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Abstract The problem of classifying the convex pentagons that admit tilings of the plane
is a long-standing unsolved problem. Previous to this article, there were 14 known distinct
kinds of convex pentagons that admit tilings of the plane. Five of these types admit tile-
transitive tilings (i.e. there is a single transitivity class with respect to the symmetry group
of the tiling). The remaining 9 types do not admit tile-transitive tilings, but do admit either
2-block transitive tilings or 3-block transitive tilings; these are tilings comprised of clusters
of 2 or 3 pentagons such that these clusters form tile-2-transitive or tile-3-transitive tilings. In
this article, we present some combinatorial results concerning pentagons that admit i-block
transitive tilings for i € N. These results form the basis for an automated approach to finding
all pentagons that admit i-block transitive tilings for eachi € N. We will present the methods
of this algorithm and the results of the computer searches so far, which includes a complete
classification of all pentagons admitting i-block transitive tilings for i < 4, among which is
anew 15th type of convex pentagon that admits a tile-3-transitive tiling.

Keywords Tiling - Tessellation - Pentagon
Mathematics Subject Classification 05B45 - 52C20
1 Preliminaries

A plane tiling .7 is a countable family of closed topological disks .7 = {Tj, T», ...} that
cover the Euclidean plane [E? without gaps or overlaps; that is, 7 satisfies
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1. UTi = [E?, and

ieN

2. int(T;) Nint(T;) = ¥ when i # j.

The sets T; are called the tiles of 7. If the tiles of .7 are all congruent to a single tile T,
then .7 is monohedral with prototile T and we say that the prototile T admits the tiling 7.
Any nonempty intersection of two distinct tiles of .7 is a set of isolated arcs and/or points.
These arcs are called the edges of .7, and the isolated points, along with the endpoints of
the edges, are called the vertices of .7. In this paper, only tilings whose tiles are convex
polygons are considered. To distinguish between features of the tiling and features of the
polygons comprising the tiling, the straight line segments forming the boundary of a polygon
will be called its sides and the endpoints of these straight segments will be called its corners.
If the corners and sides of the polygons in a tiling coincide with the vertices and edges of the
tiling, then the tiling is said to be edge-to-edge.

A symmetry of  is an isometry of E? that maps the tiles of .7 onto tiles of 7, and the
symmetry group of 7, S(.7), is the collection of all such symmetries. If S(.7) contains two
nonparallel translations, .7 is periodic. Two tiles Ty, T> € 7 are said to be equivalent if there
is a symmetry o € S(7) such that o(Ty) = T». If all tiles of .7 are equivalent, .7 is said to
be tile-transitive (or isohedral). Similarly, if there are exactly k distinct transitivity classes
of tiles of .7 with respect to S(7), then J is tile-k-transitive. The tile-transitive tilings of
the plane have been classified up to topological equivalence [5], and this classification will
be central to the methodology presented in this article.

The tiles of .7 are uniformly bounded if there exist parameters u, U > 0 (called the
inparameter and circumparameter of .7, respectively) such that every tile of .7 contains a
disk of radius « and is contained in a disk of radius U. A tiling .7 is normal if three conditions
hold:

1. Each tile of .7 is a topological disk,
2. The intersection of any two tiles of .7 is a connected set, and
3. The tiles of .7 are uniformly bounded.

The patch of 7 generated by the disk D(r, P) of radius r centered at point P is the set
of tiles <7 (r, P) C 7 that meet D(r, P), along with any additional tiles in .7 required to
make the union of the tiles in <7 (r, P) a closed topological disk. The numbers of tiles, edges,
and vertices of .7 contained in <7 (r, P) will be denoted by #(r, P), e(r, P), and v(r, P),
respectively. The following is a fundamental result concerning normal tilings.

Theorem 1 (Normality Lemma [5]) Let .7 be a normal tiling. Then for any real number
x>0,
t(r+x, P)
im —— = 1.
r—oco  t(r, P)
A normal tiling .7 is balanced if the following limits exist.
v(r, P) e, P)

v(T) = rlinc}o [ P) and e(7) = rli)n;o [ P)

ey
Balanced tilings have the following nice property.

Theorem 2 (Euler’s Theorem for Tilings [5]) For any normal tiling .7, if either of the limits
v(T) or e(T) exists (and is finite), then so does the other. Moreover, if either of the limits
v(7) or e(7) exists, 7 is balanced and

() =e(T) — L. 2)

@ Springer



Geom Dedicata (2018) 194:141-167 143

(b) (c) (d)

Fig.1 The three classes of convex hexagons that admit tilings of the plane. a A labeled hexagon,b A+B+C =
2r;a=d,cA+B+D=2n;a=d;c=eanddA=C=E =2n/3;a=b;c=d;e=f

As we pointed out earlier, this article concerns monohedral tilings by convex polygons.
Any such tiling is clearly normal (and hence locally finite). Later we will be making sym-
metry hypotheses about the tilings of interest, which will imply the balanced condition as
well.

1.1 Monohedral tilings by convex pentagons

This article is concerned with monohedral tilings of the plane in which the prototile is a
convex pentagon. It is known that all triangles and quadrilaterals (convex or not) tile the
plane. It is also known that there are exactly 3 classes of convex hexagons that tile the plane
[7]. Figure 1 shows how the convex hexagons that admit tilings of the plane are classified in
terms of relationships among their angles and sides.

It has also been shown that convex n-gons with n > 7 admit no tilings of the plane [5,10].
Previous to this article, there were 14 known distinct classes of convex pentagons that tile
the plane (Fig. 2). The labeling system for pentagons is the same as that of the hexagons in
Fig. 1.

The history of the problem of classifying the convex pentagons admitting tilings of the
plane is very rich. The first 5 types admit tile-transitive tilings of the plane; it was shown
by Reinhardt [11] that any convex pentagon admitting a tile-transitive tiling of the plane
is one of these 5 types. Reinhardt was a one-time assistant of Hilbert. Hilbert’s 18th prob-
lem asks whether or not there exist 3-dimensional tiles that admit only non-tile-transitive
tilings. It is thought that Hilbert did not state the 2-dimensional version of this problem as
he believed that no such tiles exist [5]. Rienhardt [12] solved Hilbert’s 18th problem by
demonstrating a 3-dimensional tile that admits only non-tile-transitive tilings of space. How-
ever, in the same article, Reinhardt asserted (but did not prove) that a 2-dimensional analog
does not exist. Heesch [6] provided a counterexample to Reinhardt’s assertion by demon-
strating a 2-dimensional tile that admits only non-tile transtitive tilings, thereby opening
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Type 2

S
(SIS,

Type 11
A==xn/2,C+E=m,
2B + C = 2m;
d=e=2a+c

Type 10
E==xn/2, A+ D =m,
2B — D = 7,2C + D = 2m;
a=e=b+d

Type 13
A=C=mx/2,
2B =2E =27 — D;
c=d,2c=¢e

Fig. 2 Pentagon Types 1-14
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Type 3
A=C=D =2n/3;

Type 6

Sl
Prda=<a
Y

Slss:

Type 12
A==n/2,C+E=m,
2B + C = 2m;
2a = c+e=d

Type 14
D=mx/2 2E+ A = 2,
A+ C =m;
b=c=2a=2d
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(a) (b)

Fig. 3 A pentagon tiling .7 and a corresonding 2-block tiling .#. a A type 7 tiling .7 and b a corresponding
tiling .# tiling by 2-blocks

up the possibility of the existence of convex pentagons admitting only non-tile-transitive
tilings.

In 1968, convex pentagons that admit only non-tile transitive tilings were found. Types
6-8 were discovered by Kershner [9]. Kerschner claimed in the same article that types 6-8
completed the classification of convex pentagons admitting tilings of the plane. Gardner [3]
reported on Kershner’s work in Scientific American, and soon thereafter several new types
were found. Type 9 and 11-13 were discovered by M. Rice, and Type 10 by R. James [13]. In
[13], D. Schattschneider gives an interesting history (up to 1978) of the problem of classifying
convex pentagons that admit tilings of the plane, especially with respect to the contributions
of M. Rice.

Since that time, the 14th type of pentagon was discovered in 1985 by R. Stein. Additionally,
convex equilateral pentagons that admit tilings ([1,8]) and convex pentagons that admit edge-
to-edge tilings [2] have been completely classified and are all among types 1-14. In this article
we will present a new type of pentagon (Type 15), as well as the results of our exhaustive
computer search for convex pentagons that admit i-block transitive tilings for i < 4.

An i-block transitive tiling .7 is a monohedral tiling by convex pentagons that contains
a patch Z conisting of i pentagons such that (1) .7 consists of congruent images of %, and
(2) this corresponding tiling by copies of Z is an isohedral tiling, and (3) i is the minimum
number of pentagons for which such a patch % exists. Such a patch & will be called an
i-block, and the corresponding isohedral tiling will be denoted by .#.

If v is a vertex of both .7 and .#, then let V7 (v) denote the valence of v in .7 and let
V.~ (v) denote the valence of v in .#. For example, for the designated vertex v in Fig. 3, we
see that Vo (v) = 4, while V.» (v) = 3.

Note that any periodic tiling by convex pentagons is necessarily i-block transitive for
some i (consider the pentagons comprising a fundamental region of the periodic tiling). It
would be reasonable to conjecture that any unmarked convex pentagon that admits a tiling of
the plane admits at least one periodic tiling; that is, it would be reasonable to conjecture that
there are no aperiodic convex pentagons. If this conjecture is true, then all convex pentagons
that admit tilings of the plane also admit at least one i-block transitive tiling. Thus, the class
of pentagons being studied in this article may well encompass all possible pentagons that
admit tilings of the plane.
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2 Combinatorial results concerning i-block transitive tilings

Suppose that a convex pentagon admits an i-block transitive tiling .7, let Z be an i-block of
7, and let P be any pentagon in 4. Define a node of P to be any vertex of .7 that lies on
P. Note that the corners of P are necessarily nodes, but P may have nodes at other points
besides its corners if the tiling is not edge-to-edge.

Theorem 3 For an i-block transitive tiling 7 with i-block B, suppose % has exactly n
nodes, counted with multplicity at nodes shared by multiple pentagons of %, and let o
denote the valence in  of the j-th node of . Then .7 is balanced with

1 1
W T) =2 o ©)
j=1

and .
e(T) = % “4)
l

Proof All tile-transitive tilings are periodic, and from this it follows that .7 is periodic as
well. Additionally, all periodic tilings are balanced [5], and so .7 is balanced, and so the
limits v(.7) and e(.7) exist.

To find a formula for v(.7), let P be any point of the plane and let » > 0. In the patch
o (r, P),

t(r, P) <& 1
oir Py~ )Z;.
="

i

The reason this estimate is not exact is due to i-blocks and partial i-blocks on the boundary
of .o/ (r, P) whose pentagons are not completely surrounded by other pentagons in the patch.
Observe that for large r,
t(r —2iU, P) - 1
=20 RS L by <

l o
="

t(r +2iU, P) - 1
_ —, 5
i ; aj )
where U is the circumparameter of .7. The lower bound on v(r, P) holds since no i-block of
o/ (r — 2iU) meets any i-block on the boundary of <7 (r, P), and similarly the upper bound
follows from the fact that no i-block of .7 (r, P) meets a boundary i-block of <7 (r + 2iU).
Upon dividing Inequality 5 through by #(r, P), letting r — o0, and applying the Normality
Lemma, we arrive at the desired result.
A similar argument establishes Eq. 4. O

Substituting Eqs. 3 and 4 in to Eq. 2 yields the following result.

Corollary 1 For ani-block transitive tiling whose i-blocks each have n nodes (counted with
multiplicity), we have the following Diophantine equation.

1 n-—2i
Y= ©®)
j=1%

Note that since each pentagon has at least 5 nodes, we have n > 5i. Also, note that the
left-hand side of Eq. 6 is maximized when «; = 3 for every j, which implies that n < 6i.
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Corollary 2 For ani-block transitive tiling whose i-blocks each have n nodes (counted with
multiplicity), we have
5i <n <6i. (7)

Inequality 7 is nice as it establishes an upper bound on just how badly non-edge-to-edge
an i-block transitive tiling can be. Consequently, as we will see in Sect. 4, for each positive
integer i, there are only a finite number of types of convex pentagons that admit i-block
transitive tilings.

We note a few other interesting consequences of Theorem 3. Let 3, and 3,.x denote the
minimum and maximum number of 3-valent nodes of an i-block with n nodes (counted with
multiplicity). Notice that the left-hand side of Eq. 6 is minimized when as few as possible of
the a;’s are 3’s, 50 3y is determined by solving the equation

n—2i 3min 7 — 3min

2 3 4

for 3min, obtaining
3min = 31 — 12i. 3)

Similarly, since the number k of 3-valent nodes in an i-block must satisfy

k n—2i
- < s
37 2
we see that
3n — 6i
3max = ) . (9)

We may make another observation concerning Eq. 6: If p is the average vertex valence,
then

n_ n—2

p2
SO

_ 2n

P=5

and by Inequality 7, we see that
10
3<p=< 3 (10)

p = 3 corresponds to the case that pentagons of .7 have on average 6 nodes (allowing for
straight angles in non-edge-to-edge tilings by pentagons), and p = 10/3 corresponds to the
case that the tiling is edge-to-edge (corresponding to a result in [1]). This makes it clear that
in any i-block transitive tiling, there will be some 3-valent nodes and (except when p = 3)
some nodes with valence k > 4.

For specific values of n and i, all solutions (for the ;) of Eq. 6 can be found. If
o1, a2, ..., 0, is a solution, we will denote that solution by (aj.cs. . ... o) and call it an
(i, n)-block species. We will use exponents to indicate repeated values of «;. For example,
in Fig. 3, the 2-block is of species (4.3.3.4.4.4.3.3.3.3) = (44.36>. In Table 1, all (i, n)-block
species are listed for n < 3.
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3 Possible topological types for (i, n)-block species

A tiling .7 is said to be topologically tile-transitive (or homohedral) if it is normal and for
any two tiles 77 and 7> in .7, there exists a homeomorphism of the plane mapping 7 onto
7 and T onto T». In [5], the authors show that topogically tile-transitive tilings can be
classified into 11 fopological types. These types are described in terms of the valences of the
vertices of the tiling on the boundary of the tiles of the tiling. So, for example, the topological
type notation [33.42] indicates that in this type of topologically tile-transtivite tiling, each
tile has 5 vertices, and reading around the tile in some direction, you will see three vertices
of valence 3, followed by two vertices of valence 4. Noting that any tile-transitive tiling is
also topologically tile-transitive, we know that any tile-transitive tiling belongs to one of the
following 11 topological types: [3°], [34.6], [33.42], [3%.4.3.4], [3.4.6.4], [3.6.3.6], [3.12?],
[4%], [4.6.12], [4.8%], and [6°].

Let .7 be an i-block transitive tiling by congruent convex pentagons and let .# be the
corresponding isohedral tiling by i-block %. Since .# is isohedral, then it is one of 11
topological types, and from among these 11 topological types, the maximum vertex valence
is 12 [5]. Further, since at most i pentagons meet at any node of %, then in Eq. 6, we must
have

aj < 12i (11)

for all j. Inequality 11 ensures that Eq. 6 has finitely many solutions for any i and that these
solutions can, for small values of i, be quickly found using a simple computer algorithm.
The numbers in {V.~ (v)|v is a vertex of .# N .7} are exactly the numbers appearing in the
topological type for .#, and this observation gives rise to the following facts.

Lemma 1 A vertex v of both .9 and T satisfies

V() < Vg (v)

Vo (v) < 3i if & has topological type [3°]

V7 (v) < 4i if F has topological types [33.4%), [3%.4.3.4], or [4*]

V7 (v) < 6i if Z has topological types [34.6], [3.6.3.6], [6°], or [3.4.6.4]
V2 (v) < 8i if & has topological type [4.8%]

Vg (v) < 12i if & has topological type [3.12%]

A e

Referring to Fig. 3, we see that the inequality of Lemma 1, Part 1 need not be an equality.
The next results concerns those vertices of .7 that are not also vertices of .#; these vertices
are in the interior of edges in ., and as such, these vertices play a key role in how copies of
i-blocks can meet in .7.

3.1 Adjacency conditions for i-blocks

Let % be an i-block for an i-block transitive tiling .7, and let B, B2, ..., B, be the vertices
of .7 on the boundary of %, taken in order with respect to an orientation on 4. Let b; denote
the number of pentagons of A that are incident with g;. Then the boundary code of % is the
finite sequence

3(B) = biby .. .by.

For example, the 2-block of Fig. 3 has boundary code d(#) = 21112111.
Because 4 is a prototile for isohedral tiling .#, then % has an associated incidence symbol
that prescribes the manner in which copies of % are surrounded by incident copies of Z.
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For example, if .# is of isohedral type IH12, which has topological type [3°] and incidence
symbol [abtcTdc™b™; dc™b™al, then 4 tiles the plane as a topological hexagon, and its
boundary is partitioned into 6 arcs that must match one another according to the incidence
symbol (we refer the reader to [4] or [5] for an explanation of incidence symbols). A valid
partition of the boundary of % must be compatible with this incidence symbol. The endpoints
of the arcs forming the partition of the boundary of # will be indicated by placing over bars
on the corresponding entries of d(%); we will call a boundary code so marked a partitioned
boundary code and denote it by 3(%). For example, the 3-block of Fig. 3b has partitioned
boundary code

The unmarked elements in 3(Z) correspond to the vertices of .7 on the boundary of % that
are not vertices of .#. Thus, an edge of % of length k corresponds to a subsequence of 9(%)
of the form

e =Dbibi11bi+2bi1k—1biyk-

As in the incidence symbols for the isohedral types, we will use superscripts to indicate the
orientation of edges with respect to their mother tiles.

Lemma 2 (The Matching Lemma) Let
e1 = bibit1bito ... biyi_1biykand ey =bjbji1bjta...bjik—1bjik
be two length k edges on the boundary of %, allowing for the possibility that e} = e;.

1. €] may meet e (or e] may meet €3 ) if bii + bjrk—r = V7 (Bist) = V7 (Bjri—r) for
each integert, 1 <t <k — 1.

2. e?‘ may meet ey ifbiy, +bjyy = Vg (Biy) for each integert, 1 <t <k — 1.

e1 may meet e if both of the previous two conditions hold.

4. (1s cannot meet 1s) In particular, in the case that efr meets e;, we must have bjy; +
bjik—¢ = 3, so it can never be the case that bj+; = 1 = bj . Similarly, in the case
that ei" meets e, , it never happen that by, =1 =bj,.

5. (Interior vertices cannot be too large) For each vertex B in the interior of an edge on the
boundary of B, V7 (B) < 2i.

W

Because any vertex of the boundary of % must be matched with at least one other vertex
on an adjacent copy of %, the Matching Lemma implies the following result, which can be
used to eliminate possible topological types for a given (i, n)-block species.

Lemma 3 Let 2 be of (i, my + my + - - - + my)-block species type (o' .y, ... o).

L. Ifthe boundary of % contains a vertex v; with Vg (v;) = ap > 2i and m,, = 1, then the
topological type of .# must contain the number op.

2. If the boundary of % contains vertices v; # vj witha, = Vg (v;) = Vg (vj) > 2i and
mp =2, then the topological type of % must contain the number o, twice.

3. If the boundary of % contains a vertex v; that is incident with 2 pentagons of %, o) =
Vg (vi) > 2i, and m, = 2, then the topological type of .9 must contain the number
ap/2.

Lemmas 1, 2, and 3 can be used to eliminate several topological types for a given (i, n)-
block species. For example, for the (1, 5)-block species <33 .42), Lemma 1 Part 1 says possible
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topological types for .# contain at most three 3s, at most two 4s, and no other numbers. This
leaves only [33.4%] and [32.4.3.4]. For the (1, 5)-block species (34.6>, the only possible
topological type for .7 is [3*.6].

In a similar way, we can eliminate possible topological types corresponding to larger
values of i. Consider the (3, 15)-block species (3'°.8.24). The vertex of valence 24 very
much restricts the possible topological types for .#; since 24 > 6 - 3, Lemma 1 says that no
vertex of .7 can have valence 24 and simultaneously be a vertex of .# unless the topological
type of .# has a vertex of valence 8§ or greater. Further, since 24 > 2 - 3, Lemma 2 Part 5
guarantees that no vertex in .7 but not in .# can have valence 24. Thus, .# cannot be of
topological types [3°], [33.4%], [32.4.3.4], [4%], [3.6], [3.6.3.6], [6°], or [3.4.6.4]. Thus, in
any 3-block transitive tiling of species type (313 .8.24), the only possible topological types are
[4.82] and [3.122]. But, using Lemma 3 Part 1, we can eliminate both of these two remaining
topological types since neither of these topological types contains 24.

As another example, consider the (4, 20)-block species <3]7.5.152). Since 15 > 2 - 4,
Lemma 3 Parts 2 and 3 implies that the permissible topological types for .# must contain 15
twice or 15/2. Notice that there are no topological types satisfying these conditions.

We provide one last lemma that relates partitions of the boundary of an i-block to corre-
sponding possible topological types for the i-block.

Lemma 4 Let A = #1's — #non-1"s in 9(%).

1. If A > 6, B does not admit a tile-transitive tiling of the plane.

2. If A = 6, B admits only tile-transitive tilings of topological type [3°], and every marked
element ofg(,@) isal.

3. If A = 5, B admits only tile-transitive tilings of hexagonal or pentagonal topological
types, and every marked element of 9(B) is a 1.

4. If A = 4, BB admits only tile-transitive tilings of hexagonal, pentagonal, or quadrilateral
topological types. For pentagonal and quadrilateral types, every marked element of 3 (%)
is a 1, and for hexagonal types, five 1’s of 3(2) must be marked.

Lemma 4 is useful in a few ways. First, for a particular generalized (i, n)-block, we may
(at a glance) eliminate certain possible topological types from consideration. Secondly, this
lemma drastically limits the number of ways that (%) can be partitioned.

In Table 1, we have organized the (i, n)-block species and the corresponding possible
topological types for i < 3.

4 An algorithm for enumerating all pentagons admiting i-block transitive
tilings

For fixed i, the following procedure will determine all possible systems of equations corre-
sponding to i-block transitive tilings.

1. Enumerate all topological i-block forms with n nodes (subject to the restriction that
5i < n < 6i from Inequality 7. This part of the procedure was done by hand for
i =1,2,3,and 4.

2. For each topological i-block with assigned flat nodes, generate every possible labeling
of the constituent pentagons’ angles and sides with A, ..., E anda, ..., e.

3. In every way possible, assign the value of 7 to nodes in the pentagons of the i-block
form having more than 5 nodes, leaving each pentagon with exactly 5 unlabeled nodes.
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Table 1 All (i, n)-block species for 1 <i <3

(i) (i, n)-block species Possible topological types for .7
(1,5 (33.42> (33.42], [32.4.3.4]
(34.6> (34.6]
(1.6 (3°) [3°)
2, 10) (38.4.12> -
(38.62> (361, [34.6]. [3.6.3.6]
(37.42.6> (34.6]
(30.4%) (3°], [33 4%, [32 4.3.4], [4%]
@, 11 <31°.e (34.6]
(39.42> 36], [33.42], [32.4.3.4]
2.12) (312> 3]
(3.15) (313 7.42> -
(313.8.24>
<313.9.18>
(313 .10. 15)
(312.4.5.20>, -
(312.52.10>,
<31 143, 12)
(313.122) [34.6], [3.122]
<312 4.6.12> (4.6.12]
(312.4.82> (33.42], [32.4.3.4], [4.82]
(312.63> [3°], [33.4%], [32.4.3.4], [3.6], [3.6.3.6], [6°]
(3“.42.62> [36], [33.42], [32.4.3.4], [4*], [3* .61, [3.6.3.6], [3.4.6.4]
<310_44.6> (361, [33.42], [32.4.3.4], [44], [3*.6]
(39.46) (301, [33.42], [3%.4.3.4], [4%]
(3, 16) (314.4.12> -
(314.62> (36], [33.42], [32.4.3.4], [3* 6], [3.6.3.6]
(313.42.6) [36], [33.42], [3%.4.3.4], [3* 6], [3.4.6.4]
<312.44> [36], [33.42], [3%.4.3.4], [4%]
3,17) (316.6) (3%, (3*.6]
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Table 1 continued

@i, n) (i, n)-block species Possible topological types for .#
(315.42) (30], (33 42, [32.4.3.4]
(3.18) (3"%) [36]

4. For each i-block form, generate every partition of the boundary into 3, 4, 5, or 6 consec-

utive arcs.

For each such boundary partition, determine all compatible isohedral types.

6. For each fully-labeled topological i-block, apply the adjacency symbol of each compat-
ible isohedral type to the partition in every way possible.

7. For each application of the adjacency symbol, generate the corresponding set of linear
equations relating the sides and angles of the pentagons of the i-block and determine if
this system of equations is consistent. Any inconsistent linear systems are discarded.

8. For each consistent system, determine whether or not the resulting system of equations
implies that the pentagon is of a previously known type.

9. For any system of equations not identified as a previously observed type, determine
if a pentagon satisfying these equations is geometrically realizable. That is, determine
whether or not such a pentagon can additionally satisfy the system of equations corre-
sponding to a 0 vector sum for the sides under the constraint of positive side lengths and
angle measure strictly between 0 and 7.

b

We will illustrate process for a sample 2-block and, separately, a sample 3-block. While all
of our results for enumerating pentagons admitting 1-, 2-, and 3-block transitive were deter-
mined by a single automated system (except parts corresponding to steps 1 and 9 above),
as a double-check on our automated algorithm, we separately enumerated the pentagons
admitting 1-block transitive tilings completely by hand (1), and we separately enumerated
the pentagons admitting 2-block transitive tilings partially by hand and partially using Math-
ematica code to automate the label applications and the linear system solving.

4.1 Illustrating the algorithm with a 2-block example

To facilitate discussion of 2-blocks in general, we will use regular shapes to represent the
pentagons comprising the 2-blocks, even though in any actual 2-block, the two (congruent)
pentagons are irregular. To make the number of flat nodes visually apparent, we will represent
5-node pentagons as regular pentagons, 6-node pentagons (1 flat node) as regular hexagons,
and 7-node pentagons (2 flat nodes) as regular heptagons. By Inequality 7 the number of
nodes n (counted with multiplicity) in a 2-block satisfies 10 < n < 12, so there are 4 ways
to represent 2-blocks in terms of the numbers of nodes; these are depicted in Fig. 4. In these
topological 2-blocks forms, it is important to note that in any hexagon, one of the corners
must represent a flat node, and in any heptagon, 2 of the corners must represent flat nodes.

Now, to illustrate the algorithm outlined above, for step 1, let us pick the topological
i-block form above represented in Fig. 4c. For steps 2 and 3, without loss of generality,
label the vertices of the left pentagon of Fig. 5 with A, B, C, D, and E. The right pentagon,
however, may be in several different orientations with respect to the choice of labeling of
the first pentagon. We choose variable labels 7, U, V, W, X, Y, and Z for the nodes of this
second pentagon (Fig. 5).
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(@) (b) (0 (d)

Fig. 4 All possible topological 2-blocks forms. a n = 100(#) = 21112111, bn = 119(#) = 211121111,
cn=120(%) =2111211111 andd n = 120(%) = 2111121111

Fig. 5 Partially labeled 2-block

These variables may assume the values A, B, C, D, E, or  (two of the nodes on the heptagon
is a flat node). For example, the substitution 7 = A, U = B,V =C, W = D, X = E,
Y = m, and Z = & yields the labeling of nodes in Fig. 6.

For step 4, notice that the boundary code for the 2-block in this case is 2111211111, for
which A from Lemma 4 is A = 6. By Lemma 4, such a 2-block can admit isohedral tilings
of hexagonal types only, and every marked element of 3(%) must be a 1. Note also that two
consecutive 1’s cannot occur in the interior of a boundary edge of Z. After using Lemma 4
and our previous observation to filter out unusable boundary partitions, we are left with the
boundary partitions in Table 2, completing step 4 of the algorithm.

For our example, let us pick the partitioned boundary code 9(#) = 2111211111. In Fig. 5
we have indicated this partition by putting white dots on the nodes marking the end points
of the partition edges. For step 5, we must determine which isohedral types are compatible
with this partition. The compatible isohedral types are determined by comparing the edge
lengths in 3(2) to the edge transitivity classes required for the isohedral types, as well as by
applying the Matching Lemma. In doing this, we find that the compatible isohedral types are
IH4, IHS, and [H6. Each compatible isohedral type will in turn be checked, but to illustrate
our method, let us suppose our blocks form an IH6 tiling. The adjacency symbol for IHG6 is
[athtctdtet fT;aTe ¢t f~b~d™]. For step 6, we apply the IH6 adjacency symbol in
every possible way to this labeled 2-block, as indicated by the red arcs labeled with Greek
characters in Fig. 6. In this case, there is only one way to apply the adjacency symbol.
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Fig. 6 THG6 labeling of a 2-block after substitutions

Table 2 Boundary partitions for

pentagon-heptagon 2111211111 2111211111 2111211111
(2, 12)-blocks 2111211111 2111211111 2111211111
2111211111 2111211111 2111211111
2111211111 2111211111 2111211111
2111211111 2111211111 2111211111
2111211111 2111211111 2111211111
2111211111 2111211111 2111211111
2111211111
For step 7, from Fig. 6, the following system of equations are gleaned.
2A+B=2m
2C+m =2m
2D+ E =27
E+B+nmn=2n
a=b>b
cte=y+z
2c+e=t+y+z
a=t+y+z
Finally, for step 8, upon simplfying the equations and eliminating the variables ¢, u, .. ., z,

we arrive at the set of equations
2A+B=2m
C=mn/2
D=3n/2-A
a=>

e=a—2c.
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Any pentagon admitting such a 2-block is then quickly identified as a Type 11 pentagon.

4.2 Tllustrating the algorithm with a 3-block example

For step 1 of our algorithm for finding all convex pentagons admitting 3-block transitive
tilings, we determine all of the possible topological 3-block forms. This part of the process
was done by hand. In Fig. 7, we show all possible topological 3-block forms (up to rotation
and reflection).

To illustrate subsequent steps of the algorithm, let us choose the 3-block form of Fig. 8
which has boundary code 1121121112 (starting at the top node and going counterclockwise).
For steps 2 and 3, we must assign labels and 7 nodes in every possible way to the nodes of
this block. One such way of doing so is shown in Fig. 8.

For step 4, we must partition the boundary of this 3-block form, in every possible way, into
3,4, 5, and 6 arcs. Since there are 10 sides on the boundary of this 3-block form, partitioning
the boundary corresponds to finding all cyclically equivalent integer partitions of the integer
10 into 3, 4, 5, and 6 integers. For example, consider the integer partition {1, 1, 2, 2, 2, 2}
of 10; this integer partition gives the number of sides per boundary edge in a partition of
the boundary into 6 arcs. Applying this integer partition, we obtain the partitioned boundary
code 1121121112. In Fig. 8, the vertices labeled with white dots indicate the endpoints of the
edges forming this partition of the boundary that we will use to illustrate subsequent steps
of the algorithm.

For step 5, we determine that the isohedral types compatible with this partition are IH2,
IHS, TH7, TH15, and IH16. Performing step 6, we choose isohedral type IH5 and apply
the adjacency symbol, [aTbtcTd et fT;ateTd c™b* fT], in every possible way. In this
particular example, there is a unique way to apply the adjacency symbol (up to symmetry),
as shown in Fig. 9.

For step 7, we simply read off the equations for the angles and sides from Fig. 9 to get the
following system of equations.

2A+B+C=2n

2E+A=2n
2D+ 1 =21
2C+E =27
2B+ D =2n
e=b=d
a=e+d

Upon simplifying this system, we obtain

A=mn/3
B =3n/4
C="7r/12
D=m/2
E =57/6

a=2b=2d =2e

For step 8, upon comparing this system to the previously known 14 types and any sets of
equations we have previously identified as impossible, we do not find a match. This leads us
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T T D b
a5 o a @

o @S o
& Pl oF

Fig. 7 All topological 3-block forms. The number labeling a polygon represents the number of nodes of the
pentagon it represents

to step 9: We must determine if this set of equations can be realized by a convex pentagon,
and if new information is learned about the side and angle relations in the process, we must
check if this new information yields a known type of pentagon. To test if these equations
can be realized by a pentagon, we view the edges of a hypothetical pentagon satisyfing these
equations as vectors and require that the sum of these vectors be 0. This results in a system
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Fig. 8 A labeled 3-block form

Fig. 9 A labeled IH5 3-block

of two equations:

a—bcosA+ccos(A+ B)—dcos(A+B+C)+ecos(A+B+C+D)=0 (12)
bsinA —csin(A+ B)+dsin(A+B+C)—esin(A+B+C+D)=0 (13)

Upon setting a = 1 (we may set the scale factor of the pentagon as we like) and substituting
the known angles and sides into Eqs. 12 and 13, we find that

1
‘=AY

satisfies both equations. Upon inspection, we see that this pentagon still does not match a
known type. Thus, the pentagon with these side lengths and angles measures is a new type
of pentagon (Type 15). This tile and a corresponding 3-block-tiling by this tile are shwon in
Fig. 10.

4.3 Untyped solutions

Our computer code generated several sets of equations whose solutions did not automatically
fallinto Types 1-14 and also could not immediately be dismissed as impossible. Initially, these
solutions were of extreme interest, for they might have represented new types of pentagons!
However, it turned out that these solutions cannot be satisfied by any convex pentagon, or
geometric constraints will generate additional information so that such a pentagon must be
of a known type. We call solutions such as these untyped. Our computerized enumeration
generated several untyped solutions. To keep this article to a reasonable length, we will not
provide the details for how each of these untyped solutions was reconciled, but we mention
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C = 105° c= ————
Va3 -1) ()
D = 90° d=1/2 A 3-block transitive tiling by the Type 15 pentagon.
E = 150° e=1/2 The thick white lines outline the 3-block, and the
colors of the tiles indicate the transitivity classes of
pentagons.

Fig. 10 The Type 15 pentagon

that it required several separate nontrivial arguments to show that these untyped solutions are
either impossible or can be categorized into the known 14 types. The following cases give a
good representation of the types of arguments we gave for them all.

A=2n/3,B=2n/3,C=n/2,D=2n/3, E=n/2,b=2a,e=d.
C=n—-A/2,D=2n—-2B,E=B—-A/2,a=b=d=c¢
C=n—-—A,D=B,E=A,b=c,andd =¢
B=n—-A/2,C=A/24+7n/2, D=7 —-A,E=n/2,b=2a+d,e=a+d
B=n—-A/2,C=A/24+n/2,D=n—-AE=n/2,b+d=2a,e=a

AR

4.3.1 Untyped solution 1
As is, this particular system looks very similar to the equations for a Type 3 pentagon, but it
does not quite match. However, upon setting the scale factor of a = 1 (so b = 2), substituting

into Eqs. 12 and 13, and solving for ¢ and d, we obtain ¢ = 1 and d = +/3. With this new
information, that c = 1 = a, we can positively type this set of equations as Type 3.

4.3.2 Untyped solution 2

Using the relations in this system, we can reduce Eq. 13 (with A; = C) to

. . . . (A+4B
sin(A/2) — sin B + sin(A 4+ B) — sin 5 =0.

Upon applying the sum-to-product identity for sine to the 1st and 4th terms and the 2nd and
3rd terms of this sum and factoring, we arrive at the equation

A+2B . .
2 cos 5 [—sin B +sin(A/2)] = 0.
Solving this equation for B (with the restriction 0 < A, B < m) gives B = —A/2 + /2,
B = A/2,or B= —A/2+ m. However, each of these solutions for B is impossible. If B =
—A /24 /2, then substitution into Eq. 12 gives ¢ = 2 cos(A/2)+2sin(A/2), and so in order
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that ¢ be positive we must have A > 7 /2. But this implies E = B— A/2 = —-A+n/2 <.
If B = A/2, substitution into Eq. 12 reveals that ¢ = 0. Lastly, if B = —A/2 + 7, then
substitution into Eq. 12 again implies ¢ = 0. Thus, this system of equations cannot be realized
by a convex pentagon.

4.3.3 Untyped solution 3

For the untyped solution 3, Eq. 13 along with the fact that A+ B+ C + D 4+ E = 37 gives
(c —d)[sin(A/2) + sin(A)] = 0.

Note that for 0 < A < 7 there are no solutions for

0 =sin(A/2) + sin(A) = sin(A/2) + 2sin(A/2) cos(A/2) = sin(A/2)[1 + 2 cos(A/2)].

Hence c = d sothatb = c =d = e. Since A + C = 7 and b = d, any pentagon satisfying

these equations is Type 2.

4.3.4 Untyped solution 4

For untyped solution 4, without loss of generality, assume @ = 1. Equation 13 gives
—1 4+ 2sin(A) + c¢sin(A/2) + d(—1 — cos(A) + sin(A)) = 0.

Note that —1 — cos(A) + sin(A) = 0 if and only if A = 7/2. In that case, A + E = 7 and
the pentagon is a Type I. Otherwise, suppose —1 — cos(A) + sin(A) # 0. Solving for d we
get
J= 1 —c¢sin(A/2) — 2sin(A)

~ —1—cos(A) +sin(A)

Substitution into Eq. 12 yields

—1+c(—2cos(A/2+sin(A/2))

0,
1 + cos(A) — sin(A)

from which we find that
1
c= .
—2cos(A/2) + sin(A/2)

Using that ¢ > 0, we need —2 cos(A/2) +sin(A/2) > 0 ortan(A/2) > 2. Since the tangent
function is increasing on (0, 7 /2), we get arctan(2) < A/2 < /2 or 2.21 ~ 2 arctan(2) <
A < m. Observe that —1 — cos(A) + sin(A) > 0 for 2.21 ~ 2arctan(2) < A < 7. The
requirement that d > 0 gives 1 — c¢sin(A/2) — 2sin(A) > 0 so that ¢ < %;&“/;;) This
inequality implies

1 1 — 2sin(A)
“2cos(A/2) +sin(A/2) ~ sin(A/2)

Since the denominators are positive we must have
sin(A/2) < (1 —2sin(A))(—2cos(A/2) + sin(A/2)).

This inequality is never satisfied for angles satisfying 2.21 ~ 2 arctan(2) < A < 7.
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Table 3 Types of pentagons

admitting i-block transitive Number of nodes Pentagon types found
tilings fori = 1, 2, and 3 n=>5 1,2,4,5
n==6 1,2,3
n =10 1,2,4,5,6,7,8,9
n=11 1,2,4,13
n=12 1,2,4,11, 12
n=15 1,2,5,6,7,9
n=16 1,2,3,4,5,6,15
n=17 1,2,10
n=18 1,2,3,10, 14

4.3.5 Untyped solution 5

For the 5th untyped solution, without loss of generality, assume a = 1. Equation 13 gives
—1 —2cos(A) + b(cos(A) + sin(A)) + csin(A/2) = 0.

Note that cos(A) + sin(A) = 0 if and only if A = 37 /4. In this case, Eq. 13 reduces
to —1 4+ +/2 + ccos(3x /8) = 0, yielding a negative value for c. Thus, we may suppose
cos(A) + sin(A) # 0. Solving for b in the Eq. 13 gives
b 14+ 2cos(A) — csin(A/2)
B cos(A) +sin(A)

Substitution into Eq. 12 gives

2 —2sin(A) + c(cos(A/2) + sin(A/2)) _
cos(A) + sin(A) -

0,

and solving for ¢ yields

_ 2(—1 +sin(4)
€7 Cos(A/2) +sin(A/2)°

From this we see that ¢ < 0, and so this untyped solution is impossible.

4.4 Summary of results obtained via computer for pentagons admitting 1-, 2-, 3-,
and 4-block transitive tilings

In Table 3 we provide a summary of the types of pentagons found by our computer search
among pentagons admitting 1-, 2-, and 3-block transitive tilings. We also completed a search
of all pentagons admitting 4-block transitive tilings, and we just note that this search produced
no new types of pentagons.

S Future work: i > 5
As i gets larger, the enumeration process outlined earlier grows rapidly in complexity. For
relatively small i, the method outlined in this article is applicable with the aid of a cluster of

computers. We are currently in the process of processing the pentagons that admit i-block
tilings when i > 5, and will update this article with further results as we obtain them. The
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Table 4 Isohedral types IH21-IH29 with edge transitivity classes

Topological type Isohedral type Incidence symbol Edge classes
[34.6] IH21 [atbTetdtet;etetbtatat afBya
[33.42] 1H22 [atbTetdtet;a"etd ¢ b afyyB
IH23 [atbtctdtet;atetctatnT) aBysp
1H24 [atbtctdtet;a=etctadtpT) aBydp
IH25 [atbTcTdtet;atetd=c™bT] afyyB
IH26 [abTcTe b ab~ T afyyB
[32.4.3.4] IH27 [atbtctdtet;atd=e b7 aByBy
TH28 [atbtctdtet;atetd—c b1 apByy
IH29 [abTcTe b~ acth™) aBpBB

main challenge in extending this search is in efficiently understanding untyped solutions that
arise. For a given untyped solution, one way to detect if the solution can be realized by a
convex pentagon involves solving the system of equations given by Eqs. 12 and 13. However,
for many untyped solutions this system has 3 or more variables. Understanding the solution
set for such a system is a challenge. Indeed, as seen in Sect. 4.3, there is no obvious way
to automate the process of whether or not a given untyped solution can be realized by a
convex pentagon, and if so, whether or not additional conditions will emerge that force such
a pentagon to be among the known types.

A Pentagons that admit tile-transitive tilings

Pentagons that admit tile-transitive tilings have already been classified [7], but for the sake
of illustrating our methods, we will offer our own verification here.

A.1 n = 5: Pentagons that admit edge-to-edge tile-transitive tilings

Suppose a pentagon P admits a tile-transitive tiling .7 in which each pentagon has exactly 5
vertices (i = 1, n = 5). From Table 1, 7 must be of topological type [3*.4%] or [32.4.3.4], or
[3%.6]. These topological types corresponds to isohedral types IH21-IH29. For convenience
we list the incidence symbols of isohedral types IH21-IH29 in Table 4. The goal is to examine
each possible isohedral type for .7 to determine conditions on the angles and sides of P.

For example, if .7 is of species type <33.42), suppose 7 is type IH22. The first task is
to determine the labelings of P with a*h™cTdTe™ that are compatible with the incidence
symbol for TH22. For example, in Fig. 11, a pentagon in a tiling of topological type [33.4%]
has been assigned a labeling consistent with isohedral type IH22.

It is easily checked that the only labeling compatible with this symbol places the “a”
between the two 4-valent vertices. Next, labels A, B, C, D, and E are assigned to the corner
angles of P and labels a, b, ¢, d, and e are assigned to the sides as in Fig. 12.

With this labeling, the required relationships among the angles and the sides may be read
off, yielding

B+C+D=2n
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Fig. 11 A compatible labeling of a pentagon of type TH22 (symbol [aTbTcTdTet;a"etd=c™ b))

Fig. 12 A pentagon of type IH22
with labeled angles. The side
length labels correspond to the
incidence labels in this case

A+E=m
b=c¢e
c=d

In particular, because two consecutive angles of P must be supplementary, we see that if P
admits an isohedral tiling of type IH22, then P must be a Type 1 pentagon.

In a similar manner, it can be determined that the only compatible labeling for [H23-1H26
places the a between the two 4-valent vertices as well. This in turn forces, A + E = m for
any pentagon admitting isohedral tilings of types IH23-IH26, and so any such pentagon is of
Type 1.

If P admits tilings of isohedral types IH27, IH28, or IH29 the only compatible labeling
requires that a be placed between the two 3-valent vertices. This forces a unique labeling for
pentagons of these isohedral types, as in Fig. 13. From these unique labelings, the equations
corresponding to pentagons of types IH27, IH28, and IH29 are determined (Table 5), from
which we see it is seen that any pentagon admitting types IH27, IH28, or IH29 are pentagons
of Types 2, 4, or 4 (respectively).

IH21 is the only isohedral type for topological type [3*.6]. There are only two viable
labelings of an IH21 pentagon corresponding to the incidence symbol for IH21 in Table 4.
These labelings are seen in Fig. 14, and the required equations relating angles and sides are
given in Table 6. Both IH21 pentagons with n = 5 must be Type 5 if they are to tile the plane.
Other labelings of IH21 pentagons with n = 5 yield impossible relationships among the
angles of the pentagon. For example, in Fig. 15, the labeling requires A + C + D = 2(A +
C + D).

The results for isohedral pentagons with n = 5 are summarized in Table 7.
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Fig. 13 1H27, IH28, and IH29 pentagons with n = 5

Table 5 Angle/side equations [H27 TH28 TH29

for pentagons with n = 5 of types

IH27, IH28, and TH29 B+D=JT B=D=7‘[/2 an/z
b=d b=c 2A4+C=m
c=e d=e b=c

TH21(1)

Fig. 14 IH21 pentagons withn =5

fabe s Avdleodecamions a1 210
1H21 E=n/3 B=n/3
B =2r/3 E=2m/3
a=e,b=c a=e,b=c

A.2 n = 6: Pentagons that admit non-edge-to-edge tile-transitive tilings

Fori = 1 and n = 6, the only possible topological type is [3°]. In this case, each pentagon
of 7 has exactly one flat note appearing between two of the corners of the pentagon. Many
isohedral types under topological type [3°] are impossible for such a pentagon. If a pentagon
P with n = 6 is labeled according to a [3°] isohedral type, consider an edge label x from the
incidence symbol that is adjacent to this flat node. In isohedral types IH8-IH11, IH18, and
IH20, we see that each label must appear at least twice in P and in nonadjacent locations.
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Fig. 15 An impossible labeling
of an IH21 pentagon withn =5

Table 7 Types of Isohedral Pentagons

i n Vertex valences Topolgical type Isohedral type Possible pentagon type(s)
1 5 (3.3.3.3.6) [34.6] IH21 5
(3.3.3.4.4) [33.42] IH22 1
[33.42] 1H23 1
[33.42] 1H24 1
[33.42] H25 1
[33.42] IH26 1
[32.4.3.4] 1H27 2
[32.4.3.4] 1H28 4
[32.4.3.4] TH29 4
1 6 (3.3.3.3.3.3) [39] H1 -
[3°] IH2 1
(3% H3 2
[3°] H4 1
[39] IH5 1
[39] IH6 1,2
[3°] H7 3
[39] IH8-14 -
[3] IH15 1
[39] IH16 3
[39] IH17-20 -

For these types, another side of P that is not adjacent to the flat node must be labeled with x.
This forces one of the corners of P to have angle measure v, which cannot be (see Fig. 16a.
In a similar manner, a label x in the label that is adjacent to a flat node cannot be unsigned
(see Fig. 16b. This observation in combination with the previous observation eliminates IH12
and IH13. For isohedral types IH17 and IH19, if in labeling P we attempt to avoid labeling
inconsistencies, we find that the symbols adjacent to the flat node must be of the form xtx—
or x~xT. However, in these two isohedral types, the edges adjacent to a corner of P would
necessarily be labeled x*x~ or x~x™, forcing that corner to be flat.

After eliminating those isohedral types that are force P to have a flat corner, types IH1-IH7
and [H14-IH16 remain to be checked. Any 6-node pentagon of isohedral type IH1-IH7 can
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(a) (b)

Fig. 16 Symbols that force flat corners in P

Fig. 17 [3°] 6-node pentagons of Types 1, 2 ,and 3

be labeled in 6 ways (each labeling corresponding to the choice of symbols surrounding the
flat node). Analyzing each possible labeling is a matter of routine, and from among these 42
labelings, 5 types of pentagons are found.

— Type 1 pentagons

— Type 2 pentagons

— Type 3 pentagons

Obviously impossible pentagons

— Non-obviously impossible pentagons

Examples of labelings leading to these 5 outcomes will be presented next.

In Fig. 17a, we see a labeling of a pentagon P which forces two adjacent angles of P to
be supplementary, and so such a pentagon is of Type 1. Indeed any IH2 labeling of a 6-node
pentagon yields a Type 1 pentagon. In Fig. 17b, a 6-node pentagon has been given an IH3
labeling, and it is quickly determined such a pentagon is of Type 2. In Fig. 17¢, a 6-node
pentagon is labeled as an IH7 tile. This labeling gives a Type 3 pentagon.

Most of the IHI-IH7 labelings of 6-node pentagons are easily categorized into the known
14 types, but two kinds of labelings arise that cannot be realized by an actual convex pentagon.
We will refer to such labelings as impossible. The first impossible labeling, which appears
in only three of the IH7 labelings, is impossible since three flat angles cannot surround a
vertex (see Fig. 18a). The second type of impossible labeling is not obviously impossible.
This labeling appears in equivalent forms in all six IH1 labelings and in two of the IH3
labelings. Consider the labeling of the 6-node pentagon of type IH1 in Fig. 18b. This labeling
implies a geometrically impossible pentagon: a routine calculation reveals that the distance
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(b)

Fig. 19 6-node IH15 pentagons

from the interior vertex labeled B to the interior vertex labeled D must be greater than
¢ + d. Indeed, if the edge EA is placed on a horizontal with E at the origin, then B =
(c+d+bcos(mr — A),bsin(mr — A)) and D = (bcos E, bsin E). Then

IBD|> = [c +d + bcos(t — A) — bcos E))? + [bsin(r — A) — bsin E]?
= (c+ d)*> +2b(c + d)[cos(r — A) — cos E] + b*[cos(r — A) — cos E]*
+ b*[sin(r — A) — sin E]?
> (¢ +d)? + 2b(c + d)[cos(w — A) — cos E]
> (c+ d)2

Since A + C + E = 27 and all interior angles of a convex pentagon are less than r, then
A+E >mnm,so0mr > A>m — E > 0 and cos is decreasing on the interval [0, 7], which
justifies the final inequality.

Next consider the IH14-TH16 labelings of 6-node pentagons. These three isohedral types
are similar in that the incidence symbols require, for the same reasons previously discussed
pertaining to labeling of edges adjacent to the flat node, that the edges adjacent the the flat
node must be marked a~a™ or c*¢™, so there are only two viable labelings for each of these
three isohedral types. The two viable labelings for IH14 produce pentagons like the one of
Fig. 18b, so there are no possible tilings by 6-node pentagons of isohedral type IH14. The
two viable IH15 labelings are shown in Fig. 19, and the resulting pentagons are of Type 1.
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Fig. 20 6-node IH16 pentagons

Isohedral type IH16 yields the two labelings of Fig. 20. Figure 20b gives a Type 3 pentagon,
and Fig. 20a is impossible.

In summary, we see from Table 7 that any pentagon that admits a tile transitive tiling of

the plane must be of the known types 1-5, confirming the result in [7].
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