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Abstract

Political scientists often and increasingly analyze time-series cross-sectional (TSCS) data.

These data come with signficant problems, such as accounting for unobserved variation across

sample units and appropriately specifying dynamics. Furthermore, even though fixed-effects

(or least squares dummy variable (LSDV) models) can address unit heterogeneity, least

squares (LS) estimation of modelds with fixed-effects and lagged dependent variables are

known to be biased. Alternative estimators, mostly from economics, and generally designed

for short panels, have been proposed to address this bias, but it is generally not well known

how these estimators perform in comparison to simple methods like LS and LSDV on TSCS

data. The preliminary results we illustrate here suggest that LSDV is generally as good or

better than instrumental variables (IV) approaches in terms of bias and efficiency. We ex-

amine estimator performance under conditions where the importance of the unit effects and

the correlation of the unit effects with the independent variables are allowed to vary and find

that LSDV performs well. Unfortunatley none of the estimators, particularly LS, perform

well when the dynamics of the model are mis-specified. The lesson is that new estimators do

not, in general, solve the problem of mis-specifying the model’s dynamics.
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Figure 1: Interest in TSCS data among political scientists over time.

1 Introduction

Political scientists’ interest in time-series cross-sectional (TSCS) data has increased in recent

years. Figure 1 shows the number of political science articles in the JSTOR database analyzing,

or at least mentioning, TSCS data, over the last three decades.1 In the early 1970’s, TSCS data

was seldom used or discussed in political science. Since then, TSCS data has steadily increased

in importance, and from 1996 onwards, appeared in fully 1 in every 20 political science articles

indexed by JSTOR. The rise of panel data likely depends on its increased availability, the spread

of easy-to-use panel data routines, and increasing quantitative sophistication in the field. TSCS

data is attractive, because it allows researchers to pool time series that might be otherwise too

short to analyze, to make comparisons across units, or to cope with omitted variables by sweeping

out fixed unit effects.

Analysts must a pay a price to gain these advantages. TSCS data are intrinsically more chal-

lenging to model than cross-sections or time-series, and a solid understanding of the panel data

econometrics and estimators is essential. In particular, there is no “one-size-fits-all” technique

for TSCS data. However, researchers are not always careful in how they use TSCS data. Wilson

1The data in Figure 1 come from searches on JSTOR and show for each year the number of articles
which includes one of the terms for panel data. The following seven terms were used in the JSTOR searches:
“panel data” or “time-series cross-sectional” or “cross-sectional time-series” or “pooled cross-sectional” or
“pooled cross-section” or“pooled time-series” or “repeated cross-sectional”
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and Butler (2004) show that many researchers in political science treat as a “solution” to the

problems of TSCS data the simple prescriptions of Beck and Katz (1995, 1996)—pool the data,

include a lagged dependent variable, and calculate TSCS calculated standard errors; hereafter

referred to as the BK approach. (Beck and Katz may not have meant for their recommendations

to be use in this way [see Beck and Katz 2004]; however, that is how their advice has been

interpreted by practitioners.) As Wilson and Butler (2004) note, treating the BK approach as a

universally applicable TSCS method is problematic. In particular, it risks introduce bias if unit

heterogeneity is not controlled or if the dynamics are misspecified.

But is this bias likely to be large in practice? And which, if any, of the other available

techniques perform better? In this paper, we introduce a Monte Carlo (MC) framework for

answering these questions, and some preliminary results from MC experiments. In general, we

find that the BK approach will be seriously biased when these issues are not controlled for

properly. Significantly, we also find that in the case of controlling for unit effects, the LSDV

estimator outperforms the other options we consider.

To make our MC experiments as useful as possible, we took pains to choose parameters rep-

resentative of the data used in political science. To this end, we surveyed a sample of political

science articles analyzing TSCS data, and structured the data generating process for our exper-

iments on the range of behavior observed in real data. Thus we begin this paper with a brief

discussion of the kinds of TSCS data encountered in the field. Next, we review the estimators we

compare in our experiments. Then we present results from our Monte Carlo experiments, and

conclude with a discussion of their implications.

2 TSCS data as used in political science

This paper is part of a larger project to evaluate various estimators that have been proposed for

TSCS data with a continuous dependent variable. Because the utility of our findings for political

scientists depends on the extent to which we are able to replicate the data sets applied researchers

actually face, we collected 113 recent articles using (continuous) TSCS data.2

2The sample is composed of articles from a JSTOR search in political science journals for the years
1995-2000. In the search, we used the following search terms - “panel data” or “cross-sectional time series”
or “time-series cross-sectional” or “pooled cross-sectional” - and initially had 274 articles. Among these
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Figure 2: Size of TSCS datasets used in political science (articles from 1995-2000).

We start by looking at the size of the datasets used in our sample of articles. Figure 2 plots

of the number of time periods T against the number of cross-sectional units, N .3 The first thing

to note is that the number of periods analyzed in political science studies is typically between 10

and 40, considerably more periods than the typical TSCS dataset examined in economics (where

T < 5 is the norm; CITE). Most of the TSCS estimators used in political science were developed

and tested for use with large N , small T datasets in economics, and may behave differently in

typical political science applications.4 Advice on the appropriateness of TSCS data estimators

needs to be tailored to the evidently different problems of political scientists.

Political science panels vary by subfield, as Figure 2 illustrates. Comparativists, especially

those focusing on the industrial democracies, often study between 10 and 20 units (nations) at a

time. Americanists often study panels of the fifty states. International relations scholars tend to

articles there were 150 that used TSCS data sets. Because this paper only considers estimators for data
with a continuous dependent variable, we excluded the 37 articles that used discrete dependent variables,
leaving 113 articles.

3For unbalanced data sets where N was given but not T , we used the average number of time periods
per unit, T̄ = NT/N . Similarly, when T was given but not N , we used N̄ = NT/T . In every case we
rounded to the nearest whole number.

4Indeed, Beck and Katz (1995) emphasized just this distinction in recommending political scientists
use LS estimators for panels with smaller N but larger T than seen in economics.
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study the largest panels, sometimes treating hundreds or thousands of dyads of countries as units

in a TSCS regression. It would be unsuprising if these different applications demanded different

approaches.

Of course, there is more to TSCS data than its dimensions. We also wish to capture the

nature of the data generating processes (DGPs) researchers face, and especially how the DGP

differs from the assumptions of the standard linear regression model. To identify these issues,

we looked to the concerns of applied researchers themselves, and collected a list of potential

problems cited in their work. Applied researchers worry about many ways in which their data

violates model assumptions, and frequently claim their data display autocorrelation, endogeneity,

heteroscedasticity, complex lag structures, non-stationarity, unit heterogeneity, sample selection,

and multicollinearity. While all of these issues are important and deserve attention in their own

right, we focus in this paper on the issues of unit heterogeneity and lag specification.

3 Previous MC Studies of TSCS Data in Political Science

Though this is not the first Monte Carlo study of TSCS, MC evidence remains limited. Our

work builds on the studies of Beck and Katz (2004), Judson and Owen (1999), and Kristensen

and Wawro (2003). We share with all three papers concern for unit effects. Of the three papers

however, only Kristensen and Wawro (2003) test the robustness of the pooled LS estimator

(i.e. the BK approach) to unit heterogeneity. They find that as the correlation between the

unit effects and the independent variable increases, the performance of the pooled LS estimator

quickly deteriorates. We extend their analysis by also considering the robustness of the BK

approach to changes in the size of the unit effects and the amount of trending in the independent

variable.

Judson and Owen (1999) and Beck and Katz (2004) explore the potential bias that comes

from including a lagged dependent variable in a LSDV, or fixed effects, model (Nickel 1981).

Judson and Owen focus primarily on the bias of the coefficient of the LDV, φ. They note that the

coefficient of the exogenous covariate, β has such small bias that there is no appreciable difference

in the performance of the estimators they consider (Anderson-Hsiao, Arellano-Bond, and LSDV

with the Kiviet correction). Because political scientists are generally more interested in estimates
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Judson Kristesen Beck
& Owen & Wawro & Katz This Extensions

DGP Characteristics (1999) (2003) (2004) paper planned

Unit effects • • • •
Corr(x, unit effects) • • •
x is AR(1( • • •
x is AR(p) •
ε is AR(1) •
ε is ARMA(p,q) •
ε is GARCH(c,d) •
Unit specific dynamics •
yt−1 on RHS • • • •
yt−2 on RHS •
xt−1 on RHS •
xt−2 on RHS •
Panel heteroskedasticity •
Endogeneity •
Unit Roots •

Estimation approaches

Least Squares (LS) • • •
BK (LS with PCSE) • •
BK with LDV •
Fixed Efects (LSDV) • •
Random Effects •
LSDV-Corrected (Kiviet 1995) • • •
Anderson-Hsiao (1981) • • •
Arellano-Bond GMM (1-step) • •
Hsiao et al (2002) •

Table 1: Comparing recent Monte Carlo studies of TSCS data and estimators.

of the effects of the exogenous independent variable, and are not as concerned about the lagged

endogenous variable, Judson and Owen’s results are good news. One interpretation is that so

long as the researcher accounts for the unit effects, a variety of estimators give relatively unbiased

results (provided, of course, N and especially T are sufficiently large). Beck and Katz (2004)

concur with this basic finding, but suggest that LSDV may dominate instrumental variables

methods on efficiency grounds (i.e., LSDV has lower mean squared error than the Anderson-

Hsiao estimator).

Because we share many of the same interests as these previous researchers, we incorporate
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many of the features of their experiments in our own data generating process (DGP). Table

1 compares our approach to these earlier analyses. Our work is most closely related to Beck

and Katz (2004). We build on their analysis in three ways. First, we include the least squares

estimator (i.e., the original BK approach) in our experiments. Second, we explore a broader

range of parameters in our MCs. In particular, we expand the dynamic nature of the model by

including distributed lags of the explanatory variable, we vary the degree of correlation between

the unit effects and the independent variable, and we vary the size of the unit-specific effects.

Third, we examine how misspecifying the lag structure affects estimates of the parameters of

interest.

As noted above, this paper is part of a larger project exploring the performance of estimators

when faced with econometric issues common in political science. The last column of Table 1 shows

future issues and estimators that we plan to consider. We preview some of our future efforts in

the concluding section.

4 Monte Carlo design

For TSCS data, a realistic Monte Carlo experiment inevitably entails a complex data generating

process. However, adding complexity to such an experiment makes it more difficult to compre-

hensively explore or present the full parameters space. In this section we present a DGP and MC

strategy that, we hope, balances the competing demands of realism and parsimony.
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4.1 Data generating process

We model the TSCS data, yit, i = 1, . . . ,N , t = 1, . . . , T as follows:

yit = φ1yi,t−1 + φ2yi,t−2 + β1xit + β1,t−1xi,t−1 + β1,t−2xi,t−2 + αi + εit

xit = δxi,t−1 + ψαi + ωi,t

εit ∼ N (0, σ2

ε )

ωit ∼ N (0, σ2

ω) (1)

αi ∼ N (0, σ2

α,i)

σ2

α,i = σ2

α + ηi

ηi ∼ N (0, σ2

η)

This data generating process is similar to Beck and Katz (2004), with the notable additions

of a second lag of yit, distributed lags of xit, and panel heteroskedasticity. This setup allows

us to model most (but not all) of the features of TSCS data noted above by practitioners. In

particular, it allows us to investigate the role of dynamics in x and y, as well as implications of

unit heterogeneity which is correlated with the covariate of interest.

The software we have written to conduct these experiments implements a substantially

broader DGP, allowing for unit specific coefficients, ARMA-GARCH errors, and other features

listed in the final column of Table 2. In further work, we hope to investigate this broader setup,

but for now restrict our attention to the special case in 1.

4.2 Exploring the parameter space

Beck and Katz (2004) examined a similar DGP, and varied the number of time periods T and the

first lag of the dependent variable φ1, while keeping all other parameters fixed. Here, we conduct

two separate experiments to extend their work.
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4.2.1 Correlated unit effects

A fundamental feature of TSCS data is that key differences between different units of analy-

sis are unobserved by the researcher. In other words, there are important unit-specific omitted

variables. The presence of these unit effects is captured in equation 1 by the αi parameter. In

simple regression analysis, omitted variables do not bias the regression coefficients if they are

uncorrelated with X. However, in the TSCS data context, unit effects (the α’s) are not indepen-

dent by construction—they are all the same value within each additional unit. Furthermore, the

unit effects may be correlated with the X variables, In equation 1 this correlation results from a

non-zero value of the ψ parameter.

Unit heterogeneity has recently received attention in the literature in the form of a debate

over when, if at at all, fixed effects should be used (Green et al 2001, Beck and Katz 2001, Wilson

and Butler 2004, Plumper et al. 2005). Of course the issue itself is broader than the debate over

fixed effects. In general, unit heterogeneity refers to the circumstance where units (countries,

states, individuals, etc.) differ in ways not explained by observed independent variables. The

same issues are also relevant not only across units but also across time periods in the form of

shocks that are common to the the time component of the data structure.

In running the experiments, we are interested in comparing estimators’ performance as size

of the unit effects increases in magnitude and in the degree of correlation with the independent

variable. We capture these features in our DGP by parameterizing the effects as draws from a

normal distribution with variance σ2
α, which we change, and by making xit depend on ψαi, so

that non-zero ψ induces a correlation between the unit fixed effect and the covariate. Hence,

our first experiment lets ψ and σ2
α take on any combination of values from the set {0, 0.5, 1, 1.5}.

That is, we consider the effect of having no fixed effects, small fixed effects, or large fixed effects,

combined with no correlation with the covariate, a small correlation, or a large correlation.

For the first experiment, we restrict the dynamics of the DGP to three special cases:
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φ1 φ2 β1,t−1 β1,t−2

No dynamics 0 0 0 0

A lagged dependent variable 0.5 0 0 0

An LDV and an LIV 0.5 0 0.5 0

In these preliminary experiments, all other parameters are held fixed, including N and T . In

particular, we fix β1,t = 1, N = 10, T = 20, σε = 1, σω = 1, ση = 1, δ = 0.5.

4.2.2 Time series dynamics

A critical issue in TSCS data analysis is choosing the appropriate lag structure. Unfortunately,

applied researchers often overlook or quickly dismiss the possibility of lag misspecification, per-

haps because of a lack of theoretical and methodological guidance. In particular, Wilson and

Butler (2004) found that many authors using TSCS data either ignore dynamics or use the BK

approach and assume a single lag of the dependent variable is sufficient to model the effect

of history. This is problematic because misspecifying the lag structure introduces bias to the

contemporaneous effect of the independent variable (i.e. β1) and results in errors related to

interpretation or the implications of the results for policy.

Thus, in our second experiment, we turn to the role of dynamics. Here we go beyond Beck and

Katz (2004) to include in our DGP both a second lag of the dependent variable, and distributed

lags of the covariate. We consider all combinations of the following parameters,

β1,t−1 = {0, 0.2, 0.6, 0.8}

β1,t−2 = {0, 0.3, 0.5, 0.7}

φ1 = {0, 0.2, 0.6, 0.8}

φ2 = {0, 0.3, 0.5, 0.7}

subject to the constraint that the sum of all lag coefficients of a particular variable have no more

than a unit sum.5

5In the case of yit, this restriction avoids explosive series. In the case of xit, it restricts attention to
an a priori plausible subset of scenarios in which the effects of a shock to xit are strongest in the initial
period, and gradually die out over time.
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In these experiments, we again hold fixed β1,t = 1, N = 10, T = 20, σε = 1, σω = 0.6, ση = 1,

δ = 0.5, and additionally fix ψ = 0.5 and σα0 = 1.

5 TSCS estimators

In this paper, we consider four classes of estimators for TSCS data. The first, popularized by

Beck and Katz (1995), is to estimate a pooled regression by least squares, coping with TSCS

heteroskedascity by calculating “panel corrected standard errors” (PCSEs). We refer to this

method as LS.

A second approach, widely used in political science and economics, is to pool the data and

estimate by least squares while adding a dummy variable for each unit.6 This method is known

as the fixed effects or least-squares dummy variable (LSDV) estimator. (Note that it is easy

to combine the Beck-Katz method with the fixed effects estimator; one need only adjust the

standard errors).

It is well-known that including a lagged dependent variable in an LSDV model introduces bias

(Nickel 1981). A third method, less widely known in political science, uses instrumental variables

to overcome this bias. Introduced by Anderson and Hsiao (1981, 1982), this approach regresses

the first difference in yit on the first difference in xit and lags of the difference in yit, using the

lagged level of yit as an instrument. This approach retains the virtues of LSDV (controlling for

unit effects, and hence potentially mitigating omitted variable bias), while avoiding Nickel bias.

We refer to this estimator as AH.

As Arellano and Bond (1991) noted, not only the first lag, but all the lags of yit can be

used as instruments in a TSCS data model set up in differences. Accordingly, they proposed a

more efficient Generalized Methods of Moments (GMM) estimator employing all available lags as

instruments.7 They offer one and two-step versions of this GMM estimator, which may included

the full set of feasible instruments or some subset. We focus on the one-step estimator with all

instruments, and denote this estimator as AB.

6Equivalently, one could “sweep out” the fixed effects by substracting the unit means from both sides
of the equation.

7See Wawro (2002) for an introduction to GMM aimed at political scientists, and Wawro (2002) and
Rodden (2004) for examples of their use.
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These four classes of estimators hardly exhaust the possibilities. In future work, we will

also consider random effects models as well as the bias-corrected LSDV methods of Kiviet and

associates (Kiviet 1995, 1999; Bun and Kiviet 2003).

6 Results

In the following subsections, we present a few preliminary results from the MC analysis. A

signficant challenge in a complex MC study is deciding which of the many parameters in the

data generating process to highlight and analyze. Here, we have opted to fix (for the moment)

traditional MC concerns, like N and T , to more closely examine the effects of correlated unit

effects, dynamics of the dependent and independent variables, and mis-specification. Future work

will explore the robustness of these results across the range of N and T shown in Figure 2; for

now, we simply note that the cases examined are in many ways typical of much time series cross

section work in political science.

In the discussion that follows, we evaluate the performance of each estimator using bias and

efficiency as criteria. In the Monte Carlo context, bias (β1 −E(β̂1)) is the difference between the

true value, β1, and the mean of its estimator. The most prominent efficiency criteria is mean

squared error (MSE). As is well known, the MSE can be expressed as the sum of the variance

of the estimator plus the square of the bias. Thus, increasing bias tends to be associated with

increasing MSE. However, significant gains in MSE may be obtained by employing a slightly

biased estimator that has low variance. In the graphs that follow, we present results for bias and

MSE separately, and the value for each is displayed by using a gray scale, with darker shades

representing higher values. Lower values (lighter shading) are, of course, preferred.

6.1 Unit Effects

In this analysis we highlight the effects of two important aspects of unit heterogeneity: 1) the

importance of the unit effects, which is captured by increasing the variance of α and 2) the extent

to which the unit effects are correlated with the independent variable, which is captured by the ψ

parameter. The working paper by Kristensen and Waro (2003) suggests that the LS framework

performs particularly poorly as the second effect becomes stronger. Ignoring unit effects as LS
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does will obvioulsy result in biased estimates, but it is not clear how the available estimators will

perform under different specifications of the data generating process.

In order to isolate the effects of the unit effects, we assume in the analysis that follows that

the researcher has correctly determined the dynamic structure of the data. Here we consider the

following three cases: 1) the simple case where no dynamics exist; 2) the LDV model (which has

become the default standard in political science since Beck and Katx (1995) promoted its use; and

3) the case where lagged independent variables (LIVs) are important as well. A natural extension

of our analysis is to evaluate estimator performance when researchers fail to appropriately specify

the dynamic structure of the model.

Figures 3 and 4 present the results of our simulations for the four estimation approaches

and three dynamic specificaitons discussed above. Not surprisingly, the LS estimator performs

poorly except in the base case where no dynamics are involved and where σα and ψ are both

zero (in other words, when the assumptions of the classical model hold, LS is the best approach).

Figure 3 shows, however, some additional insight into how unit heterogeneity interacts with the

dynamics of the model. In the LDV case, we find the same thing as Kristensen and Waro, namely

that increasing the correlation between the unit effects and the indpendent variables worsens the

performance of the LS estimator. For the LSDV estimator, increasing σα actually lowers the bias

that results from including an LDV in the specification. This is because as unit effects become

more important, they explain more (relative to X) of the variance in Y (though there are no

corresponding gains in effeciency, as Figure 4 shows).

The findings of Kristsen and Waro are reversed, however, when the specification includes

an LIV in addition to an LDV. In this case, it is the importance of the unit effects (σα) that

is the primary culprit. In fact, increasing ψ actually reduces the bias associated with the LS

estimator in this case. This is likely because neglecting the LIV is capturing some of the effect

of the unit effects, an effect that grows stronger as the ψ parameter gets larger. Furthermore,

Figure 4 reveals that in the case where no dynamics are involved, the efficiency of the LS model

is primarily a function of σα, not ψ. Thus the Kristensen and Waro results hold for the LDV

case but not for the no dynamics case or the case where an LIV is also present. Thus, their paper

should not be interpreted to mean that, in general, LS is appropriate as long as the unit effects
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are not correlated with the regressors. It can easily be the case that the overall importance of

the unit effects, even when uncorrelated with X, will be the dominant factor in increasing both

the bias and MSE of the LS estimator.

One argument for the simple LDV approach of Beck and Katz is that including an LDV does

much the same thing as including fixed effects in the model, since it accounts for the overall level

of the dependent variable, much as fixed effects do. However this seems to be true only when

the importance of the fixed effects is low and when the model does not include an LIV. An LDV

may partially mitigate the exclusion of fixed effects, but it is hardly a general solution.

Finally, a central motivating question in this analysis is whether the IV estimators proposed

by Anderson and Hsiao and Arellano and Bond outperform the simple LSDV estimator in the

types of data sets typically used by political scientists. With respect to the analyses illustrated

in Figures 3 and 4, the answer seems to be that they do not. In particular, the Anderson-Hsiao

estimator is strictly dominated by the LSDV and Arellano-Bond estimators. Furthermore, the

LSDV estimator performs at least as well as and sometimes better than Arellano-Bond (this

is particularly the case when there are no dynamics in the model, though in that case, GMM

approaches are not recommended in the first place, because the LSDV estimator is unbiased when

dynamics are not present).

6.2 Time series dynamics

In this section we switch our focus from unit heterogeneity to misspecification of the dynamic

structure, though the data used in the analysis still includes unit heterogeneity. In short, we

examine the effects of failing to identify the correct number of lagged variables in the data. A

review of the applied literature on TSCS data in political science by Wilson and Butler (2004)

show relatively little attention paid to the question of dynamics except for the ad hoc inclusion

of an LDV in many studies. Any good time series textbook discusses issues involved in correctly

specifying the lag structure of the data and those lessons apply just as well to the TSCS case.

We illustrate in the following analys the effects of neglecting lagged values in both the depen-

dent and independent variables. For the sake of parsimony in presentation, we treat the LDVs

separtely from the LIVs, though they could just as easily be considered together (and we hae
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Figure 3: Bias (|β̂1 − β1|) in various time series cross-section estimators (columns) under different
dynamic parameters (rows), different impacts of unit effects on x (horizontal axes of plots), and
different sizes of unit effects (vertical axes). Each cell in each plot shows the bias in a different scenario for
the given combination of estimator and dynamics (all models are correctly specified). For all scenarios, 1000
simulations were drawn from a TSCS process with N = 10, T = 20, β1,t = 1, σε = 1, δ = 0.5, σω = 0.6, and
ση = 1. Each of the N time series begins with a burn-in period of 50 observations, which is discarded.
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Figure 4: Efficiency (MSE) of various time series cross-section estimators (columns) under different
dynamic parameters (rows), different impacts of unit effects on x (horizontal axes of plots), and
different sizes of unit effects (vertical axes). Each cell in each plot shows the mean squared error for a
different scenario for the given combination of estimator and dynamics (all models are correctly specified). For
all scenarios, 1000 simulations were drawn from a TSCS process with N = 10, T = 20, β1,t = 1, σε = 1,
δ = 0.5, σω = 0.6, and ση = 1. Each of the N time series begins with a burn-in period of 50 observations,
which is discarded.
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done so in other MC experiments, not shown). While many researchers include an LDV, very few

studies have considered LIVs, even though there is a long literature on properly identifying the

appropriate number of lags. The Anderson-Hsiao and Arrellano-Bond estimators include lagged

values as instruments but not as direct effects. For this and other reasons, it is possible that the

performance of these IV estimators will differ from the LS and LSDV estimators.

We examine first the case of LDVs, where the results are shown in Figures 5 and 6. Each of

the twelve plots shows the performance under various values of the true parameters. The rows of

the figures correspond to different specifications. In the bottom row, no lags are included, in the

middle row, only a first-order lag is included, while the top row is correctly specified. As before,

we consider the performance of the four estimators in terms of bias and MSE. Note that because

the choice of row (specification) and column (estimator) is up the researcher, but the location

of the data within the plot is in practice unknown, a good estimator/specification combination

would need to have globally good performance across the plotted space.

The abysmal performance of the LS estimator is not unexpected, but the profound bias

that results even when the coefficients on the LDVs are very small illustrates the importance

of correctly specifying the equations. Indeed, this lesson holds as well for the other estimators.

Compared with a correct specification, the choice between the LSDV and the IV estimators is a

second-order concern. We note that when using the simple LS specification, including an LDV is

definitely superior to the simple case of excluding it all together. Thus TSCS studies that include

no lagged values are particularly suspect. The advice by Beck and Katz (1995) to include an

LDV when doing pooled-OLS turns out to be quite helpful in this regard, though note that for

cases where the φ1 is smaller than φ2 the simple LDV does not do well (in practice, this might

occur when adjustment processes are slow or periodic in some fashion).

For all the estimators, mis-specification (in terms of leaving out a signficant second order

lag) has a strong effect on the bias estiamates, though there is less effect for MSE. The choice of

estimator does little to alleviate this. When we turn to LIVs (Figures 7 and 8), much the same

story is evident. Mis-specification has very negative consequences, particularly in the LS case.

In contrast, a correctly specified LSDV is clearly the superior estimator. Interstingly, the one

case where the LSDV variable seems to underperform the IV estimators is when the second lag
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is important and incorrectly omitted. This is the one case where the Anderson-Hsiao estimator

is actually superior to the others. The LSDV performs worse than the other two in this case in

terms of both bias inefficiency. In contrast, the LSDV does better when both lags are incorrectly

omitted.

In the particular scenario we have chosen to illustrate, there is no advantage to using the

IV estimators when the equation is correctly specfied. The LSDV is simpler to implement and

interpret and it outperforms the IV approaches. But we caution the reader that we have not fully

examined variations in other parameters that may undermine this general result. For instance,

much more work needs to be done in exploring different combinations of N and T . Judson and

Owen find that the IV approaches are somewhat better than LSDV when T is very small.

7 Discussion

Many analysts have reached a concensus that unit effects are an important consideration in any

TSCS analysis. Even Beck and Katz, who ignored the issue in their highly influential paper of

1995, now point out the importance of accounting for unit effects (2004). The results here confirm,

under a fairly general data generating process, the poor performance of the LS estimator when

the estimating equation is not correctly specified and the classical assumptions do not hold. We

have shown that adding an LDV helps, but, in general, the original BK prescriptions (pooled-OLS

with LDV and PCSEs) lead to seriously biased and inefficient estimation.

This concensus on fixed effects does not necessarily mean that we know enough to approach

TSCS analysis with any degree of confidence. Analytical results that have been well-known for

decades imply that least squares estimation of panel data models are biased for finite T , even as

as N goes to infinity. This bias becomes worse the smaller T gets.

The good news is that evidence is beginning to accumulate (not only this paper, but pre-

viously Monte Carlo work) that the LSDV model generally performs—when the dyanmics are

correctly specified—as well or better than more complicated IV estimators. A clear result from

our experiments is the superior performance of the LSDV model in handling correlation between

the unit effects and the independent variable (i.e. Figures 3 and 4), a situation that is likely to

occur often in practice. Ours is the first analysis to show this result. The strong performance of
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Figure 5: Bias (|β̂1 − β1|) in various time series cross-section estimators (columns) under different
dynamic specifications (rows) and different true coefficients on first and second lags of the dependent
variable (horizontal and verical axes of plots). Each cell in each plot shows the bias in a different scenario
for the given combination of estimator and specification. For all scenarios, 1000 simulations were drawn from
a TSCS process with N = 10, T = 20, β1,t = 1, β1,t−1 = 0.0, β1,t−2 = 0.0, σε = 1, δ = 0.5, ψ = 0.5,
σω = 0.6, σα = 1, and ση = 1. Each of the N time series begins with a burn-in period of 50 observations,
which is discarded. For these runs, the specification also includes no lags of the independent variable, which
happens to be the correct specification.
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Figure 6: Efficiency (MSE) of various time series cross-section estimators (columns) under different
dynamic specifications (rows) and different true coefficients on first and second lags of the dependent
variable (horizontal and verical axes of plots). Each cell in each plot shows the mean squared error for a
different scenario for the given combination of estimator and specification. For all scenarios, 1000 simulations
were drawn from a TSCS process with N = 10, T = 20, β1,t = 1, β1,t−1 = 0.0, β1,t−2 = 0.0, σε = 1,
δ = 0.5, ψ = 0.5, σω = 0.6, σα = 1, and ση = 1. Each of the N time series begins with a burn-in period of
50 observations, which is discarded. For these runs, the specification also includes no lags of the independent
variable, which happens to be the correct specification.
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Figure 7: Bias (|β̂1 − β1|) in various time series cross-section estimators (columns) under different
dynamic specifications (rows) and different true coefficients on first and second distributed lags of the
covariate (horizontal and vertical axes of plots). Each cell in each plot shows the bias in a different scenario
for the given combination of estimator and specification. For all scenarios, 1000 simulations were drawn from
a TSCS process with N = 10, T = 20, β1,t = 1, φ1 = 0.0, φ2 = 0.0, σε = 1, δ = 0.5, ψ = 0.5, σω = 0.6,
σα = 1, and ση = 1. Each of the N time series begins with a burn-in period of 50 observations, which is
discarded. For these runs, the specification also includes no lags of the dependent variable, which happens to
be the correct specification.
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Figure 8: Efficiency (MSE) of various time series cross-section estimators (columns) under different
dynamic specifications (rows) and different true coefficients on first and second distributed lags of
the covariate (horizontal and vertical axes of plots). Each cell in each plot shows the mean squared
error for a different scenario for the given combination of estimator and specification. For all scenarios, 1000
simulations were drawn from a TSCS process with N = 10, T = 20, β1,t = 1, φ1 = 0.0, φ2 = 0.0, σε = 1,
δ = 0.5, ψ = 0.5, σω = 0.6, σα = 1, and ση = 1. Each of the N time series begins with a burn-in period of
50 observations, which is discarded. For these runs, the specification also includes no lags of the dependent
variable, which happens to be the correct specification.
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the LSDV also shows up in previous MC work we cite elsewhere. We suspect that the LSDV will

be shown to be the estimator of choice for a wide range of settings. Furthermore, the bias that

does exist in dynamic panel data models is mostly an effect on the coefficient of the LDV, not

the coefficient on the independent variables. In political science, the LDV is usually included for

purposes of control, not because it is of central importance. Even though estimates of β1 may be

very reliable, researchers should be cautioned that φ1 may still have significant bias. (Note this

also biases estimates of the long-run effects of the independent variables, which may often be the

quantities of real interest.)

Given the preliminary nature of this study, a caveat is in order. Although Judson and Owen

find in favor of LSDV when T > 20, they show that IV approaches are slighlty better when T

is 10 or less, though their data generating process is not as general as the one employed here.

They also note the strong performance of Kiviet’s (1995) corrected-LSDV estimator (available

only for balanced panels). The results here are very preliminary and different scenarios may

serve to illustrate cases where the LSDV is not optimal. Data sets where T is very small will

pose signficant challenges under any estimation technique, and fixed-effects, in particular, are

less useful the smaller T becomes.

Not all news is good, however. Mis-specification of the lag structure of the model both

in terms of LDVs and LIVs results in serious bias and inefficiency for all the parameters of

the model, including β1. This holds for all estimators, particularly LS. Unfortunately, though

accurate specification of lag structures in time-series research is not a new problem, it remains a

challenging one. For instance, deciding what to do with a group of variables that are individually

insignificantly but are a) jointly significant and b)influential on the parameters of interest is not

an easy question. Given that models usually have multiple independent variables, adding lags

can result in a very cumbersome presentation and interpretation of results. The hassle involved

in accounting for LIVs is surely a major reason that almost no one in applied political science

research actually does it (evidence is given in Wilson and Butler (2004)).

Unfortunately, it appears that political scientists will need to face the problem of lagged

variables. As we have shown, the errors are simply too profound to sweep this problem under

the rug. (Beck and Katz (2004) are certainly in agreement on the point that dynamics need to
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be carefully addressed.) Nor is the solution likely to come in the form of a better estimation

technique. We might hope that IV approaches including past values of both the dependent and

independent variables would yield adequate solutions when the estimating equations themselves

are mis-specified. They don’t.

Another serious analytical problem the profession has to come to grips with is that there may

not be an appropriate panel data approach for dealing with datasets where the variable of interest

is either time-invariant (which makes FE impossible) or slowly-moving (which causes standard

errors to be very high). Beck and Katz (2004) continue to advise researchers that it may be the

case that fixed-effects should not be used if the variables of most interest are invariant or slowly

moving. We question the utility of using seriously biased coefficients just because they have a

strong theoretical or intuitive appeal. Perhaps alternative estimation schemes will be developed

that can yield unbiased (or even consistent) estimates of these effects, but we are not there yet.
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