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Abstract. Pose clustering is a method to perform object recognition by determining hypothetical object p
and finding clusters of the poses in the space of legal object positions. An object that appears in an imag
yield a large cluster of such poses close to the correct position of the object. If therenawneel features and
image features, then there ad¥m?®n?) hypothetical poses that can be determined from minimal information f
the case of recognition of three-dimensional objects from feature points in two-dimensional images. Rathe
clustering all of these poses, we show that pose clustering can have equivalent performance for this cas
examining onlyO(mn) poses, due to correlation between the poses, if we are given two correct matches bet
model features and image features. Since we do not usually know two correct matches in advance, this proj
used with randomization to decompose the pose clustering probler®@im® problems, each of which clusters
O(mn) poses, for a total complexity dd(mr?). Further speedup can be achieved through the use of group
techniques. This method also requires little memory and makes the use of accurate clustering algorithms less
We use recursive histograming techniques to perform clustering in time and space that is guaranteed to be li
the number of poses. Finally, we present results demonstrating the recognition of objects in the presence o
clutter, and occlusion.

1. Introduction from hypothesized matches between feature sets in t

object model and feature sets in the image (Ballarc

The recognition of objects in digital image data is
an important and difficult problem in computer vision
(Besl and Jain, 1985; Chin and Dyer, 1986; Grimson,
1990). Interesting applications of object recognition
include navigation of mobile robots, indexing image

1981; Stockman et al., 1982; Silberberg et al., 198¢
Turney et al., 1985; Silberberg et al., 1986; Dhom
and Kasvand, 1987; Stockman, 1987; Thompson ar
Mundy, 1987; Linnainmaa et al., 1988). In this method
the transformation parameters that bring the sets

databases, automatic target recognition, and inspectionfeatures into alignment are determined. Under a rigic
of industrial parts. In this paper, we investigate tech- body assumption, the correct matches will yield trans
niques to perform object recognition efficiently through formations close to the correct pose of the objec
pose clustering. Objects can thus be recognized by finding cluster
Pose clustering (also known as the generalized among these transformations in the pose space. Sin
Hough transform) is a method to recognize objects we do not know which of the hypothesized matche
are correct in advance, pose clustering methods tyf
cally examine the poses from all possible matches ¢
*This research has k_)een supporte_d by_a National Scien_ce Foundationggme cardinalityk, wherek is the minimum number
Graduate FeIIow_shlp, NSF _Pre5|dent|al Young Investlggtor Grant of feature matches necessary to constrain the pose
IRI-8957274 to Jitendra Malik, and NSF Materials Handling Grant A o y L ) p
IRI-9114446. A preliminary version of this work appears in (Olson, the object to a finite set of possibilities, assuming nor
1994). degeneracy.
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We will focus on the recognition of general three- mations to achieve more accuracy than previous wor
dimensional objects undergoing unrestricted rotation Section 6 describes methods by which clustering ca
and translation from single two-dimensional images. be performed efficiently. Section 7 discusses the imple
To simplify matters, the only features used for recog- mentation of these ideas. Experiments that have be
nition are feature points in the model and the image. It performed to demonstrate the utility of the system ar
should be noted, however, that these results can be genpresented in Section 8. Section 9 discusses several
eralized to any problem for which we have a method teresting issues pertaining to pose clustering. Finall;
to estimate the pose of the object from a set of feature Section 10 describes previous work that has been do
matches. in this area and a summary of the paper is given i

If mis the number of model feature points and  Section 11.
is the number of image feature points, then there are
O(m3n®) transformations to consider for this problem,
assuming that we generate transformations using the2. Recognizing Objects by Clustering Poses
minimal amount of information. We demonstrate that,
if we are given two correct matches, performing pose As mentioned above, pose clustering is an objectreco
clustering on only th&® (mn) transformations that can  nition technique where the poses that align hypothe
be determined from these correct matches using mini- sized matches between sets of features are determin
mal information yields equivalent performance to clus- Clusters of these poses indicate the possible preser

tering all O(m®n?) transformations, due to correlation
between the transformations. Since we do not know two
correct matches in advance, we must exan@r@?)
such initial matches to ensure an insignificant proba-
bility of missing a correct object, yielding an algorithm
that requiresO(mr?) total time. This is the best com-
plexity that has been achieved for the recognition of
three-dimensional objects from feature points in sin-
gle intensity images. When additional information is
present, as is typical in computer vision applications,

of an object in the image. We will assume that we ar
considering the presence of a single object modelin t
image. Multiple objects can be processed sequentiall
To prevent a combinatorial explosion in the num-
ber of poses that are considered, we want to use
few as possible matches between image and moc
points to determine the hypothetical poses of the ot
ject. Itis well known that matches between three mode
points and three image points is the smallest numb
of non-degenerate matches that yield a finite numbx

additional speedup can be achieved by using group- of transformations that bring three-dimensional mode
ing to generate likely initial matches and to reduce the points into alignment exactly with two-dimensional
number of additional matches that must be examined image points using the perspective projection or an
(Olson, 1995). of several approximations (Fischler and Bolles, 1981

An additional problem with previous pose clustering Huttenlocher and Ullman, 1990; DeMenthon anc
methods is that they have required a large amount of Davis, 1992; Alter, 1994). See Fig. 1. If we know the
memory and/or time to find clusters, due to the large center of projection and focal length of the camera, w
number of transformations and the size of pose space.can use the perspective projection to model the imagir
Since we now examine onl®(mn) transformations  process accurately. Otherwise, an approximation su
at a time, we can perform clustering quickly using lit-
tle memory through the use of recursive histograming
techniques.

The remainder of this paper is structured as fol-
lows. Section 2 discusses some previous techniques [~
used to perform pose clustering. Section 3 proves
that examining small subsets of the possible transfor- ‘
mations is adequate to determine if a cluster exists L~
and discusses the implications of this result on pose
clustering algorithms. Section 4 discusses the com-
putational complexity of these techniques. Section 5

giv_es an analysis of the frequer!cy of false positives, Figure 1 There exist a finite number of transformations that align
using the results on the correlation between transfor- three non-colinear model points with three image points.

Image

Model
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as weak-perspective can be used. Weak-perspective is e | | _—T J—1
accurate only when the distance of the object fromthe |4 |8 | —+——" —1 ces o
camera is large compared to the depth variation within |/ EEE
the object. In either case, pose clustering algorithms |e L] LY ]
can use matches between three model points and three .\\ ................
image points to determine hypothetical poses. * e e
Letus callasetofthree modelfeaturgs;, o, 13}, Figure 3 In coarse-to-fine histograming, the bins at a coarse scal
amodel groupand a set of three image poin{s;, vy, that contain many transformations are examined at a finer scale.
vz}, animage group. A hypothesized matching of a
single model feature to an image feature= (u, v), _
will be called apoint matchand three point matches .
of distinct image and model features,= {(u1, v1), ]
(u2, v2), (us, v3)}, will be called agroup match ss |
If there arem model features and image features,
then there are @} )(3) distinct group matches (since ET .
each group of three model points may match any group  [sss| A hiid s

of three image points in six different ways), each of
which yields up to four transformations that bring them
into alignment exactly. Most pose clustering algorithms ~ |ee |
find clusters by histograming the poses in the multi-
dimensional transformation space (see Fig. 2). In this
method, each pose is represented by a single pointin ||
the pose space. The pose space is discretized into bins
and the poses are histogramed in these bins to find large
clusters. Since pose space is six-dimensional for gen- Figure 4 Pose space can be decomposed into orthogonal su
erl igid ransformalions, he discetzed pose space isS70 SC0ang 1 b 1 o o e Sy
g?;:rlﬁ;r?zz%rutgiglB(ca)ggscsluosftgﬁr?;etlzatlon necessary to with rpespect to the remaining subspﬁlces.
Two techniques that have been proposed to reduce

this problem are coarse-to-fine clustering (Stockman . ‘
et al., 1982) and decomposing the pose space into 1 hompson an_d Mundy, 1_987; Lmnglnmaaetal., 1988
orthogonal subspaces in which histograming can be N coarse-to-fine clustering (see Fig. 3), pose space

performed sequentially (Dhome and Kasvand, 1987: guantized in a coarse manner and the large cluste
found in this quantization are then histogramed in

more finely quantized pose space. Pose space can &
be decomposed such that clustering is performed in tw
or more steps, each of which examines a projection ¢
the transformation parameters onto a subspace of t
pose space (see Fig. 4). The clusters found in a proje
tion of the pose space are subsequently examined wi
respect to the remaining transformation parameters.

These techniques can lead to additional problem
The largest clusters in the first clustering step do nc
necessarily correspond to the largest clusters in t
entire pose space. We could examine all of the bins i
the first space that contain some minimum number ¢
transformations, but Grimson and Huttenlocher (199C
have shown that for cluttered images, an extremel
Figure 2  Clusters representing good hypotheses are found by per- large num_ber of bins would need_to be e),(ammEd du
forming multi-dimensional histograming on the poses. This figure tO saturation of the coarse or projected histogram. |
represents a coarsely quantized three-dimensional pose space.  addition, we must either store the group matches th;
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contribute to a cluster in each bin (so that we can per- 2. There exist x distinct point matchess, ..., nx,
form the subsequent histograming steps on them) or  that pose p brings into alignment up to the error
we must reexamine all of the group matches (and re-  bounds
determine the transformations aligning them) for each
subsequent histograming step. The first possibility re- Iy, ..., xSt ped(fm}) forl<i <x.
quires much memory and the second requires consid-
erable extra time. 3
We will see that these problems can be solved
through a decomposition of the pose clustering prob-
lem. Furthermore, randomization can be used to achi-
eve a low computational complexity with a low rate of _
failure. Similar techniques in the context of transform- 371, - Tx St p€ 6({my, 72, mi})  for3 <i <x.

ation equivalence analysis can be foundin (Cass, 1993).
Proof: The proof of this theorem has three steps

- We will prove (a) Statement 1 implies Statement 2
3. Decomposition of the Problem (b) Statement 2 implies Statement 3, and (c) Stateme

N 3 implies Statement 1. Therefore the three statemer
Let ® be the space of legal model positions. Each muyst be equivalent.

p € ® can be considered a functiop; R® — R?, that
takes a model point to its corresponding image point.
Each group matchy = {(u1, v1), (12, v2), (13, v3)},
yields some subset of the pose spadg,) C ©, that
brings each of the model points in the group match
to within the error bounds of the corresponding image
point. We will consider a generalization of this func-
tion, 6(y), that applies to sets of point matches of any
cardinality.

Let's assume that the feature points are localized
with error bounded by a circle of radius (though
the following analysis is not dependent on any choice
of error boundary). We can then defifgy) as
follows:

There exist x— 2 distinct group matches sharing
some pair of point matches that pose p brings int
alignment up to the error bounds

(a) Each of the group matches is composed of a s
of three point matches. The fewest point matche
from which we can choos@) group matches is.
The definition of9 () guarantees that each of the
individual point matches of any group match that is
brought into alignment are also brought into align-
ment. Thus each of thegepoint matches must be
brought into alignment up to the error bounds.

(b) Choose any two of the point matches that ar
broughtinto alignment. Form all of the— 2 group
matches composed of these two point matches at
each of the additional point matches. Since each «
the point matches is brought into alignment, eac
of the group matches composed of them also mu
be from the definition o (y).

) (c) There arex distinct point matches that compose

0(y) ={pe@:llp(ui)—villz e forl<i =< |y} the x — 2 group matches, each of which must be

brought into alignment. Any of the’é) distinct

group matches that can be formed from them mu:

therefore also be brought into alignment. 0

Definition.

The following theorem is the key to showing that
we can examine several small subproblems and achieve
equivalent performance to examining the original pose

clustering problem. ) o ) )
This theorem implies that we can achieve equivaler

Theorem 1. The following statements are equivalent Performance to the examining all of the group matche
for each pe ©: when we examine subproblems in \_/vhlch only tho;n
group matches that share some pair of correct poi
matches are considered. So, instead of finding a clu
ter of size(’3() among all of the group matches, we
simply need to find a cluster of size— 2 within any

set of group matches that all share some pair of poil
matches. Furthermore, it is clear that any pair of col
... st pedn) forl<i=<g. rect point matches can be used. For each such pair, \

1. There exist g= (’3‘) distinct group matches that
pose p brings into alignment up to the error bounds.
Formally,
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1. Pose-ClusteringM, 1):  /* M is the model point set. allow (1 — f)m model points to be absent as the resul
5 Reneat Kimes: I'is the image point set. */ of occlusion by other objects, self-occlusion, or being
epea’ imes: : ' missed by the feature detectof; is the fraction of
3. Choose two random image pointsandvs. : . -
4. For all pairs of model pointg; andyz: mode_l pomts that must appear.) Since the propap|l|t
5 For all point matchegua, v3): ofa smgle image point being a correct model pointis a
6 Determine the poses aligning the group Ieast— in this case, the maximum probability of a pair
. g forl:natchy = {(n1, v1), (2, v2), (13, v3)}- being mcorrect is approximately-1 ( fr:n)z Thus, the
8. Find and output clusters among these poses. probability thak random trials will all be unsuccessful
9. End-for is approximately:
10. End-repeat
11. End 5
fm
Figure 5 The new pose clustering algorithm. p=<|1- T

must examined(mn) group matches, since _there are If we require the probability of a false negative to be
(m—2)(n—2) group matches for a single pair of point X
less thar$ we have:

matches such that no feature is used more than once.
Of course, examining just one pair of image points will

2\ Kk
not be sufficient to rule out the appearance of an ob- 1_ (H) <
ject in an image since there may be image clutter. We n -
could simply examine all @)(’;) possible pairs of Ins
point matches, but we will see in the next section that k> — 2
we can examin®(n?) pairs of matches and achieve a n ( - (T) )

low rate of failure.

Figure 5 gives the updated pose clustering algorithm.  Note that the minimunk that is necessary B( ”2)
since, kmin approaches-"- In as (fm/n)? ap-
proaches zero

4. Computational Complexity For each pair of image points, we must exam
ine each of the Qm) permutations of model points
This section discusses the computational complexity \which may match them So, in total, we must exam
necessary to perform pose clustering using the tech-jne o(n ) - O(m?) = O(n?) pairs of point matches
nigues described above. We can use a randomizationig ach|eve the success rate-15. Since we halt af-
technique similar to that used in RANSAC (Fischler ter k trials, regardless of whether we have found the
and Bolles, 1981) to limit the number of initial pairs  object, this is the number of trials we examine in the
of matches that must be examined. A random pair of worst-case, and is independent of whether the obje
image points is chosen to examine as the initial image appears in the image. The time bound varies with onl
points. All pairs of point matches that include these the Jogarithm of the desired success rate, so very hi
image points are examined, and, if one of them leads syccess rates can be achieved without greatly increz
to recognition of the object, then we may stop. Oth- jng the running time of the algorithm. Since we mus!
erwise, we continue choosing pairs of image points at examineO(mn) group matches for each pair of point
random until we have reached a sufficient probability matches, this method requir€gmn?) time per object

of recognizing the object if it is present in the image. in the database in the worst case, if we perform clus
Note that once we have examined this number of pairs tering in linear time, where previoust® (m3n3) time

of image points, we stop, regardless of whether we \yas required.
have found the object, since it may not be present in
the image.
If we require f m model points to be present inthe 5. Frequency of False Positives
image to ensure recognition, we can determine an upper
bound on the probability of not choosing a correct pair While the above analysis has been interpreted in tern
of image points irk trials, where each trial consists of the “correct” clusters, so far, it also applies to false
of examining a pair of image points at random. (We positive clusters. Ldtbe our threshold for the number

(fm)2
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of model points that must be broughtinto alignment for incorrect point match will have a cluster of at least this

us to output a hypothesis. If a pose clustering system size is:

that examines all of the poses finds a false positive .

cluster of siz& é), we would expect the new techniques N A\ 5

to yield a false positive cluster of size- 2. We will a= (1+—A)

thus find false positives with the same frequency as

previous pose C|ustering Systems_ Settlngq < § and SOlVing fom, they find that the
Grimson et al. (1992) analyze the pose clustering ap- maximum number of image features that can be tole

proach to object recognition to estimate the probability ated without surpassing the given error rates:

of a false match having a large peak in transformation f

space for the case of recognition of three-dimensional Nmax X ——

objects from two-dimensional images. They use the by In%

Bose-Einstein occupancy model (see, for example,

Feller, 1968) to estimate this probability. This anal-  Grimson etal. have determined overestimates on t

ysis assumes independence in the locations of thesize of the redundancy factdyy, necessary for various
transformations, which is not correct. Consider two noise levels to ensure that the correct bin is amon
group matches composed of a total of six distinct point those voted for by an image group using a bounde
matches. If there is some pose,c ©, that brings error model and they have used this to compute samg
both group matches into alignment up to the error con- values ofnpax.

ditions, then any of theg) group matches that can be As noted above, this analysis can be made mol
formed using the six point matches is also brought into accurate by considering the correlations between tf
alignment by this pose. The poses determined from transformations. Theorem 1 indicates that there exis

these group matches are thus highly correlated. some pointp, intransformation space thatbrin(g%“)
Theorem 1 indicates that we will find a false positive group matches into alignment if and only if there are
only inthe case where there is a pose that brimgedel f mpoint matches thap brings into alignment. So, we

points into alignment with corresponding image points. must determine the likelihood that there exists a poir
This result allows us to perform a more accurate analy- in transformation space that brings into alignmém
sis of the likelihood of false positive hypotheses. We'll of thenm point matches. We'll call the average frac-
summarize the results of Grimson et al. before describ- tion of transformation space that brings a single poir
ing modifications to their analysis that account for the match into alignmeni,,.
correlations between transformations and achieve more  If we otherwise follow the analysis of Grimson et al.,
accuracy. we haver = bpymn and we expect a correct pose to
The Bose-Einstein occupancy model yields the yield f mmatches. Using the Bose-Einstein occupanc
following approximation of the probability that a bin  modelwe can estimate the probability of a false positiv
will receivel or more votes due to random accumu- of this size:

lation:
bpmn \'™
X P T4 pomn
p>| l+bpmn

e
. o . We can sep < § and solve fon as follows:
In this equationy. is the average number of votes in

a single bin (including redundancy due to uncertainty bymn fm

in the image) - I3n the work of Grimson et ak, = <1+Tpmn>

6( yn 3)bg ~ ¢, whereby is the average fraction 1 1
of blns that contaln a pose bringing a particular group fmin < + bpmn) > In 3

match into alignment (called the redundancy factar),
is the number of model features, ands the number Using the approximation: I + a) ~ a, for small
of i |mage features. Each correct object is expected to a, we have:

have( My ~ (fm) correct transformations, since each

dlstmctgroup of model features will include the correct fm ~In 1

bin among those it votes for. The probability that an bpmn™— " §
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In fact, %1 is not always small, but this approxi- Mmethod is able to find clusters containing most of th

mation yie|pds a conservative estimate for correct transformations, but it does not have optime
accuracy.

< f An alternate method that could be used for comple

~ bpln % or very noisy images, where false positives could prov

problematic, is to sample carefully selected points i
Note that this is not very different from the result the pose space (see, for example, (Cass, 1988)) and
derived by Grimson et al. sindg, ~ \3/@ The pri- termine which matches are brought into alignment b
each sampled point. This alternative will find no case
where the matches in a cluster are not mutually cor
sistent, but at a lower speed and at the risk of missin
a cluster due to the sampling rate. Another alternativ
(Cass, 1992) determines regions of the pose space tl
are equivalent with respect to the matches they brin
into alignment and that bring a large number of suc
matches into alignment. Such a method can achie
optimal accuracy in the sense that it can find all parti
tions of the pose space that bring some minimum nun
ber of matches into alignment. However, this appeal
difficult for the case of three-dimensional object un-
dergoing rigid transformations since the legal poses ¢
not form a vector space. Note that the analysis of th
previous sections still applies to these methods.
When histograming is used to find clusters, eithe
oarse-to-fine clustering or decomposition of the pos
space should be used, since the six-dimensional po
space is immense. Let’s consider the decompositic
approach here. The pose space can be decompo:
into the six orthogonal spaces corresponding to each
the transformation parameters. To solve the clusterir
eproblem, histograming can be performed recursivel
using a single transformation parameter at a time. |
the first step, all of the transformations are histograme
in a one-dimensional array, using just the first pararr
eter. Each bin that contains more thém — 2 trans-
formations is retained for further examination, where
f is the predetermined fraction of model features the
must be present in the image for us to recognize tf
6. Efficient Clustering object. (Let us for the moment neglect the possibil
ity that not all of the correct poses may be found. Ir
This section discusses methods to perform clustering this case, iff m model points are present in the im-
of the poses in time and space that is linear in the num- age, a correct pair of point matches will yiefan — 2
ber of poses. This is accomplished through the use of correct transformations.) For each bin with enougl
recursive histograming techniques. Each hypothetical transformations, we recursively cluster the poses i
position of the model that is determined from a group that bin using the remaining parameters. Since thi
match is represented by a single pointin pose space. Weprocedure continues until all six parameters have bee
use overlapping bins that are large enough to contain examined, the bins in the final step contain transforme
most, if not all, of the transformations consistent with tions that agree closely in all six of the transformatior
the bounded error. This prevents clusters from being parameters and thus form a cluster in the complete po
missed due to falling on a boundary between bins. This space.

mary difference is a change from a factor\i;‘fn % to

In % which means that the new estimate of the allow-
able number of image features before a given rate of
false positives is produced is lower than that obtained
by Grimson et al.

It should be noted that this result is a fundamen-
tal limitation of all object recognition systems that
use only point features to recognize objects, not of
this system alone. Any time there exists a transfor-
mation that bringsf m model points into alignment
with image points, a system dealing only with feature
points should recognize this as a possible instance of the
object.

Some possible solutions to this problem are to use
grouping or more descriptive features. The results pre-
sented here are easily generalized to encompass suct&
information, if a method exists to estimate the pose
from a set of matches between such features. This will
increase the allowable clutter, but a similar result will
still be applicable.

The primary implication of this result is that we
should not assume that large clusters in the pose spac
necessarily imply the presence of the modeled object.
We should use pose clustering as a method of finding
likely hypotheses for further verification. As an addi-
tional verification step, we could, for example, verify
the presence of edge information in the image as is
done by Huttenlocher and Ullman (1990).
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1. Find-Clusters(P, IT): I* Pis the set of posedT is are clustering so many transformations. Using the tecl
the set of pose parameters. */ piques presented here, we can have @ug) bins that

§ ! Il'I(|:h> Othen contain as many abm— 2 transformations at any level
oose some € IT. . .

4, Histogram poses iR by parameter;. ofthe tree, since there a@(mn) transformations clus-
5. For eachbin, b, in the histogram: tered at a time. This means that there are ddty)
6 If |b] > fm—2then unpruned bins at each level. Thus, we do not have sz
; End ?nd'CIUSters({ peP:peb) ), uration at any level of the tree for this syste@(mn)
9. End-for time and space is required per clustering step.

10. Else

11. Output the cluster location. 7. Implementation

12.  End-if

13. End

This section describes our implementation of the tect
Figure 6 The recursive clustering algorithm. niques described in the previous sections of this pape
Of course, in general, we follow the algorithm given in
This method can be formulated as a depth-first tree Fig. 5.
search. The root of the tree corresponds to the entire  Recall that the analysis of Section 4 showed that w
pose space and each node corresponds to some subseeed to examine
of the pose space. The leaves correspond to individual
binsin the six-dimensional pose space. Ateach level of In§
the tree, the nodes from the previous level are expanded CIn(1- (f—r:“)z)
by histograming the poses in those nodes using a previ-
ously unexamined transformation parameter. The tree pairs of random image points to achieve probability
has height six, since there are six pose parameters tol — § that we examine a pair from the model, fifn
examine. At each level, we can prune every node of the model points appear in the image. Now, since we d
tree that does not correspond to a volume of transforma- not use a perfect clustering system, we cannot assur
tion space containing at leaém — 2 transformations.  that each correct pair of point matches will result in the
Figure 6 gives an outline of this algorithm. If un- implementation finding a cluster of the optimal size
examined parameters remain at the current branch of The next section describes experiments determinir
the tree, we histogram the remaining poses using onehow many we actually find. Knowing this, we can set ¢
of these parameters. Each of the bins that contains atthreshold on the number of matches necessary to out
leastfm — 2 poses is then clustered recursively using a hypothesis and a threshold on the number of tria
the remaining parameters. The other bins are pruned.necessary to achieve alow rate of failure. If we estimat
When we reach a leaf (after all of the parameters have that in pathological models and/or images, only 509
been examined) that contains enough poses, we outputof the correct pairs of point matches will result in a

the location of the cluster. cluster that surpasses this threshold, then we have:
Although this decomposition of the clustering al-
gorithm has not previously been formulated as a tree Iné§
search, the analysis of Grimson and Huttenlocher min = m
2\ n

(1990) implies that previous pose clustering methods
saturate such decomposed transformation spaces at the For each pair of random image points that we ex

Iefvels OI the trge neﬁr the root, due tlo the large nurrr:ber amine, we consider each pair of model points that ma
of transformations that need to be clustered. For those -+ b them. We then form then — 2)(n — 2) dis-

methods, virtually none of the branches near the root tinct group matches that contain them. For each su

of the tree can be pruned. . group match, we use the method of Huttenlocher an

Since previous systems 3W°‘,J|d cluster(m°n®) Ullman (1990) to determine the transformation param
transformations, there a@(n®) bins that could hold  g40rq that bring three model points into alignment witt
as many ag 'J") transformations at each level of the  three image points in the weak-perspective imagin
tree. Thus, despite histograming in a high-dimensional model. Each group match yields two transformations
space, these systems may have a large number of unand the parameters of these transformations are stor
pruned bins at even low levels of the tree, since they in a preallocated array, since we know in advance ho
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many we will have. The use of this method makes the 8. Results
implicit assumption that weak-perspective is an accu-
rate approximation to the actual imaging process for This section describes experiments performed on re
the problems we consider. This has been demonstratedand synthetic data to test the system.
to be true for the case when the depth within the ob-
ject is small compared to the distance to the object
(Thompson and Mundy, 1987). However, this does in-
troduce error into our pose estimates. If we know the
center of projection and focal length of our camera, we
can use the full perspective projection to eliminate this
source of error.

We find clusters among the poses using the recur- 1. Model points were generated at random inside a 2(
sive histograming techniques of the previous section.  x 200 x 200 pixel cube.
The order in which the parameters are examined is: 2. The model was transformed by a random rotatio
scale, then translation ik andy, and then the three and translation and was projected using the pe
rotational parameters. Changing the order of the pa-  spective projection onto the image plane. The foce
rameters has no effect on the clusters found and little  |ength that was used was the same as the distar
effect on the running time. to the center of the cube, which was approximatel

We use overlapping bins to avoid missing clusters 10 times the depth within the object.
that fall on cluster boundaries. Each parameter is di- 3. Bounded noises(= 1 pixel) was added to each im-
vided into small bins and a sliding box that coversthree  age point.
consecutive bins is used to find clusters. The size of 4. In some experiments, additional random imag:
the bins is changed with varying image noise levels, points were added.
but the number of bins used in each dimension typi-
cally varies from 30 to 200. For each bin, we maintain

linked list of pointer the transformations that fall
a linked list of pointers to the transformations that fa clusters were found. Table 1 shows the performance |

into the bin and an associated count of the number of two methods at finding correct clusters. The first sys
such transformations. This allows us to easily perform 9 . ' y
tem uses the old method of clustering all of the poses s

the recursive binning steps on subsequent parameters
S multaneously. The second system uses the new meth
once the initial binning steps have been performed. At

each position of the sliding box, the poses in the box ic:‘cl:s:rgfg %ri]:\){[trzgf:hioss(?rshftraoongr;Zl:EcT;afitrfgs?T]SLE
are recursively clustered only if the number of trans- gap b '

formations in the bins surpasses the threshold. When ggrii:ﬂ?if%rﬂaﬁ%ﬂie,bjltn&eeItsiczhejzséirtshren?nngo?:s;
a cluster is found after considering all of the transfor- . "

X - clusters is expected to rise at the same rate. The ne
mation parameters, the hypothetical pose of the ob-

ject is estimated by averaging all of the poses in the
cluster Table 1 The performance in finding correct clusters.

8.1. Synthetic Data

Models and images have been generated for these ¢
periments using the following methodology:

The first experiment determined whether the correc

Once a cluster has been found, we use the method of Old method New method
Huttenlocher and Cass (1992) to determine an estimate

of the number of consistent matches. They argue that m_ o ave. hoop Mg %
the total number of matches in a cluster is not necessar- 10 120 955 .796 8 6.64 .831
ily a good measure of the quality of the cluster, since 20 1140 8822 774 18 1502 .834
different matches in the cluster may match the same im- 30 4060 30469 750 28 2323 .830
age point to multiple model points, or vice versa, which 40 9880 7400.8 749 38 30.79 .810
we do not wish to allow. Huttenlocher and Cass rec- 50 19600 145699 743 48 4047 843

ommend counting the lesser of the number of distinct : :

model points and distinct image points matched inthe Ve use the following terms in the above table:
luster, since it can be determined quickly (as opposed ™ e number of object points.

cluster, ) . ] . q _y pp opt.: the size of the optimal cluster.

to the maximal bipartite matching) and is reasonably avg.: the size of the average cluster found.

accurate. %: the average fraction found of the optimal cluster.
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Table 2 The size of false positive clusters found Table 3 The number of trials required to find objects

for objects with 20 feature points. with 20 points.

n average std. dev. maximum n Kin avg. max. over
20 3.84 0.88 6 20 6.65 151 11 2
40 532 114 8 40 34.52 5.28 20 0
60 6.35 1.35 10
80 7.06 1.52 12 60 80.65 14.50 165 2

100 7.64 1.68 13 80 145.20 25.24 270 1

120 7.94 1.80 13 100 228.19 33.39 223 0

140 8.21 1.87 13

160 8.42 1.95 14 120 329.61 51.70 412 1

180 8.61 1.98 14 140 449.47 55.86 280 0

200 8.79 2.02 15 160 587.77 109.97 2321 1

We use the following terms in the above table: 180 744.51 113.31 556 0

n: the number of image points. 200 919.69 145.95 697 0

average: the average size of the largest cluster found. - - _

std. dev.: the standard deviation of the cluster size. We use the following terms in the above table:

maximum: the largest cluster found overall. n: number of image points.

kmin: expected number of trials necessaryfet 1.0.
avg.: average number of trials required for 100 objects.
max.: maximum number of trials required.

techniques actually find a larger percentage of the cor- over: number of objects that requiredmn trials.

rect poses inthe best cluster. Thisis because these clus-

ters are smaller. Since we examine only those group of rials necessary to generate such a hypothesis, a
matches that share some pair of pointmatches, the noisgne number of objects (out of 100) that required mor
associated with those two image points stays the samehani ., trials. For each case, at least 98 of the 100 ot
over the entire cluster. This noise may move the clus- jects were recognized withikmi, trials. Overall, 99.3
ter from the true location, but it does not increase the percent of the objects were recognized witki, tri-

expected size of the cluster, as it does when we ex- als, with the expectation of recognizing-15 = 99.0
amine all possible group matches, since each pose ispercent of the objects.

computed using this same pair of points. To summarize the results on synthetic data, the ne

Experiments were run to determine the size of false pose clustering method has been determined to fir
hypotheses generated by the new method for models, |arger fraction of the optimal cluster than previou:
of 20 random model points and various image cOM- methods and to result in very few false positives fo
plexities. Table 2 shows the average size of the Iargestimages of moderate complexity. In addition, the num

cluster found for each pair of image points, the stan- per of pairs of point matches that we must examine t
dard deviation among these clusters, and the size of ,ecognize objects has been confirmed experimental
the largest cluster over all of the pairs of image points. be O(n?), validating the analysis that indicated the
Since the new method found correct clusters of aver- {54 time required by this algorithm ©(mr?).

age size 15.02 for models of twenty points and false

positive clusters of average size 8.79 for 200 random

image points, these levels of complexity do not cause 8.2. Real Images

a large number of false positives to be found.

An experiment determining the number of trials nec- This pose clustering system has also been tested
essary to recognize objects in the presence of randomseveral realimages from two data sets. The firstdata s
extraneous image points was run. Table 3 shows the consists entirely of planar figures. The second consis
results of this experiment. To generate a hypothesis of of three-dimensional objects. Note that when applie
the model being present in the image, this experiment to the first data set, this algorithm made no use of th
required a cluster to be at least 80% of the optimal size fact that the figures were planar. No benefit is gaine
(14 for models of size 20). For each valuengfTable 3 from using this data set, except that corners are easy
showsknin for § = 0.01, the average number of trials  detect on them. Furthermore, the only features used
necessary to generate a correct hypothesis that the obeither data set to generate hypotheses are the locatic
ject was present in the image, the maximum number of corner points in the image.
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Hypothesis generation followed the following steps

1. Object models were created. For the first data set
this was done by capturing images of the object and
determining the location of corners. For the second
data set this was done by hand.

2. Images including the objects were captured.

3. Corners were detected inthe images using a fast and
precise interest operator ¢fstner, 1993; &fstner
and Gilch, 1987).

4. The model and image feature points were used by
the pose clustering system to generate hypothese
as specified in the previous section.

Figure 7 shows an example of recognizing objects @)
fromthefirstdatasetinanimage. Figure 7(a) showsthe
84 feature points found by the interest operator. While
there is no occlusion in thisimage, the interest operator &
did not find all of the correct corners. In several cases
where two corners were close together (e.g., the engines
on the plane) only one corner is found. Figure 7(b)
shows the best hypotheses found for this image with the
edgesdrawnin. The projected model edges line up very
well with the object edges in the images. Figure 7(c)
shows the largest incorrect match that was found for
this image. This is a rotated and scaled version of the
person model. For this pose of this model, several of
the points in the model are brought very close to the
corners detected in the image. When large false posi-
tives are found, they can be easily disambiguated from (b)
the correct hypotheses by examining whether the trans-
formed model edges agree with edges in the image. g

Several images from this data set included occluded &
objects. See, for example, Fig. 8. Despite the occlu- &
sion, we are able to find good hypotheses, since we §&
only require some fractionf, of the model points to
appear in the image. The algorithm was still able to
find the correct hypotheses for objects with up to 40%
occlusion.

Figure 9 shows an example recognizing a stapler
from the second data set. Figure 9(a) shows the 70
feature points detected in this image. Self-occlusion
prevented many of the features points on the stapler
from being found. In addition, a large number of spu-

rious points were found due to shadows and unmodeled ©
stapler points. Figure 9(b) shows the best hypothesis
found. Figure 7. Recognition example for two-dimensional objects. (a)

The lar t r f error in th xperiment n The corners found in an image. (b) The four best hypotheses four
€ largest source of erro € eXperments on i, e edges drawn in. (The nose of the plane and the head of tl

both real_ and Synthe_tic images was the use of weak- person do not appear because they were not in the models.) (c) T
perspective as the imaging model. The poor pose largestincorrect match found.
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(b)

Figure 8 Recognition example for occluded two-dimensional objects. (a) The corners found in an image. (b) The best hypotheses fol
the occluded objects with the edges drawn in.

@) (b)

Figure 9 Recognition example for a 3D object. (a) The features found in the image. (b) The best hypothesis found.

recovered in Fig. 10 demonstrates the problems that cessor. Further speedup might be achieved ithn?
perspective distortion can cause. The use of weak- by considering parallel histograming techniques.
perspective isthe limiting factor onthe currentaccuracy ~ Some of the techniques described in this paper can |

of this system. used with recognition strategies other than pose cluste
ing, when these strategies examine pose space to (
9. Discussion termine the transformations aligning several matche

between features. For example, Breuel (1992) recu
The algorithm that has been described can be paral-sively subdivides the pose space to find volumes thi
lelized in a straightforward manner. We simply parti- are consistent with the most matches. These volum
tion the subproblems such that each processor performsare found by intersecting the subdivisions of pose spa
an approximately equal number of the subproblems. In with bounded constraint regions arising from hypoth
this manner, the use qf processors yields a speedup esized matches between sets of model and image fe
of approximatelyp until p reaches the total number tures. The expected time was empirically found to b
of subproblems. We thus requi@(mn) time onn? linear in the number of constraint regions. To recog
processors. We still requit®(mn) space on each pro-  nize three-dimensional objects from two-dimensiona



Figure 10 Perspective distortion can cause error in the recovered
pose or even recognition failure when a weak-perspective model is
used.
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1992) have shown that we should not simply assun
thatlarge clusters are instances of the object; addition
verification is needed to ensure against false positive
However, while it is clear that further verification is
required for hypotheses generated by pose clusterir
other methods also require this additional verificatiol
step. The analysis in Sections 3 and 5 shows that po
clustering is not inherently more sensitive to noise an
clutter than other algorithms.

Clutter affects the efficiency of pose clustering sim:
ilarly to other algorithms. On the other hand, noise
and other sources of error are handled in considerab
different ways among various algorithms. While con-
siderable research has gone into analyzing how to be
handle error in the alignment method (Jacobs, 199
Alter, 1993; Alter and Jacobs, 1994; Grimson et al.
1994), very little has been done in this regard for pos
clustering. Work by Cass (1990, 1992) demonstrate

images using point features, matches of three points how to handle noise exactly in the context of trans
are necessary to generate bounded constraint regionsformation equivalence analysis, for the case where tt
Thus, there ar®©(m>n®) such constraint regions for  localization error is bounded by a polygon, but this i
this case. Theorem 1 implies that Breuel's algorithm not directly applicable to pose clustering. At present

will still find the best match if it examines only the
O(mn) constraint regions associated with a given pair
of correct matches of feature points. Since we don't

know two correct matches in advance, we must exam-

ine O(n?) of them (using randomization). Of course,
this introduces a probabilityi, that a correct pair of
point matches will not be chosen, and thus recognition
may fail where it would not in the original algorithm.
Clustering methods other than histograming have

the system described here handles noise heuristica
and further study in this area should be beneficial.
We can compare the noise sensitivity of pose clus
tering to generate-and-test methods such as alignme
While careful alignment (Grimson et al., 1992; Alter,
1993; Alter and Jacobs, 1994; Grimson etal., 1994) e
sures that each of the additional point matches can se
arately be brought into alignment with the initial set of
matches, up to some error bounds, by a single transfc

been largely avoided due to their considerable time re- mation, this transformation may be different for eacl
guirements. For example, algorithms based on nearest-such additional point match. (A different error vector

neighbors (Sibson, 1973; Defays, 1977; Day and
Edelsbrunner, 1984) requir®(p?) time, wherep

is the number of points to cluster. Since there are
p = O(m3n?) transformations to cluster in previous
methods, this means the overall time for clustering
would beO(m®n®). While most pose clustering meth-
ods have used histograming to find large clusters in

may be assigned to the initial matches for each of th
additional matches.) Itdoes not guaranteedhaf the

additional point matches and the initial set of matche
can be brought into alignment up to the error bound
by a single transformation. ldeally, a pose clusterin
system could guarantee this, but due to the limitation
imposed by discretizing the pose space and the heur

pose space, less efficient, but more accurate, clusteringtic handling of noise, it is not achieved by this system

methods become more feasible with this method, since Interestingly, the analysis of Grimson et al. (1992) in:

only O(mn) transformations are clustered at a time, dicates that pose clustering techniques will find fewe

rather thanO (men3). false positives than the alignment method for simila
Another point worthy of discussion is that some pre- levels of noise and clutter.

vious researchers in pose clustering have assumed that

finding a large enough peak in the pose space is suffi-

cient to consider the object present in the image, while 10. Related Work

others have claimed that pose clustering is more sensi-

tive to noise and clutter than other algorithms. Grimson This section describes previous work that has been pe

etal. (Grimson and Huttenlocher, 1990; Grimson etal., formed on techniques related to those presented her
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Ballard (1981) showed that the Hough transform separately in the later stages to ensure that the fin
(Hough, 1962; lllingworth and Kittler, 1988) could be clusters agree in all of the parameters.
generalized to detect arbitrary two-dimensional shapes Thompson and Mundy (1987) usertex-pairsin
undergoing translation by constructing a mapping be- the image and model to determine the transformatio
tween image features and a parameter space describingligning a three-dimensional model with the image
the possible transformations of the object. This system Each vertex-pair consists of two feature points an
was generalized to encompass rotations and scaling intwo angles at one of the feature points correspondir
the plane. to the direction of edges terminating at the point. Al
Stockman et al. (1982) describe a pose clustering run-time, precomputed transformation parameters a
system for two-dimensional objects undergoing simi- used to quickly determine the transformation alignin
larity transformations. This system examines matches each model vertex-pair with an image vertex-pair an
between image segments and model segments to re-binning is used to determine where large clusters «
duce the subset of the four-dimensional pose spacetransformations lie in transformation space. In addi
consistent with a hypothetical match to a single point. tion, Thompson and Mundy show that for objects fal
Clustering is performed by conceptually moving a box enough from the camera, the scaled orthographic pr
around pose space to determine if there is a position jection (weak-perspective) is a good approximation ti
with a large number of points inside the box and is im- the perspective projection.
plemented by binning. The binning is performed ina  Linnainmaa et al. (1988) describe another pose clu
coarse-to-fine manner to reduce the overall number of tering method for recognizing three-dimensional ob
bins that must be examined. jects. They first give a method for determining objec
Silberberg et al. (1984, 1986) describe a pair of sys- pose under the perspective projection from matches
tems using generalized Hough transform techniques to three image and model feature points (which they ca
perform object recognition. In the first, they assume triangle pairg. They cluster poses determined from
orthographic projection with known scale. Objects are such triangle pairs in a three-dimensional space qua
modeled by straight edge segments. They solve for tizing the translational portion of the pose. The rota
the best translation and rotation in the plane for each tional parameters and geometric constraints are the
match between an image edge and a model edge forused to eliminate incorrect triangle pairs from eacl
each viewpoint on a discretized viewing sphere and cluster. Optimization techniques are described that d.
cluster these transformations. In the second, they con-termine the pose corresponding to each cluster acc
sider the recognition of three-dimensional objects that rately.
lie on a known ground plane using a camera of known  Grimson and Huttenlocher (1990) show that noise
elevation. Matches between oriented feature points areocclusion, and clutter cause a significant rate of fals
used to determine the three remaining transformation positive hypotheses in pose clustering algorithms whe
parameters. using line segments or surface patches as features
Turney et al. (1985) describe methods to recog- two-andthree-dimensional data. In addition, they sho
nize partially-occluded two-dimensional parts un- thatbinning methods of clustering must examine a ver
dergoing translation and rotation in the plane. A large number of histogram buckets even when usin
generalized Hough transform voting mechanism with coarse-to-fine clustering or sequential binning in or
votes weighted by a saliency measure is used to recog-thogonal spaces.
nize the parts. Grimson et al. (1992) examine the effect of noise
Dhome and Kasvand (1987) recognize polyhedra in occlusion, and clutter for the specific case of recogniz
range images using pairs of adjacent surfaces as fea4ing three-dimensional objects from two-dimensiona
tures. |Initially compatible hypotheses between such images using point features. They determine ove
features in the model and in the image are determined estimates of the range of transformations that take
and then clustering is performed hierarchically in three group of model points to within error bounds of hy-
subsets of the viewing parameters: the view axis, the pothetically corresponding image points. Using this
rotation about the view axis, and the model transla- analysis, they show that pose clustering for this cas
tion. Complete-link clustering techniques are used to also suffers from a significant rate of false positive
determine clusters with some maximum radius in each hypotheses. A positive sign for pose clustering fron
stage. The clusters from earlier stages are considerecthe work of Grimson et al. is that pose clustering
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produced false positive hypotheses with a lower fre- 11. Summary
qguency than the alignment method (Huttenlocher and
Uliman, 1990) when both techniques use only feature This paper has described techniques to efficiently pe
points to recognize objects. form object recognition through the use of pose clus
Cass (1988) describes a method similar to pose clus-tering. Of particular interest has been a theorem th:
tering that uses transformation sampling. Instead of shows that three different formalizations of the objec
binning each transformation, Cass samples the poserecognition problem are equivalent, and thus they ca
space at many points within the subspaces that alignbe used interchangeably, assuming that other parat
each hypothetical feature match to within some error eters are unchanged. This theorem has been used
bounds. The number of features broughtinto alignment show that object recognition using pose clustering ca
by each sampled point is determined and the object’s be decomposed into small subproblems that examir
position is estimated from sample points with maxi- only the sets of feature matches that include some in
mum value. This method may miss a pose that brings tial set of matches. Randomization has been used
many matches into alignment, but it ensures that the limit the number of such subproblems that need to b
matches found for any single sample point are mutu- examined. The overall time required for recognizing
ally compatible. three-dimensional objects using feature points has be!
Another related technique is to divide pose space shown to beD(mr?) for m model features andimage
into regions that bring the same set of model and im- features, the lowest known complexity for this prob-
age features into agreement up to error bounds (CassJem. Since far fewer poses are clustered at a time, th
1992). For the two-dimensional case, if each image method can be implemented using much less memo
pointis localized up to an uncertainty region described than previous pose clustering systems. The total spa
by a k-sided polygon, then each of then possible requirement iO(mn).
point matches corresponds to the intersectidatulf- An improved analysis on the rate of false positive:
spaces in four-dimensions. The equivalence classesthat are expected for a given image complexity ha
with respect to which model and image features are been given. While the results indicate the rates ai
brought into agreement can be enumerated using com-slightly worse than previously thought, analysis ha:
putational geometry techniques (Edelsbrunner, 1987) shown that a fundamental bound exists on the rate ¢
in O(k*m*n*) time. The case of three-dimensional false positives that can be achieved by algorithms th.
objects and two-dimensional images is more difficult recognize objects by finding sets of features that can |
since the transformations do not form a vector space. brought into alignment. Within the limitations of this
But, by embedding the six-dimensional pose space in bound, pose clustering performs well.
an eight-dimensional space, it can be seenthatthere are A new formalization of clustering using efficient his-
O(k8men®) equivalence classes. Not all of the equiva- tograming has been given. This formalization casts th
lence classes must be examined, particularly if approx- recursive histograming of poses as a pruned tree sear
imate algorithms are used to find transformations that Since there ar®©(n) unpruned branches at each level
align many features. Several technigues to reduce theof the tree, this method achieves time and space that
computational burden of these techniques are given in linear in the number of poses that are clustered.
(Cass, 1993). Experiments have been described that have validat
Breuel (1992) has proposed an algorithm that recur- the performance of the system. The new techniques fir
sively subdivides pose space to find volumes where a greater percentage of the poses that correspond to
the most matches are brought into alignment. While correct cluster than previous techniques, when a co
this method has an exponential worst case complexity, rect pair of initial matches is used, and the size of fals
Breuel's experiments provide empirical evidence that, positivesfound in moderately complex images is smal
for the case of two-dimensional objects undergoing It has been verified experimentally that the number c
similarity transformations, the expected time complex- initial matches that must be examined to locate, witl
ity is O(mn) for line segment features (@(m?n?) for high probability, an object thatis presentin the image i
point features). The case of three-dimensional objects O(n?), even when noisy features are considered. TF
and two-dimensional data is not discussed at length, butlargest source of error in the experiments arose fror
if the expected running time remained proportional to the use of weak-perspective as the imaging model, su
number of constraint regions then it would®ém3n3) gesting thatits use is limiting the performance of objec
for point features. recognition algorithms in some cases.
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The algorithm has considerable inherent parallelism

and can be implemented on a parallel system simply by
dividing the subproblems among available processors.
It has been observed that the implications of the the-

orem showing the equivalence of several formalisms
of the object recognition problem apply to alternate
methods of recognition and can yield improvements

even when pose clustering is not used. We conclude by

noting again that, while we have considered primarily
the problem of 3D from 2D recognition using feature

Cass, T.A. 1992. Polynomial-time object recognition in the pres
ence of clutter, occlusion, and uncertaintyAroceedings of the
European Conference on Computer Visipp. 834—-842.

Cass, T.A. 1993. Polynomial-Time Geometric Matching for Object
Recognition. Ph.D. thesis, Massachusetts Institute of Technolog

Chin, R.T. and Dyer, C.R. 1986. Model-based recognition in robo
vision. ACM Computer Survey48(1):67-108.

Day, W.H.E. and Edelsbrunner, H. 1984. Efficient algorithms for
agglomerative hierarchical clustering methaktsirnal of Classi-
fication 1(1):7-24.

Defays, D. 1977. An efficient algorithm for a complete link method.
Computer Journal20:364—-366.

points, these techniques are general in nature and carbeMenthon, D. and Davis, L.S. 1992. Exact and approximate S

be applied to other recognition problem where we have

a method for determining the hypothetical pose of an
object from a set of feature matches.
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Note

1. This assumes tha€ > (fm)2. On the other end of the scale,
kmin approaches 0 a¢ m/n)2 approaches 1, although, of course,

kmin can never be less than one, since we must take an integral

number of trials. Kmi, is still O(n2/m?) in this case, since we
must havam = O(n) for recognition to succeed.
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