be

achieved using O(lmnk) processing elements, where l is the number of objects the

system recognizes, m is the number of feature points per model, and n is the number

of image points. Alternately, we can use O((l+m+ n)nk�1 + I) elements, where I is

the number of elements necessary to cover the indexing space at the level of �neness

required to obtain accurate indexing.

The running time of the system is O(log n) if we use �xed fan-in and fan-out

processing elements. If processing elements are allowed to broadcast a value on O(n)

dedicated connections in O(1) time and sum O(n) inputs on dedicated connections

in O(1) time then the running time is O(1).

Rigoutsos and Hummel [1992] have previously described a parallel implementa-

tion of the geometric hashing system [Lamdan et al., 1988]. While the connectionist

version of their algorithm shares some similarities to the work described here, their

work concentrated on general-purpose parallel computers. Such computers are typ-

ically limited in their scalability and their speed, two qualities that are key to the
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implementation of a real-time object recognition system. Special-purpose parallel

computers can avoid these limitations, since they can be speci�cally tailored for the

relevant application. In this work, I consider special-purpose connectionist units ex-

clusively. The work of Rigoutsos and Hummel was also speci�c to the geometric

hashing system, while this work treats a general class of algorithms of which geomet-

ric hashing is a member.

Next, I'll give an overview of connectionist algorithms. Then, I'll describe how

indexing system are used for object recognition. The connectionist implementation

of these concepts is then discussed.

6.2 Connectionist processing

Connectionist systems typically use a huge number of simple processing elements

operating in parallel. I will use unit and processing element interchangeably to de-

scribe this basic processor. These processing elements communicate on �xed connec-

tions forming a graph structure, where the processing elements are viewed as vertices

of the graph and the communication connections are directed edges. Often in a

feedforward network, the processing elements are arranged in layers such that each

processing element receives input only from processing elements in the previous layer

and send output only to processing elements in the following layer (see, for example,

Figure 6.1.)

The processing elements that I will use are de�ned by the following values:

i : a vector of inputs from other units
P (i) : a function on the inputs determining the excitation of the unit

Each unit receives an input value from each of the units speci�ed by the input

vector. The excitation of the unit is then a function of these input values. Other

units receive this value as input according to their input vectors. See Figure 6.2.

Some researchers in this area have used considerably di�erent units. For example,

in Feldman's [1985] framework, the inputs and output are time varying signals. I

consider the case of a single static input image, so the inputs and outputs take on a
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Figure 6.1: An example connectionist network.
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Inputs: i
P(i)

p

Figure 6.2: The conceptual operation of a single processing element.

single value until a new input image is considered. Of course, if we were recognizing

objects in an image sequence, we could modify this system to work with time varying

signals. Also, in an e�ort to follow biological models, Feldman limits his units to

on the order of 10 discrete output values. I have not constrained my approach in

this manner. While biological systems provide an example of highly powerful parallel

computation that connectionist systems can strive to attain and understanding those

limitations may help understand how such computation is possible, we need not limit

computer systems in this manner.

6.3 Object recognition using an election

Indexing can be used with many recognition strategies. Any algorithm that uses

hypothesized matches between groups of image features and model features is a prime

candidate. For example, alignment methods [Fischler and Bolles, 1981, Lowe, 1987,

Huttenlocher and Ullman, 1990] and pose clustering methods [Linnainmaa et al.,

1988, Stockman, 1987, Thompson and Mundy, 1987, Olson, 1994b] use such hypothe-

ses to determine the transformation aligning the matches. These transformations are

then used in varying ways to localize the object. Indexing can be used to determine

which matches to use to determine possible transformations. In addition, alignment

methods can use indexing to determine which additional point matches are brought

into correspondence given the initial group match.
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Since we will need a large number of processing elements, we wish to make them

as simple as possible. Alignment and pose clustering are not ideal for connectionist

algorithms, since they depend on the determination of the transformation aligning

groups of feature points, which is a more complicated task than we wish to require

our processing elements to perform. It is possible to use precomputation to shift a sig-

ni�cant amount of the work o�-line. The following subsection describes a recognition

system that does this, making it more suitable for connectionist implementation.

6.3.1 Election methods

Lamdan et al. [1990] describe a recognition strategy called geometric hashing.

The basic idea is to index the model groups that could have projected to a number

of image groups and use these model groups to vote for the models from which they

come. If the image groups that are used are chosen in the correct manner, then the

voting can determine which objects are present in the image.

Their system recognizes objects as follows:

1. An index table is generated. This is done by examining each basis of three model

points. For each basis, the relative coordinates of every other model point are

determined and a record describing which points generated these coordinates is

stored in the appropriate bin of the index table corresponding to the relative

coordinates. These relative coordinates are invariant to a�ne transformations

and orthographic projection. This step is performed o�-line, prior to recognition

time.

2. Feature points in the image are determined.

3. A basis of three image points is chosen at random.

4. For every other image point, the relative coordinates with respect to the image

basis are determined.

5. For the current image basis and each of the additional image points, possible

matching model groups are determined by indexing the table using the relative
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coordinates.

6. A vote is recorded for each model basis indexed.

7. If some model basis receives enough votes, the process is stopped and the ob-

ject is considered recognized. Otherwise Steps 3-7 are repeated, until we have

examined enough image bases to rule out the presence of the object in the

image.

A voting method of this type could be used with any indexing system. Indeed,

if we wish to recognize general three-dimensional point sets, an alternate indexing

method will be required. I shall call algorithms that combine an indexing system

and voting in this manner election methods. In this chapter, a set of model or image

points of minimal size to constrain the pose to a �nite set of points will be called

a model basis or an image basis. Model groups and image groups contain one more

point than model bases or image bases. For example, to recognize three-dimensional

models, three points are necessary to constrain the pose, so model and image bases

consist of three points and model and image groups consist of four points.

6.3.2 Analysis of election methods

The analysis of geometric hashing by Grimson et al. [1990b] can be easily gener-

alized to apply to general elections methods. Let m be the number of model points,

n be the number of image points, and k be the number of points used to generate an

indexing key. Grimson et al. call the average probability that a speci�c image group

indexes a random model group the selectivity �.

For a speci�c image basis, the probability that a particular image point will index

a model group containing some speci�c model basis and any other model point is:

p = 1� (1� �)m�k+1

since there are m� k + 1 model groups containing some model basis of k � 1 points.

So, the probability of having a false match of size x between speci�c model and image
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bases is:

qx = 1�
x�1X
i=0

0
@ n � k + 1

i

1
A pi(1� p)n�k�i+1

We are primarily concerned with x = fm�k+1, where f is the fraction of model

points appearing in the image, since a conservative indexing system will �nd each of

the additional fm� k + 1 matches for any correct image basis. The probability of a

false match of size x will be found for a speci�c image basis over the entire model is:

rx = 1� (1 � qx)
(m
k�1)

The probability of a false match over the entire set of image bases is di�cult to

calculate due to correlation in the number of additional matches that can be brought

into alignment between image bases, but clearly a match of at least size fm� k + 1

will result from a conservative indexing system if there exists a transformation that

aligns fm model points with distinct image points. So, the probability of a false

match of size fm � k + 1 for any image basis and model basis must be at least as

large as the probability that fm points can be brought into alignment up to the error

bounds by some transformation, which can be signi�cant in complex images. Chapter

3 discussed why this is a fundamental bound on all systems using only feature points

to generate hypotheses.

It is important to note that in all of the election methods, we tally votes for model

groups indexed only by image groups sharing a common basis. This is very important

to the accuracy of election methods. Assume that we have an indexing system that

indexes all of the correct model groups and, on average, some percentage p of the

incorrect model groups for any speci�c image group. If there are fm correct model

points appearing in the image, when using a basis of size �, we expect a correct basis

to accumulate

vg =

0
@ fm� �

k � �

1
A = O((fm)k��)

correct votes and an incorrect basis to accumulate

vb = p

0
@ n � �

k � �

1
A = O(nk��)



106

random votes. The second increases faster than the �rst as k � � increases, since

n > fm. Thus, we wish to make k � � as small as possible (but it must be at least

one to be useful,) which occurs when � = k � 1.

6.4 Connectionist implementation

In a connectionist implementation, we can examine each image basis simultane-

ously. Massive parallelism is thus possible. This implementation requires a small

amount of memory per unit. In particular, only the excitation functions must be

known. (The inputs are known implicitly by the connections to the unit.) In general,

the implementation can be broken into layers of processing elements representing the

following conceptual entities:

Layer 1: Image feature points
Layer 2: Image point groups
Layer 3: Matches between image groups and model groups
Layer 4: Matches between image bases and model bases
Layer 5: Models

The indexing process consists of the �rst three layers of the network and the

election is performed by the �nal two layers. The computations that take place in

each of these layers and the communication pattern between them is as follows:

Layer 1: Image feature points. The coordinates of the feature points comprise

the input layer. This layer does not perform any computation, the units just feed

values to the correct processing elements in the following layer.

Layer 2: Image point groups. The units in the second layer correspond to

groups of image features of size k (which is the number of points used to perform

indexing.) These units generate the indexing parameters. For various indexing sys-

tems these parameters are easily computed functions of the feature point coordinates

(see Chapter 2). Each of the units in this layer receives input from the units in the

previous layer corresponding to the k feature points that make up the image group

and sends output to each of the group matches that match the image group to a

model group.



107

Layer 3: Group matches. The units at the third layer represent matches

between image groups and model groups. These units are assumed to know the

parameters of the model group in the match they are evaluating, although this may

be implicit in the function they are performing. These units determine the likelihood

that the match they represent is correct. This is done by calculating how far the

image group parameters are from the model group parameters using some distance

metric. Each of these units receives input from only the unit in the previous layer

corresponding to the image group in the group match and sends output to the units

corresponding to the k basis matches contained in the group match.

Layer 4: Basis matches. The fourth layer corresponds to the voting for each

possible model basis, except that unlike the sequential algorithm, each of the image

bases is considered simultaneously. Each unit at this layer receives output from each

of the units at the previous layer that includes the match of the given image and model

basis. These likelihoods are combined to determine a score for the basis match. A

large score at this stage indicates that the basis match is likely to be correct. Each

of these units receive input from all of the O(mn) group matches contain the basis

match and sends output to the correct model unit.

Layer 5: Models. Finally, the last layer determines which objects are present

in the image. If more than one instance of a model may be present, this layer may

be omitted and the information on basis matches from the previous level can be used

to indicate which objects may be present in the image. This layer compresses the

information by performing a maximum on the inputs. A large score at this stage

indicates a hypothesis that the model is present in the image. These units receive

input from each of the basis matches for this model.

Figure 6.3 shows how the information ows in this process. The image point

locations feed into image group units, which determine the indexing parameters.

These are then passed to the group match units, which give each model group a

likelihood of projecting to the image group. The basis match units take the scores

from each of the group matches that contain the appropriate basis match and perform

a combining operation to get the score for the basis match. Finally, the model units
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Figure 6.3: The ow of information in the connectionist indexing process.
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output a high score if any of their basis matches have a high score.

As formulated above, this system would require O(mknk) processing elements

per object since there are O(mknk) possible matches between an image group and

a model group, but we can reduce this considerably using randomization and still

achieve accurate object recognition. If we optimistically assume that our units will

have the necessary fan-in and fan-out, the running time of the system is the sum of

the times required at each the of levels and the communication times between the

layers. Since this is bounded by a constant, the running time would thus be O(1) and

would be very fast in practice. The time required when we have limited constant fan-

in and fan-out units, as well as the overall number of units required will be discussed

further in the following section.

6.4.1 Number of processing elements required

Modifying the analysis of Lamdan et al. [1990] we can see that we can achieve

any �xed probability of examining a correct model basis while examining much less

than O(mknk) matches. If we choose some number x of image bases of size k � 1

at random and examine only matches that involve those bases, we can see that the

probability of not examining any correct bases is:

p �
0
@1�

 
fm

n

!k�11A
x

where f is the smallest fraction of model points that must appear in the image to

obtain accurate recognition, since the probability of any particular point being a

correct model point is at least fm

n
in this case. If we require this probability to be

less that some small constant � we get:

0
@1 �

 
fm

n

!k�11A
x

� �

Taking the logarithm of both sides yields:

x ln

0
@1 �

 
fm

n

!k�11A � ln �
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Solving for x we get:

x � ln �

ln
�
1�

�
fm

n

�k�1�

Using the approximation ln(1 + �) = � for small � we get:

x �
 

n

fm

!k�1
ln
1

�
= O

 
nk�1

mk�1

!

So, we can examine O( n
k�1

mk�1 ) image bases and achieve high accuracy. For each

image basis, we consider each of the O(mk�1) model bases as possible matches and

for each possible match we examine each of the (n � k + 1)(m � k + 1) = O(mn)

additional point matches to determine if the match between the bases is correct. In

total we must now examine O( n
k�1

mk�1 ) �O(mk�1) �O(mn) = O(mnk) group matches per

object.

For the connectionist implementation, we can simply select the appropriate num-

ber of random bases to examine in parallel and we can achieve probability 1 � � of

examining a correct image basis. The processing elements corresponding to the re-

mainder of the matches are unnecessary. We use only O(mnk) units per object in

this case. Of course, in practice, the number of processing elements available will

set some limit on the number of image features that can be handled with this accu-

racy. Performance will be good on images of this complexity or less and will degrade

gracefully as the image complexity rises past this level.

It is now possible to describe the number of units required at each level, as well

as the fan-in and fan-out required at each unit. We need approximately �(k�1)!nk�1

basis matches (where � =
ln 1

�

fk�1 , and thus is constant when f and � are set,) since for

each image basis we examine we must examine each of the (k � 1)! orderings of each

of the (mk�1) model bases that may match it. This implies that the number of group

matches that must be examined is approximately �k!(m�k+1)(n�k+1)nk�1. The

required fan-in and fan-out of each can be determined from the connection pattern

speci�ed in the previous section. See Table 6.1. Overall, O(mnk) units are required

per object with a maximum fan-in and fan-out of O(nk�1). Alternately, we could

implement this system using a constant number of layers with O(n) fan-in/fan-out
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Layer Description Number Fan-In Fan-Out
1 Image points n 1 (n�1k�1)
2 Image groups (nk ) k �k!(m� k + 1)
3 Group matches O(mnk) 1 k
4 Basis matches O(nk�1) (m� k + 1)(n � k + 1) 1
5 Models 1 �(k � 1)!( nk�1) 1

Table 6.1: The number of units and fan-in/fan-out necessary at each layer. Note that

� is a function of � and f , but is constant for when � and f are set. See the text for

details.

units, or we could use units with a constant fan-in/fan-out and build up the required

number of outputs using a tree with O(log n) layers.

This analysis of the number of units required is on a per object basis. As the

number of objects in the database increases, the number of units required increases

linearly. It is possible to reduce the number of units required at the group match

stage by combining units for each match between an image group and model groups

that share the same (or very similar) indexing parameters. These units receive the

same inputs since they share the same image group and perform the same function

since the model groups have the same indexing parameters. These units would then

send output to each of the basis match units that the original units output to. The

formulation would then require O((l +m+ n)nk�1 + I) units where I is the number

of units necessary to cover the space of indexing parameters.

6.4.2 Geometric hashing

The geometric hashing system [Lamdan et al., 1990] can be easily implemented in

the framework discussed above. The units corresponding to the image point groups

simply determine the relative coordinates of the fourth point in terms of the �rst

three. The units corresponding to the group matches are assumed to know the values

corresponding to the correct model group. These units output a high value if the

relative coordinates input to them are close to the model group relative coordinates
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held there.

While Lamdan and Wolfson perform binning to determine which image and model

groups may match, we need not follow their algorithm exactly. A much better way

to determine the output for the units corresponding to group matches would be use

to a Bayesian formulation as in Costa et al. [1989] or Rigoutsos and Hummel [1993].

In these works, the geometric hashing problem is recast in the realm of Bayesian

probability. Rather than indexing being a discrete event where each image group

either indexes or doesn't index each speci�c model group, each possible match is given

a score related to the probability of the image parameters being generated by a group

of image features given that the model appears in the image. These scores are used

to determine the probability of each basis match being correct. In these formulations,

only the matches with large scores are examined. The rest of the matches contribute

small values to the total score, so these are ignored to gain an indexing speedup. In

a connectionist implementation, we do not need to ignore these matches, and so we

can gain additional accuracy.

In the connectionist approach, the units corresponding to the group matches

determine the Bayesian probability of matching. The next layer (corresponding to

basis matches) performs a summing operation on the outputs of the units at the

previous level that include each basis match. Finally, we can perform a maximum

operation on the basis matches from each model to determine if the model is present

in the image.

6.4.3 Indexing 3D models (Clemens and Jacobs)

The work of Clemens and Jacobs [1991] can also be put in this framework. While

much of the implementation is very similar to that for geometric hashing, this indexing

technique involves the additional complication that they represent each model group

from each direction on a discretized viewing sphere in their index table. This can be

handled by including in Layer 3, a unit corresponding to each of the viewing directions

for each match. An additional layer is included (Layer 3.5) in which the maximum

value over all of the viewing directions for the matches is determined as the output
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for each group match.

Jacobs [1992] has modi�ed this work for a�ne transformations such that sam-

pling the viewing sphere is not necessary. In this system, each group is represented

by a line in each of two two-dimensional parameter spaces. To index model groups

that may match an image group, the image group parameters are determined and

model groups are looked up in both spaces. The intersection of the two sets of model

groups correspond to the possibly matching points. Implementing this modi�cation

in the connectionist framework does not require a unit corresponding to each viewing

direction for each group match. For this case, units are required to store the descrip-

tion of two lines in a two-dimensional space and be able to calculate some distance

function of their input from these lines. We can then use one unit for each match.

The unit determines the distance of the image group parameters from the lines in

the the parameter spaces. The larger of these two distances is used to determine the

score for the match. Since Jacobs' system uses point groups of size �ve, O(mn5) units

are required to implement this system while O(mn4) were required for the previous

systems.

6.4.4 Indexing 3D models (Weinshall)

Weinshall's [1993] formulation of the indexing problem can yield additional ben-

e�ts for a connectionist implementation. Weinshall describes model-based invariants

that can be used to determine if a model group can be brought into alignment with

an image group. Rather than viewing each model group as representing some space

in an index table, we can simply compute the model-based invariant that Weinshall

describes. A single unit can thus easily determine the score for a group match.

The model-based invariant is given directly in terms of image feature point coor-

dinates, so no parameters speci�c to an image group are generated. The connectionist

implementation of these ideas thus does not require a layer of units corresponding

to the image point groups. The units corresponding to the group matches compute

the invariant functions and output a high value if they are close to zero (the value a

noiseless correct match would yield.)
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An alternative metric that could be used is the transformation metric de�ned in

[Basri and Weinshall, 1992] which is very similar to the model-based invariants. I

have found this metric to be more accurate in discriminating between correct and

incorrect matches.

Due to the simplicity of representing group matches, this method appears to be

the best to use for a connectionist election method to recognize 3-d objects.

6.4.5 Probabilistic indexing

The connectionist implementation of the probabilistic indexing system in this

framework is also straightforward. While probabilistic indexing systems are capable

of indexing using groups of size three, this is probably not suitable for an election

method, due to the signi�cant percentage of false positive matches indexed for this

case. Probabilistic indexing has been extended to handle point groups larger than

three points. When using point groups of size four, we can index many fewer false

positives while still indexing a signi�cant fraction of the correct groups. To perform

probabilistic indexing on groups of larger than three points, we perform indexing on

each of the subgroups of three points. If a model group is indexed by enough of

the subgroups then the group is considered indexed by the entire group. For four

point groups we thus need either four units for each group match to perform the

probabilistic indexing on the four subgroups of three points or a single unit capable

of performing all four calculations. An additional calculation must then be performed

to combine the results of the previous calculations. An additional unit can be used

to perform this task, if desired.

Due to the false negatives obtained as a result of using the probabilistic indexing

system, we must reduce the vote total necessary to consider a model basis a possible

match. The units corresponding to the basis matches still receive information from

each of the group matches that contain that basis match, but these units will now

output a high value based on a lower number of high input values, since not all of

the correct matches will be indexed. This is usually acceptable, since a considerably

smaller percentage of the incorrect matches will also be indexed for most cases.



115

6.5 Alternate recognition methods

While election methods are ideal for connectionist implementations since they

shift much of the work o�ine, other recognition methods can be implemented in this

framework.

6.5.1 Alignment methods

While alignment methods [Huttenlocher and Ullman, 1990] perform a similar op-

eration to election methods, we can consider a connectionist formulation that closely

follows the ideas in sequential alignment methods. Conceptually, the di�erence is that

election methods pre-process the model groups so that less work needs to be done at

run-time. Indexing is then used in the election methods to retrieve this information

e�ciently at run-time.

In a connectionist formulation of alignment, the basis matches are considered

both before and after the group matches. They must be examined before the group

matches to determine the transformation that brings the points into alignment. They

are then examined again after the group matches to determine how many additional

matches can be brought into alignment with each of them.

Alignment can be implemented using the following layers of processing elements:

1. Image points: This is the input layer. Units here simply feed the values to the

correct units in Layer 2.

2. Image bases: This layer assembles the image bases and computes relevant values.

3. Basis matches (�rst): These units determine the transformation that aligns the

corresponding basis match.

4. Group matches: These units determine if the transformation aligning the basis

match align each possible additional match.

5. Basis matches (second): These units count how many additional matches were

brought into alignment for each basis at the previous layer.
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6. Models: These units determine if any bases for a model received enough votes

to merit further veri�cation.

This formulation still assumes that the units in Layers 3 and 4 have model fea-

ture point locations stored locally, but this could be avoided by treating the model

feature point locations as additional input values that feed directly to Layers 3 and

4. In this implementation, units must compute the transformation in the third layer.

All of parameters of this transformation must then be passed on to the appropriate

units in the next level. Using randomization, this method requires O(mn4) process-

ing elements for the problem of recognizing three-dimensional objects from intensity

images.

6.5.2 Pose clustering

Pose clustering techniques [Ballard, 1981, Thompson and Mundy, 1987, Stock-

man, 1987, Linnainmaa et al., 1988, Olson, 1993c] determine the transformations

that align many possible matches between small sets of model and image features.

Instances of objects correspond to a cluster of transformations in pose space.

A connectionist implementation of pose clustering methods requires implementa-

tion of the clustering stage, which can be problematic. One possibility is to sample

the pose space and use a unit for each sampled point. For systems recognizing objects

undergoing rigid 3D transformation, we have a 6D pose space, so this will required a

large number of units unless we sample coarsely.

The connectionist layers necessary to perform object recognition using this ap-

proach are:

1. Image points: The input layer.

2. Group matches: These units at this layer determine the transformation aligning

each of the group matches.

3. Pose space clusters: These units determine the clusters of transformations in

the transformation space.
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4. Models: These units determine if a model had any clusters of su�cient size to

indicate presence of the model in the image.

In Chapter 3, I showed that randomization can be used to limit the number of

poses that need be examined in a pose clustering system. Thus, pose clustering on

3-d objects using this method could be accomplished using O(mn3) units plus the

units to perform the clustering.

6.6 Discussion

This section discusses the overall running time of the system and the possibility

of learning the object models.

6.6.1 Running time

Previous recognition algorithms on sequential systems require (in general) a sig-

ni�cant amount of processing time. By using a large number of simple units, the

system I have presented can reduce this processing time immensely.

If we have su�cient units with O(n) fan-in and fan-out capabilities, the running

time is O(1), since each the computation required at each layer can be computed

in constant time and there are a constant number of layers (the O(nk�1) fan-in and

fan-out capabilities can be simulated using a tree of units of constant height.) If we

are constrained to use units with limited fan-in and fan-out capabilities, we can chain

units in a tree with O(log n) height to provide the necessary capability. Thus, in this

case the running time of the system is O(log n).

Feldman [1985] suggests that since human neurons operate in the millisecond

range but our reaction times are on the order of a few hundred milliseconds, we

must perform about only about 100 computational steps in our object recognition

processes. It is heartening to note that this system can thus meet the limitation of

100 computational steps, since even in the worst case of small fan-in/fan-out units

the system requires O(log n) time (with reasonably small constant factors.)
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6.6.2 Learning

In the implementations described above, I have assumed that the necessary index-

ing parameters are loaded into the correct processing element by some method prior

to recognition time. An interesting possibility to consider is whether these parameters

could be learned in a supervised or unsupervised manner through the examination of

examples.

Many connectionist systems use linear functions to combine the inputs at each

unit and then output some nonlinear function of the result. Such systems can be

trained using the backpropagation algorithm [Rumelhart et al., 1986]. I let my pro-

cessing elements perform arbitrary (although usually simple) non-linear functions and

there are no weights associated with the edges in the connection graph. In addition,

given the number of model and image points that we wish to handle, the communi-

cation pattern is completely �xed, regardless of the object and image to recognize.

The parameters that vary in this system are the indexing parameters stored at the

units corresponding to group matches. These parameters can also be trained by a

backpropagation algorithm.

While it is conceivable that the indexing parameters for an entire object could

be learned concurrently using backpropagation techniques, a much superior learning

strategy would be to isolate each of the units corresponding to the group matches

and train them separately. If this can be achieved, learning the parameters would

be simple for most indexing systems. Otherwise learning the parameters would be a

formidable task.

At this time I have made no attempt to train such a system.

6.7 Summary

I have demonstrated that extremely fast object recognition is possible using a

connectionist network if we have enough processing elements. A framework for the

connectionist implementation of various object recognition strategies has been given.

This framework uses a large number of simple processing elements connected in a
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feedforward manner to determine which objects are present in an image. The im-

plementation of election algorithms using several speci�c indexing systems in this

framework has been discussed. The time required by such an implementation has

been shown to be O(1) or O(log n) depending on the fan-in/fan-out capabilities of

the processing elements.
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Chapter 7

Conclusions

This thesis has considered methods of improving the e�ciency of model-based

object recognition techniques. In particular, I have been interested in the case of

recognizing three-dimensional objects from monocular intensity images. The primary

idea that has uni�ed these techniques is that we need not examine all of the huge

number of hypotheses that could be correct. Selective examination of such hypotheses

can lead to greater e�ciency in the recognition of objects, while not signi�cantly

reducing the accuracy of the recognition.

One of the outcomes of this research has been the development of a framework for

the pose clustering method of object recognition similar to that which has been done

for the alignment method of object recognition, where hypotheses are determined and

then veri�ed. While, the alignment method is one of the leading methods of object

recognition, it is my hope that this work on pose clustering will help convince people

that it is as good as (probably better than) the alignment method as a strategy of

determining which hypotheses are probably correct from sets of local features, due to

its e�ciency and accuracy.

In general, this work can be used with any set of local features from which the pose

of the object can be determined. If we require matches between k of these features to

estimate the pose, then the time required by these techniques is proportional to the

kth power of number of image features and is linear in the number of model features.

Furthermore, the space required by this system is linear in both the number of model
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features and the number of image features.

My analysis has demonstrated that every system using only feature points to

generate hypotheses is limited in the accuracy it can achieve. These limitations can

be generalized to any set of features. (The limitations imposed by a more informative

set of features would be less restrictive.) While my pose clustering system does not

achieve the best accuracy possible under this limitation, it provides a reasonable

approximation, and can be used as a method of �nding good hypotheses for further

veri�cation. It should be noted that the alignment method inherently cannot achieve

the accuracy upper bound because it �nds those points that can be brought into

alignment with each basis match independently (unless additional work is done, e.g.

[Jacobs, 1991].) Since these additional points are examined separately, it does not

guarantee that all of these points can be brought into alignment simultaneously by a

single pose. This causes alignment methods to �nd extra false positives.

While this work on pose clustering shows that we do not need to examine all

of the possible hypotheses for this problem to achieve accurate recognition, it does

not provide us with an a priori means of determining which of the hypotheses are

the best to examine. This thesis has also developed the idea that the small sets of

matches between image and model features that are used to generate hypotheses can

be selected intelligently based on probabilistic information yielded by the probabilistic

peaking e�ect. I have used this e�ect to build an indexing system that is capable of

indexing feature point sets of size three, where previous systems required the sets to

be of at least four points. This reduction in the number of points required allows us to

gain an indexing speedup in techniques that were previously unable to use indexing.

These probabilistic indexing techniques have been used with error criteria to

achieve a large speed up in the alignment method, although when these techniques are

used in conjunction with randomization to limit the number of hypotheses that must

be examined, the speedups are smaller. While an analysis of the use of probabilistic

indexing techniques with pose clustering has not yet been completed, it is expected

that they will also yield a signi�cant speedup when applied to this system.

Finally, this work shows that manymodel-based object recognition techniques can

be implemented simply in a connectionist framework. The use of randomization is key
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to limiting the number of processing elements that are required in this framework.

Given a su�cient number of processing elements, this approach allows the model-

based object recognition techniques to be implemented in real time. While parallel

implementations have been considered by many researchers, this work shows how

model-based recognition techniques can be implemented using �ne-grain parallelism

at an unprecedented scale.

These techniques have been bound together by a common purpose, to make object

recognition techniques more e�cient. This has been achieved by examining selected

hypotheses in an intelligentmanner. Grouping techniques [Ahuja and Tuceryan, 1989,

Huttenlocher and Wayner, 1992, Lowe, 1985, Mohan and Nevatia, 1992] give us means

of determining which image features are most likely to come from the same object

and thus help limit the search necessary, but comparatively little work has been done

on which of the matches between image features and model features are most likely

to be correct prior to the time consuming veri�cation steps. It is my hope that this

work will encourage further research in this area, since the improvements that can be

gained in e�ciency are substantial.

7.1 Future directions

In this section, I'll describe where I expect this research to lead in the near future,

but I will also comment on future directions for the �eld of object recognition.

There are several aspects of the pose clustering techniques that have been de-

scribed here that I would like to investigate further. The application of the proba-

bilistic indexing techniques to pose clustering is one of these. A complete study of

the theoretical and practical inaccuracies implied by the use of alignment, geometric

hashing, and pose clustering is planned. Since alignment and geometric hashing do

not consider all of the feature matches in the context of the same pose (hypotheses

are bases on which additional matches can be brought into alignment at the same

time as some basis, but the additional matches are considered separately,) it is my

hope that analysis will show that this fundamental limitation of alignment and ge-

ometric hashing signi�cantly limits the accuracy of recognition in comparison with
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pose clustering techniques.

In addition, pose clustering techniques are very similar to Hough transform tech-

niques for the detection of curves such as lines, circles, or even arbitrary parameterized

curves [Hough, 1962, Duda and Hart, 1972, Ballard, 1981]. Some of the techniques

that I use with pose clustering have already been used in a limited form with such

methods, but I expect that a more complete formulation of such techniques will lead

to a curve detection method with near optimal accuracy and high speed.

Another area that merits further research is a study of which features are useful

for indexing (probabilistic or otherwise). Current research has focused on feature

points. A study of how indexing should be performed with more informative features

(particularly in the three-dimensional case) would be interesting. Generalizing these

techniques to apply to curved three-dimensional objects appears di�cult but would

be very useful. Along these lines, an examination of probabilistic viewing e�ects of

curved objects should also be useful as vision researchers explore the best methods

of recognizing such objects.

7.1.1 A broader perspective

While there are still e�ciency issues, it is now possible to recognize polyhedral

objects from intensity images. The majority of the work on recognizing these objects

has been using feature points and sometimes line segments. While the problem of

recognizing curved objects in intensity images has been examined (e.g. [Basri and

Ullman, 1988],) much more work needs to be done in this direction. The current

reliance of systems on feature points is very limiting in this regard, since general

curved objects do not have stable feature points as they are rotated in space.

As algorithms become better, the reliance on weak-perspective as an imaging

model will probably become too restrictive. My own experiments indicate that the use

of the weak-perspective model is causing signi�cant error in the pose estimation step,

which is key to both the alignment and pose clustering methods of object recognition.

The use of the full perspective projection or a more accurate approximation appears

very desirable. Overcoming the problems we face in using these imaging models is
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important.

Obviously, massive parallelism will be necessary to implement vision systems

in real time. Many authors have commented on the inherent parallelism in their

algorithms. Furthermore, the connectionist approach to object recognition presented

in this thesis shows that such parallelism is possible even at a very �ne level. It is

encouraging that most of the current object recognition techniques yield nicely to

parallel implementations, but such considerations must continually be kept in mind.

The recognition of curved three-dimensional objects appears to be the �nal fron-

tier for CAD-based vision systems. A signi�cant improvement that will be required

if we are to achieve general object recognition is to go beyond the geometric informa-

tion present in the object and image features. Steps in this direction have been taken

by several researchers (e.g. [Stark and Bowyer, 1991, Strat and Fischler, 1991],) but

a general solution to this problem appears to require vast knowledge and reasoning

capabilities far beyond what is currently the state of the art for computers. This addi-

tional frontier for general object recognition systems will include hard problems from

arti�cial intelligence and other �elds, such as retrieval from vast databases (text and

image,) common sense reasoning, massively parallel computing, context-based rea-

soning, and many others. It will be interesting to see the future directions research

in object recognition take.
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