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In-Sample Simulation for Panel Data Models

Dynamic simulation for panels is tricky, but just as valuable as for cross-sections

Dealing with panel simulation is why I started writing simcf functions;
I use these techniques extensively in my own work

In-sample simulation of panel models is especially useful / interesting / persuasive:

1. Make counterfactuals more factual and sample-specific

2. Avoids creating “average” cases that could never occur in reality
– hypothetical people who are 52% female
– hypothetical countries that score 0.2 on whether they are former colonies…

If youʼve ever asked:

“In simulations, why hold everything else constant at its mean?”

this lecture is for you
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Plan of Lecture

Review of basic simulation concepts

Notation and concepts for in-sample simulation

Notation and concepts for dynamic panel simulation

Application to cigarette taxes panel GMM model
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Review of basic simulation concepts

Suppose we have estimated a model of the form

yit = τt + yi,t−1φ + xitβ + εit

Let θ = vec(τ, φ, β), the vector of parameters to estimate

Maximum Likelihood and Generalized Method of Moments estimates are
asymptotically Normal, so for MLE and GMM θ converges in distribution:

fθ(θ) → Multivariate Normal
(

θ̂, V(θ̂)
)

as n → ∞

If we draw sims=1000 or sims=10000 vectors θ̃ from this distribution,
the variance across those vectors captures the uncertainty in our parameters

Because we relied on asymptotic normality, there may be some bias in small samples
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Review of basic simulation concepts

Suppose we have estimated a model of the form

yit = τt + yi,t−1φ + xitβ + εit

Let θ = vec(τ, φ, β), the vector of parameters to estimate

For θ estimated by a Bayesian method
the model reports the posterior distribution of θ, p(θ) even in small samples

Bayesian models estimated by Markov chain Monte Carlo (MCMC),
report the parameters as a set of sims draws from their posterior distributions

The variance across these draws captures the uncertainty in our parameters

By computing the posterior directly, Bayes avoids bias, even in small samples
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Review of basic simulation concepts

Suppose we have estimated a model of the form

yit = τt + yi,t−1φ + xitβ + εit

Let θ = vec(τ, φ, β), the vector of parameters to estimate

Let θ̃ be a random draw of the parameter vector
taken from the modelʼs predictive or posterior distribution

We can simulate the expected value of y given a hypothetical xhyp using ỹ = f(θ̃, xhyp)

Variation across the sims different version of ỹ|xhyp captures the uncertainty in model
parameters, as does any quantity of interest we construct from ỹ|xhyp

This allows us to construct model-based confidence intervals
around quantities of interest calculated from θ
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Review of basic simulation concepts

The most common such quantities of interest are:
– the expected value of yit given xhypit
– the expected (or “first”) difference between yit given xhypit and yit given xbaseit

We can report the mean and 95% confidence interval of quantities of interest
simply by computing averages and quantiles of the vector of simulates

Typically, we will hold fixed all but one covariate in the vector xit;
refer to the fixed covariates as having values h,
and the manipulated covariate as having counterfactual value c

Through careful selection of c and h,
we can use post-estimation simulation to answer substantive questions
while reporting the uncertainty of those answers
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Notation & Concepts for In-Sample Simulation

We are interested in expected values and first differences conditioned on the model,
observed data, and counterfactual scenarios (ignoring panel structure for now)

ŷ|θ̂, h, c = E(y|θ, h, c)

indicates the expected value of y given estimated parameters θ̂,
observed data h, and counterfactual assumptions c

The “first difference” version of this expected value is

ŷ1 − y0|θ̂, h, c1, c0 = E(y1 − y0|θ, h, c1, c0)

Principle 1: Narrow counterfactuals.

Include as few elements as possible in c, moving them to h where possible
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Notation & Concepts for In-Sample Simulation

Expected values: ŷ|θ̂, h, c First differences: ŷ1 − y0|θ̂, h, c1, c0

Earlier in the course, we let h = h̄, constructing scenarios in which we have the
”average case” except for some counterfactual condition c1

Usually fairly close to the average EV or FD across the sample, but we can do better

In-sample alternative: compute ŷi or ̂yi1 − yi0 for each unit i, changing c0 to c1
while holding hi constant at the factual levels observed in unit i

If the model is nonlinear or conditional in some way –
either y or c involves an nonlinear transformation or an interaction with h –
then the mean of the in-sample simulations will not equal the mean “case”:

mean(ŷi|θ̂, hi, c) ̸= ŷ|θ̂, h̄, c
mean( ̂yi1 − yi0|θ̂, hi, c1, c0) ̸= ŷ1 − y0|θ̂, h̄, c1, c0

Chris Adolph (University of Washington) CSSS 594: Time Series & Panel Data 9 / 39



Notation & Concepts for In-Sample Simulation
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Notation & Concepts for In-Sample Simulation

Upshot: In many models, computing mean( ̂yi1 − yi0) gives better estimates of the
effect of switching c0 to c1 in your sample

The same point applies to simulated expected values,
simulated relative risks, and other QoIs

To the extent you care about the sample,
in-sample simulation is also more interesting than modeling the average case

Principle 2: In-sample counterfactuals.

For the “factual” values in your simulation, use hi instead of h̄,
then average or sum simulated quantities of interest over the sampled units i

Chris Adolph (University of Washington) CSSS 594: Time Series & Panel Data 10 / 39



Notation & Concepts for In-Sample Simulation

Principle 2: In-sample counterfactuals.

For the “factual” values in your simulation, use hi instead of h̄,
then average or sum simulated quantities of interest over the sampled units i

Issue 1. We canʼt “sum” confidence intervals directly.

You might suppose we could just simulate the point estimate and confidence interval for
each unit, then “add them up”

But we canʼt combine confidence intervals that easily

Instead, we need to aggregate draws for each unit, ỹi1 − ỹi0,
thus directly simulating the aggregate quantity of interest
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Notation & Concepts for In-Sample Simulation

Principle 2: In-sample counterfactuals.

For the “factual” values in your simulation, use hi instead of h̄,
then average or sum simulated quantities of interest over the sampled units i

Issue 1. We canʼt “sum” confidence intervals directly.

If the quantity of interest is the average first difference (or EV, etc.) across units,
simulate

¯̃y1 − ȳ0 =
n∑

i=1

(ỹi1 − ỹi0)/n

Appropriate for quantities of interest that are rates or indexes:
– the unemployment rate
– packs smoked per day per capita
– the degree of democracy…
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Notation & Concepts for In-Sample Simulation

Principle 2: In-sample counterfactuals.

For the “factual” values in your simulation, use hi instead of h̄,
then average or sum simulated quantities of interest over the sampled units i

Issue 1. We canʼt “sum” confidence intervals directly.

If the quantity of interest is the sum of first differences (or EV, etc.) across units,
simulate

˜∑
y1 −

∑
y0 =

n∑
i=1

(ỹi1 − ỹi0)

Appropriate for quantities of interest that are counts:
– the total number of homicides
– the total amount of spending…

(But if your outcome is a count, may need a count model rather than linear regression)
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Notation & Concepts for In-Sample Simulation

Principle 2: In-sample counterfactuals.

For the “factual” values in your simulation, use hi instead of h̄,
then average or sum simulated quantities of interest over the sampled units i

Issue 2. We often want weighted averages across units.

If we are averaging simulated regions to calculate country level QoIs,
we typically use regional population as weights wi, so we simulate

¯̃y1 − ȳ0 =
n∑

i=1

wi(ỹit1 − ỹit0)/
n∑

i=1

wi

If the weights are known (the usual case), then the weighted average above retains the
good statistical properties of the unweighted average
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Notation & Concepts for In-Sample Simulation

We can summarize the set of sims values of ¯̃y1 − ȳ0 as usual, via quantiles and means

Combining narrow counterfactuals with in-sample context

yields better estimates of the effect of the variable of interest

If we have confidence that our model estimates a causal effect,
then in effect, we are using an aggregate of local average treatment effects (LATEs)
to obtain a better estimate of the sample average treatment effect (SATE)

Even without a causal interpretation,
this is a useful way to summarize what the model is doing in terms of the sample

Finally, this is a bridge between pooled models and hierarchical models:
by simulating each group in the hierarchy separately, then combining results,
we have quantites of interest comparable to those from pooled estimation
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Notation and concepts for dynamic panel simulation

To apply the concept of in-sample simulation to dynamic models of panel data,
it helps to have a running example

We will return to the cigarette tax example developed last week

Recall that we have data from 48 US states over the years 1985–1995 on:
– packsit: packs of cigarettes consumed per capita
– priceit: average price of cigarettes, in cents
– taxit: total taxes per pack, in cents
– incomeit: average household income, in $k

We have panel data, allow us to isolate the effect of taxes on consumption from all
state- and year-invariant characteristics
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Goal this time around:
develop simulations as fine-grained as the data itself

and present in a parallel graphical format
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Notation and concepts for dynamic panel simulation

We treat the effect of taxes as analogous to a price increase;
because responses to price changes are elasticities, we need a log-log model

Because T is fairly small, we worry about Nickell bias,
so we will need to instrument using earlier lags of the outcome

We fit a log-log model of packs as a function of the effective price
using difference panel GMM with year effects (state effects are differenced out):

Δlog(packs)it = Δτt + Δlog(packs)i,t−1φ + vec(Δpriceit + Δtaxit, Δxit)β + Δεit

Letʼs predict packs consumed per capita in 1993, 1994, and 1995 iterated forward
from 1992 after a hypothetical cigarette tax increase in every state starting in 1993

This requires us to condition on both data and parameters from the model above
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Conditional forecasts iterated by period

p̂acks1993|

β̂, φ̂, τ̂1993, τ̂1992, packs1992, packs1991, x̄1993, tax
hyp
1993

p̂acks1994|

β̂, φ̂, τ̂1994, τ̂1993, p̂acks1993, packs1992, x̄1994, tax
hyp
1994

p̂acks1995|

β̂, φ̂, τ̂1995, τ̂1994, p̂acks1994, p̂acks1993, x̄1995, tax
hyp
1995

What must we condition on to construct p̂acks1993 from the model?

These terms are either model parameters or functions of them,
and must be drawn from their predictive distributions

These terms are data, and can be taken either from observation or as counterfactuals
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Conditional forecasts iterated by period

p̂acks1993|β̂, φ̂, τ̂1993, τ̂1992, packs1992, packs1991, x̄1993, tax
hyp
1993

p̂acks1994|

β̂, φ̂, τ̂1994, τ̂1993, p̂acks1993, packs1992, x̄1994, tax
hyp
1994

p̂acks1995|

β̂, φ̂, τ̂1995, τ̂1994, p̂acks1994, p̂acks1993, x̄1995, tax
hyp
1995

Why do the forecast levels of packs depend on two lags of that level?

The model includes a lagged difference, which is computed from these lags

In a moment, we will see how the forecast level of packs can be computed from the
estimated model in differences

Chris Adolph (University of Washington) CSSS 594: Time Series & Panel Data 20 / 39



Conditional forecasts iterated by period

p̂acks1993|β̂, φ̂, τ̂1993, τ̂1992, packs1992, packs1991, x̄1993, tax
hyp
1993

p̂acks1994|

β̂, φ̂, τ̂1994, τ̂1993, p̂acks1993, packs1992, x̄1994, tax
hyp
1994

p̂acks1995|

β̂, φ̂, τ̂1995, τ̂1994, p̂acks1994, p̂acks1993, x̄1995, tax
hyp
1995

Why do the forecast levels of packs depend on two adjacent year effects?

A similar reason: all covariates in the model are differenced, including τ

So the net year effect for period t is τt − τt−1
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Conditional forecasts iterated by period

p̂acks1993|β̂, φ̂, τ̂1993, τ̂1992, packs1992, packs1991, x̄1993, tax
hyp
1993

p̂acks1994|β̂, φ̂, τ̂1994, τ̂1993, p̂acks1993, packs1992, x̄1994, tax
hyp
1994

p̂acks1995|β̂, φ̂, τ̂1995, τ̂1994, p̂acks1994, p̂acks1993, x̄1995, tax
hyp
1995

Why are the lags treated as “data” for the 1993 forecast,
and as “simulated parameters” for the 1995 forecast?

The key idea of dynamic forecasting is that predictions of period t depends on older
periods like t− 1, t− 2, etc.

Chris Adolph (University of Washington) CSSS 594: Time Series & Panel Data 22 / 39



Conditional forecasts iterated by period

p̂acks1993|β̂, φ̂, τ̂1993, τ̂1992, packs1992, packs1991, x̄1993, tax
hyp
1993

p̂acks1994|β̂, φ̂, τ̂1994, τ̂1993, p̂acks1993, packs1992, x̄1994, tax
hyp
1994

p̂acks1995|β̂, φ̂, τ̂1995, τ̂1994, p̂acks1994, p̂acks1993, x̄1995, tax
hyp
1995

From the view of 1993, the levels of packs in 1991 and 1992 are data;
we take the average observed values in those years as lags

Predicting from the model forward from 1992 to 1995, the intervening values of packs
in 1993 and 1994 are forecasts subject to model uncertainty

In simcf, ldvsimev(), ldvsimfd(), and ldvsimrr() will help keep track of this for us
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Conditional forecasts iterated by period: unit-by-unit

p̂acksi,1993|β̂, φ̂, τ̂1993, τ̂1992, packsi,1992, packsi,1991, xi,1993, tax
hyp
i,1993

p̂acksi,1994|β̂, φ̂, τ̂1994, τ̂1993, p̂acksi,1993, packsi,1992, xi,1994, tax
hyp
i,1994

p̂acksi,1995|β̂, φ̂, τ̂1995, τ̂1994, p̂acksi,1994, p̂acksi,1993, xi,1995, tax
hyp
i,1995

If we compute forecasts for each unit,
we no longer need to pool either factual covariates or lags of the outcome

Produces a fine-grained set of simulations with only one counterfactual element –
the change in taxes we are interested in

There are units × periods forecast of these expected values
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Conditional forecasts iterated by period: unit-by-unit simulates

p̃acksi,1993|β̃, φ̃, τ̃1993, τ̃1992, packsi,1992, packsi,1991, xi,1993, tax
hyp
i,1993

p̃acksi,1994|β̃, φ̃, τ̃1994, τ̃1993, p̃acksi,1993, packsi,1992, xi,1994, tax
hyp
i,1994

p̃acksi,1995|β̃, φ̃, τ̃1995, τ̃1994, p̃acksi,1994, p̃acksi,1993, xi,1995, tax
hyp
i,1995

For these in-sample simulations, it is useful to retain the underlying simulates

These are what we actually iterate over to construct each forecast

At the unit level, there are sims × units × periods forecast of these simulates
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Notation and concepts for dynamic panel simulation

Letʼs see how we compute a single set of simulated forecasts for unit i in our model of
packs, which is both logged and differenced:

˜Δlog(packs)it = Δτ̃t + ˜Δlog(packs)i,t−1φ̃ + vec(Δpriceit + Δtaxhypit , Δxit)β̃

˜log(packs)it − ˜log(packs)i,t−1 = Δτ̃t + ˜Δlog(packs)i,t−1φ̃ + vec(Δpriceit + Δtaxhypit , Δxit)β̃

˜log(packs)it = Δτ̃t + ˜Δlog(packs)i,t−1φ̃ + ˜log(packs)i,t−1

+ vec(Δpriceit + Δtaxhypit , Δxit)β̃

p̃acksit|tax
hyp
it = exp

(
Δτ̃t + ˜Δlog(packs)i,t−1φ̃ + ˜log(packs)i,t−1|tax

hyp
i,t−1

+ vec(Δpriceit + Δtaxhypit , Δxit)β̃
)

We have produced one simulated value of packs per capita for a single state and
period under the counterfactual scenario that the change in taxes are set to Δtaxhypit
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Notation and concepts for dynamic panel simulation

p̃acksit|tax
hyp
it = exp

(
Δτ̃t + ˜Δlog(packs)i,t−1φ̃ + ˜log(packs)i,t−1|tax

hyp
i,t−1

+ vec(Δpriceit + Δtaxhypit , Δxit)β̃
)

We can forecast forward to period t+ 1, t+ 2, etc., noting that we need to use the
simulated consumption in each state as lags in successive forecasts

For each period t in state i, we obtain sims=1000 simulated values of p̃acksit|tax
hyp
it

The mean and central 95% interval of these simulates provide state-by-state estimates
of smoking given taxes in period t:{

packslowerit |taxhypit , p̂acksit|tax
hyp
it , packsupperit |taxhypit

}
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Notation and concepts for dynamic panel simulation

To construct a first difference,
we need to separately simulate a baseline scenario;
e.g., suppose the tax base followed its historically observed levels over i and t, taxbaseit

Then we construct sims simulated differences for each unit and period:

p̃acksit|tax
hyp
it − p̃acksit|taxbaseit

Repeating this simulation sims=1000 times yields the estimated first difference and its
quantiles for each unit

If we believe that our model correctly identifies the causal effect of taxes,
then these units different quantities are Local Average Treatment Effects (LATEs)

Note: if we want to do anything interesting with these simulates,
its critical to use the same simulated parameters for each state and year
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Notation and concepts for dynamic panel simulation

Now we have simulates of the first difference of packs in each state and year

We can aggregate these simulates across each state-year to compute
in-sample estimates of the net nationwide effect of a tax increase passed in every state

Obvious aggregation function in this example is the population-weighted average
(this may vary based on substantive concerns):

p̃ackst|tax
hyp
t − p̃ackst|taxbaset =

n∑
i=1

wit

(
p̃acksit|tax

hyp
it − p̃acksit|taxbaseit

)
/

n∑
i=1

wit

If we believe our model identifies the causal effect of taxes,
this is the Sample Average Treatment Effect (SATE)

Summarize our sims=1000 simulations with a mean & 95% CI,
computed after taking the weighted average across states
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Letʼs apply these in-sample simulation techniques to the panel GMM estimates
for the effect of cigarette taxes on smoking
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We start by simulating the in-sample behavior of smoking rates in each state,
given that stateʼs factual covariates

and a common $0.60 increase in taxes in 1993, maintained over time
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Our estimates for the national effect of the tax increases
is the population-weighted average of state effects
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Naturally, all our results have confidence intervals (here, 95%);
we suppressed them to make the graphic easier to read when plotting all states
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Earlier, we constructed our simulations for a “representative” or “average” state

The “representative” estimate over the years 1993–1995 allows the tax rate and year
effects to change, but keeps all covariates fixed at their annual means across states
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Relying on the representative case here
moderately over-estimate the national effect of taxes
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Sign reversals or massive differences here are unlikely,
but the substative bias could still be important
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