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Event history analysis

A large field (and a CSSS course by Darryl Holman) considers event history

An event history dataset records, for each of N units and T periods,
whether an event happened (1) or not (0) in unit i and period t

Event history data are simply categorical time series cross-section data

Most commonly, there are only two possibilities:
war or peace, government failure or continuation, life or death

There are event history models for multiple unordered outcomes, however
(e.g., war, peace, alliance), known as competing risk models

If you have a panel of ordered categorical time series, look into mixed autoregressive
ordered probit in the maop package in R → seems hard to find at the moment

You could also consider models for lagged latent dependent variables generally, and
hidden Markov models. Some of these models are best handled with MCMC.



Survival models

We will talk only about binary time series cross-section,
and only as it most closely links to our core panel data topics

But first, we need to understand some essential duration concepts

Running example:
Suppose we are studying how long it takes for a government to fall



Survival models: Key concepts

Let the duration, Di, be the time elapsed from the start of the government to the
moment it collapses for country i
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Survival models: Key concepts

Let the duration, Di, be the time elapsed from the start of the government to the
moment it collapses for country i

Let the survival function, Sit, indicate the probability a government lives past a given
point in time:

Sit = P(Di > t)

Define the lifetime distribution function, Fit, as the probability a government has
died by time t:

Fit = 1− Sit

Define event density, fit, as the probability of government failure at t precisely:

fit =
dFit

dt

Define the hazard rate, hit as the probability of failure at t precisely given survival to
time t:

hitdt = P(t ≤ Di < t+ dt) =
fit
Sit



Cox Proportional Hazards

The hazard, or the chance that a currently running process is about to fail,
is what we want to model as a function of covariates

Most important approach: Cox Proportional Hazards Model

CPH assumes there is some baseline hazard function, hot, which varies over time

The shape of the baseline hazard may be highly complex,
reflecting numerous idiosyncracies in the “usual” course of a process



Cox Proportional Hazards

We allow for those idiosyncracies,
and estimate the shape of the baseline hazard non-parametrically

Then we simply let the hazard rate for any actual process be a multiple of the
baseline hazard (estimated by maximum likelihood):

hit = h0texp(xiβ)

The upshot is that differences in xi proportionally increase or lower the hazard,
or probability of failure in an on-going process

To see this, consider governments, i and j, both at risk of failure

The relative probability of failure at t is given by:

hit
hjt

=
h0texp(xiβ)

h0texp(xjβ)
=

exp(xiβ)

exp(xjβ)



Cox Proportional Hazards

hit
hjt

=
h0texp(xiβ)

h0texp(xjβ)
=

exp(xiβ)

exp(xjβ)

Suppose xj = 0 and xi = 1. Then:

exp(xiβ)

exp(xjβ)
=

exp(β × 1)

exp(β × 0)
=

exp(β)

exp(0)
= exp(β)

This lets us easily interpret exponentiated Cox regression coefficients:

if exp(β̂1) = 0.25 then ↑ x1 by 1 leads to ↓ P(y) by 75% vs baseline

if exp(β̂1) = 1.80 then ↑ x1 by 1 leads to ↑ P(y) by 80% vs baseline



Cox Proportional Hazards

To estimate the Cox Proportional Hazards model in R, use the survival library
commands:

# We need a vector of starting times, a vector of ending times,

# and whether an event has occurred by the ending time

duration <- Surv(start, stop, event)

res <- coxph(duration~x1+x2+x3)

The survfit command is also very helpful for predicting conditional survival curves

Note two things above:

1. The model accounts for observation that are “right-censored”
(no failure yet when “time is up”)



Cox Proportional Hazards

To estimate the Cox Proportional Hazards model in R, use the survival library
commands:

# We need a vector of starting times, a vector of ending times,

# and whether an event has occurred by the ending time

duration <- Surv(start, stop, event)

res <- coxph(duration~x1+x2+x3)

The survfit command is also very helpful for predicting conditional survival curves

Note two things above:

2. If covariates change over time within units, the model treats the different
“phases” of a unit in which covariates are static as different observations,
each of which is right-censored, except (perhaps) the final period

See Box-Steffensmeier and Jones’ excellent introductory text for more on including
time-varying covariates in Cox PH models



Event history models

If you know how to use event history models,
you already know how to model binary time series cross-sectional data

Well developed models with lots of useful tools—how I model these data

But if you don’t know these models,
in some cases a simple modification of logit will suffice. . .



Binary Time Series Cross Section

Beck, Katz, and Tucker (1998, AJPS) offer some simple tricks
for turning ordinary logit into Cox proportional hazards model

Suppose we have a binary indicator of whether an event occurred in unit i at time t

We might suppose this event is a function of past events, covariates, and lags of
covariates:

P(yit) = f(yi,t−1, . . . , yi,t−p, x1it, . . . , xkit, x1,i,t−1, . . .)

But we can’t just stick this into linear regression—yit is binary, so least squares is
highly inefficient, and has biased standard errors (due to heteroskedasticity)

Nor can we just stick lags into logit—that trick only works for linear models

(Note also we might want the lag of the latent variable y∗i,t−1,
not the lagged realization yi,t−1)



BTSCS: What not to do

A common problem in IR, e.g., in the study of war onset among dyads

But also a problem for studies of policy adoption, lifecycle events, etc.

Years ago in IR, political scientists often gave up and estimated an ordinary logit:

P(yit = 1|xi,t) =
1

1 + exp(−xitβ)

This model is consistent but very inefficient, and with very biased standard errors



BTSCS is event history

Binary time series cross-section is just a discrete case of event history

Event history models (also called survival or duration analysis)
model the time until an event occurs for each of N cases

Usually, these models are in continuous time

BTSCS is just a discrete version, where the time periods are highly aggregated

Instead of knowing a period of peace lasted 4 years, 3 months, and 2 days,
we might just have four periods of peace, followed by a period of war



BTSCS as a proportional hazards model

The discrete version of a proportional hazard model is:

E(ht|xi,t) = h0,texp(xitβ)

The exp(xitβ) turns out to be our logit model,
but we are missing the baseline hazard h0,t

For continuous time, this is a (potentially) very complex function of time

But for discrete time periods, it must be a simple step function

Any step function can be decomposed into a set of dummy variables,
one for each step
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BKT note that for discrete baseline hazards

E(ht|xi,t) = h0,texp(xitβ)

= 1− exp(−exp(xitβ + κt−t0))

≈ 1

1 + exp(−xitβ − κt−t0)
for ht < 0.5

κt−t0 is a duration dummy indicating the number of periods since the last event:

t y duration dummy κ1 κ2 κ3 κ4

1 0 1 κ1 1 0 0 0
2 0 2 κ2 0 1 0 0
3 0 3 κ3 0 0 1 0
4 1 4 κ4 0 0 0 1
5 0 1 κ1 1 0 0 0
6 0 2 κ2 0 1 0 0
7 1 3 κ3 0 0 1 0
8 1 1 κ1 1 0 0 0
9 0 1 κ1 1 0 0 0

10 0 2 κ2 0 1 0 0



BTSCS with duration dummies

The simplest BTSCS model provided by BKT is this logit:

P(yit = 1|xit) =
1

1 + exp(−xitβ − κt−t0)

κt−t0 is a duration dummy indicating the number of periods since the last event

To do this in R, we just need to create these dummies and put them in

glm(y~x+dummies, family=binomial)



BTSCS with smoothing splines

One problem with duration dummies is the difficulty in estimating rarely appearing
durations (i.e., long ones).

It may be reasonable to assume the baseline hazard is smooth:

P(yit = 1|xit) =
1

1 + exp(−xitβ − smooth(κt−t0))

Then we need only estimate a smoother of the time series dummies,
which might have only three parameters or so

To apply a smoothing spline to the dummies, create the duration count duration,
load the mgcv package and try

gam(y~x+s(duration), family=binomial)



Democratic peace example
1280 N. Beck, J. Katz, and R. Tucker 

Figure 2. Discrete Hazard of Dispute 
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trade predicts the current probability of a dispute. Trade averages 0.22 per- 
cent of GDP prior to one year disputes. This is only slightly lower than the 
0.23 percent of GDP that trade averages prior to a year of peace. But, in the 
last year of peace prior to a multi-year dispute, trade averages only 0.15 per- 
cent of GDP. Thus trade is not a good predictor of whether a dispute will oc- 
cur, but if one does, it is a good predictor of whether it will be lengthy. Low 
trade may prolong conflicts, but it does not appear to cause them. 

4.3 The Effect of Multiple Disputes 
The elimination of ongoing dispute years 

We can further examine the contaminating effects of long spells of dis- 
putes by eliminating ongoing years of a dispute from the analysis. Five hun- 
dred forty-two dyad-years with a dispute are thus dropped.47 Results of this 
analysis are in Table 2. 

47All disputes that continue for more than one year are dropped, even if disputes in subsequent 
years have different identification codes. 



Democratic peace example

BINARY TIME-SERIES-CROSS-SECTION ANALYSIS 1277 

Table 1. Comparison of Ordinary Logit 
and Grouped Duration Analyses 

Ordinary 
Logit Grouped Duration 

Logit Logit Cloglog 
Dummya Spline Dummyb 

Variable I II III IV 

Democracy -0.50 -0.55 -0.54 -0.49 
(0.07) (0.08) (0.08) (0.07) 

Economic Growth -2.23 -1.15 -1.15 -0.81 
(0.85) (0.92) (0.92) (0.76) 

Alliance -0.82 -0.47 -0.47 -0.43 
(0.08) (0.09) (0.09) (0.08) 

Contiguous 1.31 0.70 0.69 0.55 
(0.08) (0.09) (0.09) (0.08) 

Capability Ratio -0.31 -0.30 -0.30 -0.30 
(0.04) (0.04) (0.04) (0.04) 

Trade -66.13 -12.67 -12.88 -12.50 
(13.44) (10.50) (10.51) 9.96 

Constant -3.29 -0.94 -0.96 -1.11 
(0.08) (0.09) (0.09) (0.08) 

Peace Years -1.82 
(0.11) 

Spline(l) c -.24 
(0.03) 

Spline(2) c -.08 
(0.01) 

Spline(3)c -.01 

(0.003) 

Log Likelihood -3477.6 -2554.7 -2582.9 -2554.1 
df 20983 20036 20979 20949 
N=20990 

Standard errors in parentheses 
a31 temporal dummy variables in specification not shown 
3dummy variables and 916 observations dropped due to outcomes being perfectly predicted 

b34 temporal dummy variables in specification not shown 
CCoefficients of Peace Years cubic spline segments 

and III for the logit link and Column IV for the cloglog link results.) A test 
for whether the temporal dummies (a likelihood ratio test of I vs. II), or 
the temporal splines (I vs. III), are required indicate strong duration 



BTSCS with random effects

We might suppose that some peace among some dyads
is just randomly stronger or weaker that others

A large random intercept for a dyad would mean that dyad is more frail,
hence we call these random effects “frailties”

You can also add random effects for intercepts
to either the duration dummies or smoothing spline model

See glmmML() in the glmmML library to use frailties and duration dummies

See gamm() in the mgcv() library to use frailties and smoothing splines



BTSCS: things to remember

1. For observation i,
the initial spell of peace may prexist the initial year of your dataset.

If you know how long the first spell really lasted,
you should include the appropriate duration dummies

2. If you have repeated events for a single unit,
consider including a variable with the count of past events, to control for dynamics

3. This model cannot include unit-invariant contemporaneous shocks,
as they will likely be too strongly correlated with the duration dummies

By the same token, don’t add period dummies

4. Finally, these models don’t handle missing data at all well.
(that is, how do you listwise delete without losing the whole case?)


