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Exploratory Data Analysis

Exploratory Data Analysis refers to a approach pioneered by statistician John Tukey

Emphasis on

• letting the data speak for itself

• non-parametric models

• tools for exploring high-dimensional datasets

Relatively little used in social science, where we prefer parametric models

Dangers: sometimes parametric models are fragile, and EDA could help show this

Without preliminary EDA, finding the right parametric specification may be harder



EDA: Some example techniques

The lattice package implements a set of EDA techniques pioneered by Bell
Labs/Bill Cleveland.

Basic idea: small multiples that show relations between x and y conditioning on z,
and perhaps w, etc.

Lattice plots consist of multiple panels of plotted data

The panels are linked to strips which identify a conditioning variable

Let’s see how this works with histograms and scatterplots



Lattice in action
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Key lattice options

histogram( ~ height | voice.part, data = singer,

xlab = "Height (inches)", type = "density",

panel = function(x, ...) {

panel.histogram(x, ...)

panel.mathdensity(dmath = dnorm, col = "black",

args = list(mean=mean(x),sd=sd(x))

)

}

)

dev.off()

Notice two trademark elements of lattice:

• the use of a formula to input the data

• the presence of a customizable panel function



Lattice

Key parameters for lattice plots often hide in panel.XXX() where XXX() is the
function of interest

Example: the key parameter for 3D plots (how to spin them) is screen, which is
documented in panel.cloud() only

par() doesn’t work for lattice.

Use trellis.par.get() and trellis.par.set() to modify lattice parameters

What are the lattice parameters? Mostly undocumented!

print(trellis.par.get()) gives a list of them, for what it’s worth



Another example, this time from base
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Lattice-like graphics in base

attach(data.frame(state.x77))

coplot(Life.Exp ~ Income | Illiteracy * state.region,

number = 3, # of conditioning intervals

panel = function(x, y, ...)

panel.smooth(x, y, span = 0.8, ...)

)

Notice the use of two conditioning variables

Notice the smoother added by panel



Basic Exploratory Data Analysis

We’ve now covered some of the basic tools of EDA:

• scatterplot matrices

• conditional plots (lattice/trellis)

• histogram-like plots

Let’s take a close look at two EDA topics:

the border between EDA & modeling

EDA for high dimensional data



Why is this a topic for visualization?

Simple answer: only way to understand some fits is visually

Deeper answer: visual EDA complements and supports better statistical modeling

Henceforth, our goal will be to use VDQIs to improve our statistical modeling and
inference

Complement to your other coursework



The border between EDA and modeling

Models make simplifying assumptions

The precision of model estimates comes from these assumptions

Wanted: Assumptions “pretty close” to the behavior of the data

How do we check? non-parametric & semi-parametric EDA

Approach: partially relax modeling assumptions, and see if data support simplification

E.g., let the line wiggle if it wants; then check for approximate linearity



A framework for probability models of data

Introducing graphical techniques for a wide variety of statistical methods

→ We need a language to refer to diverse probability models

Most models have a stochatic component:

y ∼ fD(µ,α)

and a systematic component
µ = g(X,β)

y is the data vector of interest

X is a matrix of covariates

fD is a probability density function for distribution D

µ is (usually) the expected value

α is a “nuisance” parameter vector

β is a parameter vector associated with the covariates



A framework for probability models of data

y ∼ fD(µ, α)
µ = g(X, β)

nests most (if not all) models you know.

Linear regression: y ∼ fNormal(µ, σ
2)

(continuous data) µ = Xβ

Logit: y ∼ fBernoulli(µ)

(binary data) µ = logit−1(Xβ)

Poisson: y ∼ fPoisson(λ)
(count data) λ = exp(Xβ)

and so on



A framework for probability models of data

y ∼ fD(µ, α)
µ = g(X, β)

nests most (if not all) models you know.

Linear regression: y ∼ fNormal(µ, σ
2)

(continuous data) µ = Xβ

Logit: y ∼ fBernoulli(µ)
(binary data) µ = [1− exp(−Xβ)]−1

Poisson: y ∼ fPoisson(λ)
(count data) λ = exp(Xβ)

and so on



A framework for probability models of data

Note the parallel to the notation of Generalized Linear Models (GLMs)

For example, we can write logit equivalently

y ∼ fBernoulli(µ) y ∼ fBernoulli(µ)

µ = g(Xβ) g−1(µ) = Xβ

µ = [1− exp(−Xβ)]−1 log[µ/(1− µ)] = Xβ

The framework on the left applies to just about any distribution you will encounter

It is equivalent to the form on the right, which is customary for GLMs

g(·) is called the link function in the GLM context

GLMs are a class of models for which fD is a member of the exponential family,
which includes the Normal, Binomial, Gamma, and Poisson; in R, see ?family()



A framework for probability models of data

Nice aspects of the framework:

• General: works for most models & most estimation methods (MLE, Bayes, etc.)

• Focuses on the data of interest, y

• Reduces attention to β, which is just a cog in the machine that turns X into y
(For different models, β has different, usually non-obvious interpretations)

• For any given counterfactual set of covariate values xc,
the conditional expecation E(ycc|xc) and
the expected first difference E(yc − yd|xc,xd)
have simple, substantively interesting interpretations

Under this framework,
our problem is simply to explain how y (or an interesting function of y,)
shifts as we vary xc

That’s usually what our model is for, so that’s what we want to visualize



Unpacking the framework

Let’s focus on
µ = g(X,β)

Here are some typical specifications of the RHS of this equation in LS models

µ = β0 + β1x1 + β2x2 + . . .

µ = β0 + β1x
2
1 + β2x2 + . . .

µ = β0 + β1x1 + β2 log(x2) + . . .

A general form for these transformations:

µ = η + h1(β1,x1) + h2(β2,x2) . . .



Unpacking the framework

A general form for these transformations:

µ = η + h1(β1,x1) + h2(β2,x2) . . .

which we can write compactly as:

µ = η +

p∑
k=1

hk(βk,xk)

hk(·) could be any arbitrary function.

We could multiply β by the square of xk

We could multiply β by the log of xk

We could multiply β by the average of the nearest t neighboring xki’s



Unpacking the framework

µ = η +

p∑
k=1

hk(βk,xk)

What if we don’t even need a βk for some of our hk(·)’s?

E.g., for time series y, we could use a running average of (say) the last 3 values y
itself as the sole predictors:

E(yi) =

3∑
t=1

yi−t/3

Then we get a nonparametric specification – there are no β’s or other unknown
parameters!

Note that nonparametric does not mean choiceless—
we still had to choose 3 rather than 5 values to average

But there is no population parameter to estimate,
just a modeling choice to calibrate



Non-parametric models: smooths

Non-parametric “smooths”, like the moving average, fall on the border between plots
of the data and traditional regression models

Scatterplots leave model “fitting” up to the viewer’s eyes

Regression models, such as this linear regression on polynomials:

yi = β0 + βx1i + β1x
2
1i + εi

or this logit regression on linear terms

Pr(yi|xi) = logit−1(β0 + β1x1i)

make assumptions the viewer must take on faith, esp. the specification

Choices about whether terms should enter as linear, cubed, logged, etc
are often arbitrary

Smooths reduce the influence of the model on functional form, in favor of the data



Non-parametric models: smooths

Some commonly used smoothers:

• running averages

• running medians

• loess

• splines

• kernel density (mainly useful for smoothing histograms)

Let’s look at how a variety of smoothers deal with a simple dataset:

Turnout (turnout) as a function of %Hispanic voters (hisp)
in a Pennsylvania State Senate election
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Least squares fit

Percent Hispanics among Voting Age Population, by precinct
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res.lm <- lm(turnout~hisp)

abline(coef(res.lm)[1], coef(res.lm)[2], col="blue", lwd=2)
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Quadratic (LS) fit

Percent Hispanics among Voting Age Population, by precinct
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res.q <- lm(turnout~hisp + I(hisp^2))

pred.q <- hypHisp <- seq(0,1,0.01)

for (i in 1:length(allx)) {

pred.q[i] <- coef(res.q)[1] + coef(res.q)[2]*hypHisp[i]

+ coef(res.q)[3]*hypHisp[i]^2

}
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5th order polynomial (LS) fit

Percent Hispanics among Voting Age Population, by precinct
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res.q <- lm(t~hisp + I(hisp^2) + I(hisp^3) + I(hisp^4) + I(hisp^5))

etc. Danger of overfitting with any polynomial fit.
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Smoothing splines (Smoothing determined by cross−validation)
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lines(smooth.spline(y=turnout, x=hisp), col="blue", lwd=2)

We can approximate high order polynomial fits with smoothing splines

This function tries to avoid overfitting by selecting the “wiggliness” based on
cross-validation
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Running median (window of 5 observations)

Percent Hispanics among Voting Age Population, by precinct

T
ot

al
 tu

rn
ou

t i
n 

pr
ec

in
ct

This works only if turnout and hisp both sorted by hisp first:

lines(x=hisp, y=runmed(turnout, k=5), lwd=2, col="blue")

Maximum robustness: not very smooth though
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This works only if t and x both sorted by x first:

lines(x=hisp, y=runmed(turnout, k=11), lwd=2, col="blue")

Maximum robustness: A bit smoother, but we’d like another alternative
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res.loess25 <- loess(turnout~hisp,

surface="direct",

degree=1,

span=0.25)

pred.loess25 <- predict(res.loess25, newdata=hypHisp)

lines(x=hypHisp, y=pred.loess25, col="blue", lwd=2)
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res.loess50 <- loess(turnout~hisp,

surface="direct",

degree=1,

span=0.5)

Higher bandwidth → a smoother plot
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res.loess95 <- loess(turnout~hisp,

surface="direct",

degree=1,

span=0.95)

This is about as high as we go. Note that we find a kink.



Non-parametric models: smooths

Lots of mathematical details here.

But key issue is how much flexibility to allow

In each model, there is a choice of how flexible the fit should be

• for loess and kernel, the bandwidth;

• for splines, the degree of smoothing and number of knots

• for running averages, the number and period of the averages

How do we perform this fit? And why is there no β?

ŷ = floess(x)



How Loess Works

Letʼs fit a loess curve to the data at right

Adapted from: Cleveland,
Visualizing Data

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 2 / 9
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How Loess Works

Letʼs fit a loess curve to the data at right

1. Choose a sequence x∗ of k equally spaced
points at which to calculate loess fits y∗

2. Choose a smoothing parameter α

3. Choose a polynomial order λ; usually 1 or 2

4. For each element in x∗, x∗k ,

i. Select the αn/2 nearest neighbors to x∗k ,

ii. Apply weights descending in distance from x∗k
iii. Fit yselected on the λth-order polynomial

of xselected by WLS

iv. Record only the WLS prediction of ŷ∗k
(discard the rest of the line)

5. Connect the fitted ŷ∗k ʼs to make a curve.

Adapted from: Cleveland,
Visualizing Data

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 8 / 9



How Loess Works

Key issue here is the bandwidth
parameter, α ∈ [0, 1]

Lower values make a jerkier line;
higher values a smoother one

If your data seem to curve, use a
quadratic fit within loess (λ = 2)
to get a better fit

Note: Our loess example is an
artistʼs impression; letʼs look at
some real ones at
demonstrations.wolfram.com/

HowLoessWorks

Adapted from: Cleveland,
Visualizing Data

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 9 / 9

demonstrations.wolfram.com/HowLoessWorks
demonstrations.wolfram.com/HowLoessWorks


What the heck is a “spline”?

Splines are a concept from carpentry, of all places

Splines let us summarize very complex curves with a few numbers

Basic idea:

• Imagine a flexible piece of wood.

• We pick it up and bend in many places;

• then tack it down (at “knots”) to a board.



The idea behind splines

Photo of draftman’s spline from Carl de Boor
www.cs.wisc.edu/~deboor/draftspline.html



Splines in statistics

Many similar shapes can be approximated by local cubic polynomials, which we will
call cubic splines

(Note: there are many kinds of splines.)

Even more than loess,
Cubic splines rely on simple local structure to create global flexibility

1. Start with a few data points.

2. Connect every point to its nearest neighbor with a (twice differentiable) cubic
polynomial

3. To make a “smoothing” or approximate spline,
take the weighted average of the spline and the least squares fit

4. Choose knots & amt of smoothing subject to a penalized likelihood criterion, e.g.,

max(2 × log-likelihood − trade-off × smoothness penalty )



Spline examples

Using demonstration software

http://www.particleincell.com/blog/2012/bezier-splines/

http://www.particleincell.com/blog/2012/bezier-splines/


More complex example: Democracy & Development

The relationship between democracy, dictatorship, and economic development is
well-explored in political science

Key recent work: Przeworksi, Alvarez, Cheibub & Limongi. Democracy and
Development: Political Insitutions and Well-being in the World, 1950–1990

We’ll borrow their data, but run much cruder models

In particular, PACL investigate selection bias and the difference between creation and
sustenance of democracies.

We’ll ignore these issues, and consider covariates of

the degree of civil liberties (CIVLIB: 1-7 scale)

the presence of democracy (REG: 0-1 binary)



More complex example: Democracy & Development

Our candidate covariates

GDPW GDP per capita in real international prices
EDT average years of education
ELF60 ethnolinguistic fractionalization
MOSLEM percentage of Muslims in country
OIL whether oil accounts for 50+% of exports
STRA count of recent regime transitions
NEWC whether county was created after 1945
BRITCOL whether country was a British colony

Let’s start with the simplest model we can run.

Is there a relationship between civil liberties and economic development?

Let’s pretend linear models are appropriate for this categorical variable
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Leaving aside the categorical nature of the data,
does this fit look “right”?
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Loess reveals “thresholds”.

A problem: We haven’t controlled for anything

Smoothers won’t be much use if we’re restricted to bivariate models

Fortunately, there is a generalization to the multivariate case. . .



Generalized Additive Models (GAMs)

Generalized Additive Models are a generalization of GLMs

incorporate smooths into multiple regression, and into logit, probit, etc.

GAMs take the following form:

g−1(µ) = α+

p∑
j=1

βjXj +

q∑
k=1

fk(Zk)

where y is a response, Xj and Zk are covariates, and fk is a smoothing function

Note we can estimate parametric relations for some covariates, and non-parametric
for others

fk are often splines or loess fits



GAM for Democracy

Let’s control for the rest of our variables while letting the degree of political liberties
remain a smooth function of the level of development

Sample code:

library(mgcv)

res.gam1 <- gam(POLLIB~s(GDPW)+EDT+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM)

summary(res.gam1)

Notes:

• This is the gam function in mgcv.
There is another gam in library gam; slightly different

• Without specifying a distribution family,
gam defaults to a linear Normal model

• We could specify more details of the smooth;
this code just let’s R find the best smoothing spline by cross-validation



Output of summary(res.gam1)
Family: gaussian

Link function: identity

Formula:

POLLIB ~ s(GDPW) + EDT + NEWC + BRITCOL + STRA + ELF60 + OIL +

MOSLEM

Parametric coefficients:

Estimate std. err. t ratio Pr(>|t|)

(Intercept) 3.8475 0.1552 24.8 < 2.22e-16

EDT 0.11236 0.02354 4.773 1.9840e-06

NEWC -0.79545 0.1125 -7.07 2.3322e-12

BRITCOL 1.1263 0.09354 12.04 < 2.22e-16

STRA -0.16153 0.04582 -3.525 0.00043583

ELF60 -0.2774 0.1521 -1.824 0.068387

OIL -0.45368 0.1214 -3.737 0.00019278

MOSLEM -0.0024823 0.001295 -1.917 0.055408

Approximate significance of smooth terms:

edf chi.sq p-value

s(GDPW) 7.666 328.44 < 2.22e-16



R-sq.(adj) = 0.638 Deviance explained = 64.1%

GCV score = 1.8114 Scale est. = 1.7934 n = 1580



mgcv’s gam has preset graphics
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Above made with: plot(res.gam1,pages=1,all.terms=T)

plus editing in Illustrator



We can smooth over two dimensions
Suppose we wanted to smooth over both development & education:

One way is to let each smooth be additive to the response:

library(mgcv)

res.gam2 <- gam(POLLIB~s(GDPW)+s(EDT)+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM)

summary(res.gam2)

which lets more of the above plots be smooths

Another way is to let the smooths “interact.” Sample code:

library(mgcv)

res.gam2 <- gam(POLLIB~s(GDPW,EDT)+NEWC+BRITCOL+STRA+ELF60+OIL+MOSLEM)

summary(res.gam2)

Now there is a smooth surface relating the joint levels of GDPW & EDT to POLLIB

We can visualize this with

vis.gam(res.gam2, view=c("GDPW","EDT"), type="response",

ticktype="detailed", theta=0, phi=20)



A smooth over two covariates together
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Interpretation is challenging, but this may be occassionally enlightening



A logit example using GAM
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We can use GAM to fit GLM type models. What are the correlates of Democracy?



A logit example using GAM
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res.gam4 <- gam(REG~s(GDPW)+EDT+NEWC+BRITCOL+STRA+ELF60+OIL

+MOSLEM, family=binomial())

summary(res.gam4)

plot(res.gam4, pages=1, all.terms=TRUE)



A logit example using GAM
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When the GAM is a nonlinear model (e.g., logit), the scale is difficult to interpret

It would be better if the y-axes were in the units of Pr(REG)



One last smooth: kernel density estimation
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(Source for KDE diagrams: Stefanie Scheid - Introduction to Kernel Smoothing)

Another popular smoother is kernel density estimation (KDE)

KDE treats each data point as the center of a “kernel”, and adds those kernels up

This let’s the effect of each datapoint “smooth out”.
Shape of smoothing out is the kernel; degree of smoothing is the bandwidth



Choices of kernels to place around datapoints
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Epanechnikov minimizes error. But not usually important which you choose.



Smoothing a histogram

From over- to undersmoothing

KDE with b=0.1
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing
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Bandwith is an important choice, as with any smoother.



Smoothing a histogram

From over- to undersmoothing
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Bandwith is an important choice, as with any smoother.



Uses of KDE

KDE is very useful for smoothing histograms of all kinds

If you draw from the predictive or posterior distribution of a model,
you can smooth with KDE

This works even in two dimensions
(e.g., you want the joint confidence region of two parameters)

Generally, if you have a 2D histogram, and you want contours, consider KDE

In R, see the density() command for one dimensional KDE

See kde2d in the MASS library for 2D version



The curse of dimensionality

The biggest problem in visual display is that humans can only perceive 3 dimensions

Most data, esp in social sciences, have many variables; potentially many dimensions

Paper & computer screens are even more limiting: 2D

Three approachs to fighting the curse of dimensionality:

• Cleverly display all the data.

• Use models to reduce the number of dimensions

• Use time & motion



Clever display of the whole dataset

This is what we’ve done all quarter:

1. Small multiples

2. Glyphs

3. Layer pre-attentive elements

We’ve seen lots of examples.

Here is a final example that pushes the envelope



temp pressure wind precip frost

Figure 13: Nonphotorealistic visualization of weather conditions over the eastern United States: (top row) perceptual color ramps (dark blue for low to bright
pink for high) of mean temperature, pressure, windspeed, precipitation, and frost frequency in isolation; (bottom row) combined visualization of temperature
(dark blue to bright pink for cold to hot), pressure (low to to high energy for low to high), windspeed (low to high coverage for weak to strong), precipitation
(upright to flat for light to heavy), and frost frequency (regular to irregular for low to high)

42



temp pressure wind precip frost

Figure 13: Nonphotorealistic visualization of weather conditions over the eastern United States: (top row) perceptual color ramps (dark blue for low to bright
pink for high) of mean temperature, pressure, windspeed, precipitation, and frost frequency in isolation; (bottom row) combined visualization of temperature
(dark blue to bright pink for cold to hot), pressure (low to to high energy for low to high), windspeed (low to high coverage for weak to strong), precipitation
(upright to flat for light to heavy), and frost frequency (regular to irregular for low to high)

42

Source: Christopher G. Healey, “Combining Perception and Impressionist Techniques
for Nonphotorealistic Visualization of Multidimensional Data”, SIGGRAPH 2001
Course 32: Nonphotorealistic Rendering in Scientific Visualization 2001,
http://www.csc.ncsu.edu/faculty/healey/download/sig-course.01.pdf

Does the 5-dimensional version work “better” than the small multiples?

For look-up, no. But for gestalt impressions, perhaps worth looking at both.

I’ve experimented with the same 5 dimensions independently. Probably near the limit
for a single diagram. Challenging to process.

So let’s try to reduce dimensions while keeping most of the data



Principal Components Analysis (PCA)

PCA is related to factor analysis
and multidimensional scaling

Details involve lots of linear
algebra; instead, a conceptual
summary

Imagine a dataset with k
continuous variables plotted in
k-space

For example, k = 3

Note the different scales for each
variable Source: Michael Palmer,

ordination.okstate.edu/PCA.htm

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 10 / 27
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Principal Components Analysis (PCA)

It will help to normalize these
variables to have mean zero
and unit variance

PCA finds a new set of
dimensions, ≤ k, that best explain
and separate the variance in these
data

We search for new orthogonal
axes (components), which we
label:

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm
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Principal Components Analysis (PCA)

It will help to normalize these
variables to have mean zero
and unit variance

PCA finds a new set of
dimensions, ≤ k, that best explain
and separate the variance in these
data

We search for new orthogonal
axes (components), which we
label:
Component 1

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm
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Principal Components Analysis (PCA)

It will help to normalize these
variables to have mean zero
and unit variance

PCA finds a new set of
dimensions, ≤ k, that best explain
and separate the variance in these
data

We search for new orthogonal
axes (components), which we
label:
Component 1

Component 2

etc.

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm
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Principal Components Analysis (PCA)

The first principal component is the
axis that explains the most
variation in the data

The second (third, etc.) principal
component is the line orthogonal
to the prior components that
explains the greatest part of the
remaining variation

Two principal components are
often (not always) a nearly
complete summary of variation on
the k original dimensions

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 14 / 27
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Principal Components Analysis (PCA)

Each principal component can be
seen as a linear combination of
the original k axes

Very useful lower dimensional
replacements for multidimensional
data

Widely used to create “index”
variables

Less arbitrary – and more
informative – than averaging the
underlying variables

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm
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Principal Components Analysis (PCA)

Note the graph at right has two
sets of coordinate systems

The original variables are
currently the plot coordinates,
while the PCA coordinates are
“plotted” as if they were data

What if we switched these
coordinate systems, so the
principal components are the plot
coordinates?

And the original data and original
axes are “plotted” in PCA space?

Source: Michael Palmer,

ordination.okstate.edu/PCA.htm

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 16 / 27
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The Biplot Principal components example

Example: FY 1992 state budget
priorities

E.g., suppose a state divided its
budget:

8% highways
30% education
35% health
12% corrections
3% law enforcement
12% welfare

We wish to plot one point for each
of the 50 states, but that takes 6
dimensions!

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 17 / 27



The Biplot Principal components example

Source: William G. Jacoby, Statistical Graphics for Visualizing

Multivariate Data, Sage Paper 07-120

Solution: Use PCA to reduce the 6
budget dimensions to 2 principal
components

Plot the 50 states locations in 2d
PCA space

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 18 / 27



The Biplot Principal components example

Source: William G. Jacoby, Statistical Graphics for Visualizing

Multivariate Data, Sage Paper 07-120

Solution: Use PCA to reduce the 6
budget dimensions to 2 principal
components

Plot the 50 states locations in 2d
PCA space

Then add to the plot the
projection into 2d PCA space of
the original 6 budget dimensions

This simultaneous plot of
dimensions and data is called the
biplot

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 19 / 27



The Biplot Principal components example

Source: William G. Jacoby, Statistical Graphics for Visualizing

Multivariate Data, Sage Paper 07-120

Tips for interpreting biplots:

Overlapping dimensions are
perfectly correlated

Dimensions form an acute angle
⇒ somewhat positive correlation

Dimensions form a 90◦ angle
⇒ orthogonal

Dimensions form an obtuse angle
⇒ somewhat negative correlation

Dimensions form a 180◦ line
⇒ perfect inverse correlation

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 20 / 27
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The Biplot Principal components example

Source: William G. Jacoby, Statistical Graphics for Visualizing

Multivariate Data, Sage Paper 07-120

More tips for interpreting biplots:

Dimensions meet at the origin
(0,0). (Why?)

“Short” dimensions load poorly
on components. (Why?)

Data far from the origin are
outliers

Distances between points are
Mahalanobis distances
(variables standardized to have
unit variances)

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 21 / 27



The Biplot Principal components example

Source: William G. Jacoby, Statistical Graphics for Visualizing

Multivariate Data, Sage Paper 07-120

How to do this in R:

res <- princomp(~ health

+ correct

+ lawenf

+ welfare

+ highways

+ educ)

biplot(res)

biplot() has several options, but
is surprisingly inflexible

Chris Adolph (University of Washington) VISUALIZING DATA – EDA 22 / 27



Emily Kalah Gade
(UW–Political Science)
provides data on the number
of documents published on
federal websites mentioning
topics related to climate
change

We have counts of the number
of documents mentioning each
topic by each agency by year

How could we visualize these
data?

Topics (Dimensions)

freshwater

pollution

IPCC

global warming

food security

climate change

natural disaster

greenhouse gas

anthropogenic

desertification

forest conservation

security of food

climate research unit

ocean acidification

anthropocene

climategate

Agencies (Cases)

usda.gov

house.gov

ed.gov

hhs.gov

doi.gov

senate.gov

dot.gov

whitehouse.gov

usdoj.gov

va.gov

dol.gov

state.gov

treasury.gov

energy.gov

dhs.gov

commerce.gov

defense.gov

dod.gov

other
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How could we visualize these
data?

1. Could make an agency ×
topic contingency table.

Hard to read

2. Could make a heatmap, as
we did with trade flows.

Can we instead use a biplot to
reduce the number of plotted
dimensions to 2?

YES, using correspondence

analysis, an analog of PCA for
contingency tables
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Just as with PCA, a
correspondence analysis
biplot shows a 2D view of
a high dimensional space

Here we see a cloud of
points relative to 14(!)
axes

Which topics
(dimensions) are similar?

Which agencies (points)
are similar?

Which agencies load
strongly on which
dimensions? How sure
are you of this?

Climate topics in official reports dated 2013
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How to do it in R:

# Roughly, code is:

res <- ca(data)

plot(res,

mass=c(TRUE, TRUE)

)

# but see plot.ca()

# for more options

# -- better than

# biplot()
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With large numbers of
dimensions, the arrows
can get distracting

Once you understand the
biplot, you donʼt need
them

Not an easy plot to
explain, but a powerful
way to explore many
dimensions of data at
once
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