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What are Panel Data?

Economic performance of N countries over T quarters

Crime rates in N regions over T years

Opinion of N persons surveyed across T periods

Vote share of governing coalition in N countries over T elections

These are examples of panel or time series cross-section (TSCS) data

In this class, panel and TSCS used interchangeably
for repeated observations on a set of units

Sometimes, TSCS refers to sequential observation on different units,
or to a repeated panel with small N and large T

Likewise, in many fields, panel data are often large N & low T

Will consider this case in detail towards the end of the course, but our initial focus
is modeling of continuous outcomes in panels with at least medium T



Panel Data with Medium T (e.g., Political Science)

Excepting survey data, political science datasets often have
fixed and small N , “medium” but expandable T , and continuous outcomes

This combination appears in other social sciences as well,
and forces us to think hard about three issues:

1. Temporal dependence: The past plays a strong role in politics & society.
Overlooking or misspecifying dynamics leads to serious errors in inference

2. Unit heterogeneity: Many unobserved differences among our units. Serious danger
of omitted variable bias. Proper use of panel tools can mitigate this danger.

3. Heteroskedasticity: In linear models, the variance of disturbances may itself vary,
either across units or over time

Can borrow many techniques from time series econometrics, but often our focus
(and problems) differ. Economists usually have limited T , large N , and (sometimes)
lower temporal dependence.



Goals of the course

By the end of the course, you should be able to:

• Select the appropriate time series or panel model for your data

• Demonstrate the appropriateness of your model
using various tests for heteroskedasticity and serial correlation

• Estimate your model and interpret the results for a broad audience
in terms of the quantities of substantive interest

• Show readers the time series or panel structure of your data,
and how a proper understanding of that structure affects model interpretation



Structure of the course

Part 1: Review of Fundamentals

Basic tools for estimating and understanding models in the course; 2 days

Part 2: Modeling Time Series Dynamics

Stochastic Process / Lagged DV / ARIMA / Cointegration; 6 days

Part 3: Modeling Panel Heterogeneity

Random effects / Fixed effects / Panel GMM / Heteroskedasticity; 7 days

Part 4: Advanced Topics

In-Sample Simulation / Multiple Imputation; 2 days

Part 5: Student Posters 3 days



Motivating Examples

What will you get out of the course?

Three motivating examples from my own work. . .

1. Comparative Inflation Performance

2. African Labor Standards

3. Homicide Among Dating Partners in the US

See separate slide shows (linked to course page)



Outline for Topic 1

1. Review of linear regression (notation, estimation)

2. Desired properties of estimators (bias, efficiency, consistency)

3. Assumptions underlying linear regression (Gauss-Markov Theorem)

4. Heteroskedasticity & simple “fixes” (robust standard errors)

5. Estimation and model selection with MLE

6. Clear presention of substantive results through simulation

More topics above than we can cover comprehensively;
read ahead and ask questions so we can focus on areas of most interest/need



Review of simple linear regression

Recall the linear regression model in scalar form

yi = β0 + β1x1i + · · ·+ βkxki + εi

εi is a normally distributed disturbance with mean 0 and variance σ2

Equivalently, we write εi ∼ N (0, σ2)

Note that:

The stochastic component has mean zero: E(εi) = 0

The systematic component is: E(yi) = β0 + β1x1i + · · ·+ βkxki

The errors are assumed uncorrelated: E(εi × εj) = 0 for all i 6= j



Aside: The Normal (Gaussian) distribution

fN (yi|µ, σ2) = (2πσ2)−1/2 exp

[
−(yi − µ)2

2σ2

]
The Normal distribution is continuous and symmetric,
with positive probability everywhere from −∞ to ∞

Many researchers implicitly or explicitly assume their data are Normally distributed

Moments: E(y) = µ Var = σ2
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Review of simple linear regression
Recalling the definition of variance, note that in linear regression:

σ2 = E
(

(εi − E(εi))
2
)

= E
(

(εi − 0)
2
)

= E(ε2i ) =

n∑
i=1

ε2i/n

σ =

√√√√ n∑
i=1

ε2i/n

Note that this is the square root of the mean of the squared errors (RMSE)

The square root of σ2 is known as the standard error of the regression

σ is how much we expect yi to differ from its expected value,
β0 +

∑
k βkxki, on average

Estimates of σ are the basis of many measures of goodness of fit



Linear Regression in Matrix Form

Scalar representation:

yi = β0 + β1x1i + . . .+ βkxki + εi

Equivalent matrix representation:

y = X β + ε
n× 1 n× (k + 1) (k + 1)× 1 n× 1

Which uses these matrices:
y1
y2
...
yn

 =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
... ... ... . . . ...
1 x1n x2n . . . xkn



β0
β1
...
βk

+


ε1
ε2
...
εn





Linear Regression in Matrix Form

Note that we now have a vector of disturbances.

They have the same properties as before, but we will write them in matrix form.

The disturbances are still mean zero.

E(ε) =


E(ε1)
E(ε2)

...
E(εn)

 =


0
0
...
0





Linear Regression in Matrix Form

But now we have an entire matrix of variances and covariances, Σ

Σ =


var(ε1) cov(ε1, ε2) . . . cov(ε1, εn)

cov(ε2, ε1) var(ε2) . . . cov(ε2, εn)
... ... . . . ...

cov(εn, ε1) cov(εn, ε2) . . . var(εn)



=


E(ε21) E(ε1ε2) . . . E(ε1εn)
E(ε2ε1) E(ε22) . . . E(ε2εn)

... ... . . . ...
E(εnε1) E(εnε2) . . . E(ε2n)



However, the above matrix can be written far more compactly as an outer product

Σ = E(εε′)

′ (or T) is the transpose operator: it flips a matrix along the main diagonal



Linear Regression in Matrix Form

Recall E(εiεj) = 0 for all i 6= j,
so all of the off-diagonal elements above are zero by assumption

Recall also that all εi are assumed to have the same variance, σ2

So if the linear regression assumptions hold,
the variance-covariance matrix has a simple form:

Σ =


σ2 0 . . . 0
0 σ2 . . . 0
... ... . . . ...
0 0 . . . σ2

 = σ2I

When these assumptions do not hold,
we will need more complex models than simple linear regression
to relax the assumptions



Linear Regression in Matrix Form

So how do we solve for β?

Let’s use the least squares principle:
choose β̂ such that the sum of the squared errors is minimized

In symbols, we want

arg min
β

n∑
i=1

ε2i = arg min
β

ε′ε

This is a straightforward minimization (calculus) problem.
The trick is using matrices to simplify notation.

The sum of squared errors can be written out as

ε′ε = (y −Xβ)′(y −Xβ)

(what is this notation doing? why do we need the transpose?)



Linear Regression in Matrix Form

We need two bits of matrix algebra:

(A + B)′ = A′ + B′([
10
3

]
+

[
2
6

])′
=

[
10 3

]
+
[

2 6
]

[
12 9 ] =

[
12 9 ]

and

(Xβ)
′

= β′X′([
2 1
5 6

] [
3
4

])′
=

[
3 4

] [ 2 5
1 6

]
[

(2× 3) + (1× 4)
(5× 3) + (6× 4)

]′
=

[
(3× 2) + (4× 1) (3× 5) + (4× 6)

]
[

10 39 ] =
[

10 39 ]



Linear Regression in Matrix Form

ε′ε = (y −Xβ)′(y −Xβ)

First, we distribute the transpose:

ε′ε = (y′ − (Xβ)′)(y −Xβ)

Next, let’s substitute β′X′ for (Xβ)′

ε′ε = (y′ − β′X′)(y −Xβ)

Multiplying this out, we get

ε′ε = y′y − β′X′y − y′Xβ + β′X′Xβ

Simplifying, we get
ε′ε = y′y − 2β′X′y + β′X′Xβ



Linear Regression in Matrix Form

To see which β minimize the sum of squares,
we need to take the derivative with respect to β.

How do we take the derivative of a scalar with respect to a vector?

Just like a bunch of scalar derivatives stacked together:

∂y

∂x
=

[
∂y

∂x1

∂y

∂x2
. . .

∂y

∂xn

]′

For example, for a and x both n× 1 vectors

y = a′x = a1x1 + a2x2 + . . .+ anxn

∂y

∂x
=

[
a1 a2 . . . an

]′
∂y

∂x
= a



Linear Regression in Matrix Form

A similar pattern holds for quadratic expresssions.

Note the vector analog of x2 is the inner product x′x

And the vector analog of ax2 is x′Ax, where A is an n× n matrix of coefficients

∂ax2

∂x
= 2ax

∂x′Ax

∂x
= 2Ax

The details are a bit more complicated (x′Ax is the sum of a lot of terms),
but the intuition is the same.



Linear Regression in Matrix Form

ε′ε = y′y − 2β′X′y + β′X′Xβ

Taking the derivative of this expression and setting it equal to 0, we get

∂ε′ε

∂β
= −2X′y + 2X′Xβ = 0

This is a mimimum,
and the β’s that solve this equation thus minimize the sum of squares.

So let’s solve for β:
X′Xβ = X′y

β̂ = (X′X)−1X′y

This is the least squares estimator for β

As long as we have software to help us with matrix inversion, it is easy to calculate.



What makes an estimator good?

Is (X′X)−1X′y a good estimate of β?

Would another estimator be better?

What would an alternative be?

Maybe minimizing the sum of absolute errors?

Or something nonlinear?

First we’ll have to decide what makes an estimator good.



What makes an estimator good?

Three common criteria:

Bias

The meaning of bias in statistics is more specific than,
and at times at variance with, the plain English meaning.

It does not mean subjectivity.

Is the estimate β̂ provided by the model expected to equal the true value β?

If not, how far off is it?

This is the bias, E(β̂ − β)

Although it seems obvious that we always prefer an unbiased estimator
if one is available, a little thought shows this is not the case [diagram on board]

Why? We also want the estimate to be close to the truth most of the time



What makes an estimator good?

Unbiased methods are not perfect. They usually still miss the truth by some amount.
But the direction in which they miss is not systematic or known ahead of time.

Unbiased estimates could be utterly useless.
One unbiased estimate of the time of day: a random draw from the numbers 0–24.

Biased estimates are not necessarily terrible.
A biased estimate of the time of day: a clock that is 2 minutes fast.



What makes an estimator good?

Efficiency: Efficient estimators get closest to the truth on average

Measures of efficiency answer the question:
How much do we miss the truth by on average?

Efficiency thus incorporates both the bias and variance of estimator.

A biased estimate with low variance may be “better” (more useful)
than an unbiased estimate with high variance

Some examples:

Unbiased? Efficient?
Stopped clock. No No
Random clock. Yes No
Clock that is “a lot fast” No No
Clock that is “a little fast” No Yes
A well-run atomic clock Yes Yes



What makes an estimator good?

To measure efficiency, we use mean squared error:

MSE = E
[(
β − β̂

)2]
= Var(β̂) + Bias(β̂|β)2

If E(β̂) = β (no bias), MSE reduces to var(β̂)

√
MSE (or RMSE) is how much you miss the truth by on average

In most cases, we want to use the estimator that minimizes MSE
We will be especially happy when this is also an unbiased estimator
But it won’t always be



What makes an estimator good?

Consistency:
If an estimator converges to the truth as the number of observations grows it is
consistent

Formally, E(β̂ − β)→ 0 as N →∞

Of great concern to many econometricians and arguably important as N gets big
e.g., as in survey data, where N is typically a matter of research design decisions

Not as great a concern in, say, comparative politics (as a thought experiment,
N →∞ doesn’t help much when the observations are, say, industrialized countries)

We will be mainly concerned with efficiency,
secondarily with bias,
and much less with consistency

. . . that said, application of some panel data methods to some panel data structures
will produce inconsistent estimates, as we shall see



What can go wrong in a linear regression?

Even if your data are sampled without bias from the population of interest,
and your model is correctly specified (contains the “right” control variables),
several data and design problems can violate the linear regression assumptions

In order of declining severity, these are:

Perfect collinearity

Endogeneity of covariates

Heteroskedasticity

Serial correlation

Non-normal disturbances



Perfect Collinearity

Perfect collinearity occurs when X′X is singular;
that is, the determinant of X′X is 0: |X′X| = 0

Matrix inversion – and thus LS regression – is impossible here

Your stat package will return an error and/or drop covariates randomly
(don’t report such a model – respecify to remove collinearity first)

Happens when two or more columns of X are linearly dependent on each other

Common causes: including a variable twice, or a variable and itself times a constant

Very rare in applied research – except in panel data, as we will see!



“Partial” Collinearity

What if our covariates are correlated but not perfectly so?

Then they are not linearly dependent

The regression coefficients are identified in a linear algebra sense:
a unique estimate exists for each βk

Regression with partial collinearity is unbiased & efficient, all else equal

But if the correlation among the X’s is high, there is little to distinguish them

This leads to noisy estimates and large standard errors

Those large standard errors are correct

They are not a statistical problem to be fixed;
instead, the data are too limited for the model
or the model too ambitious for the sample



“Partial” Collinearity

“Partial” Collinearity is actually an oxymoron

Social scientists sometimes inappropriately call this “multicollinearity”

In mathematics, multicollinearity describes only perfect linear dependence

Linear regression does not“fail” when correlation among X is “high”

There is no “fix” for high correlation: it is not a statistical problem

Have highly correlated X and large standard errors?
Then you lack sufficient data to precisely answer your research question

→ expand the data or narrow the question



Exogenous & endogenous variables

So far, we have (implicitly) taken our regressors, X, as fixed

X is not dependent on y

Fixed = pre-determined = exogenous

y consists of a function of X plus an error

y is thus endogenous to X

endogenous = “determined within the system”



Exogenous & endogenous variables

What if y helps determine X in the first place?

That is, what if there is reverse or reciprocal causation?



Exogenous & endogenous variables

That is, what if there is reverse or reciprocal causation?

Very common in political science and other social sciences:

• campaign spending and share of the popular vote

• arms races and war, etc

• students’ measured aptitude and effort

• individual health and income

In these cases, y and X are both endogenous

Least squares is biased in this case

It will remain biased even as you add more data

In other words, it is inconsistent, or biased even as N →∞



Exogenous & endogenous variables

How do you identify a causal relationship when y and X are both endogenous?

→ Revise your research design:

1. Conduct a lab and/or field experiment with random assignment of treatment

2. Find a natural experiment (“as-if” random assignment)

3. Find an exogenous “version” of x

4. Find an instrument for x: a variable z that affects y only through x

5. Find a deterministic “discontinuity” in real-world application of a treatment
and apply a regression discontinuity design

Sometimes panel data can help:
especially if we can sequence cause and effect in time (Options 3 & 4),

or compare before and after a naturally occuring intervention
as in difference-in-differences designs (Option 2)



Heteroskedasticity: “Different variance”

Linear regression allows us to model the mean of a variable well

y could be any linear function of β and X

But LS always assumes the variance of that variable is the same:

σ2, a constant

We don’t think y has a constant mean. Why expect constant variance?

In fact, heteroskedasticity – non-constant error variance – is very common
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A common pattern of heteroskedasticity: variance and mean increase together

Here, they are both correlated with the covariate x

In a fuzzy sense, x is a necessary but not sufficient condition for y

Heteroskedasticity is often substantively interesting, but mistaken for mere nuisance
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Diagnose heteroskedasticity by plotting the residuals against each covariate:
Look for a pattern, often a megaphone

But other patterns are possible
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What do you think is happening in this example?
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Heteroskedasticity can be more complex in panel datasets, including:

(1) variances differ by cross-sectional unit: country 2 has higher variance

(2) variances differ by time periods: periods 25–50 have higher variance

(3) lingering heteroskedasticity after large random errors: present but subtle
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More on panel heteroskedasticity later in the course. . .



Unpacking σ2

Every observation consists of a systematic component (xiβ) and a stochastic
component (εi)

Generally, we can think of the stochastic component as an n-vector ε following a
multivariate normal distribution:

ε ∼MVN (0,Σ)

Aside: how the Multivariate Normal distribution works



The Multivariate Normal distribution

Consider the simplest multivariate normal distribution,
the joint distribution of two normal variables x1 and x2

As usual, let µ indicate a mean, and σ a variance or covariance

X ∼ MVN (µ,Σ)

[
x1

x2

]
∼ MVN

([
µ1

µ2

]
,

[
σ2
1 σ1,2

σ1,2 σ2
2

])

The MVN is more than the sum of its parts:
There is a mean and variance for each variable, and covariance between each pair




