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Panel Data Structure

Suppose we observe our response over both time and place:

yit = xitβ + εit

We have units i = 1, . . . , N , each observed over periods t = 1, . . . , T ,
for a total of N × T observations

Balanced data: all units i have the same number of observations T .

Unbalanced data: some units are shorter in T , perhaps due to missing data,
perhaps due to sample selection

All of our discussion in class will assume balanced panels.

Small adjustments may be needed for unbalanced panels,
unless the imbalance is due to sample selection, which could lead to significant bias.
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Usages of the term panel data vary by field and sub-field

1. Data with large N ≈ 1000 and small T ≈ 5 (esp. in economics)

2. Data with any N , T , and repeated observations on units i = 1, . . . , N
(esp. in opinion research)

3. Any data with both N > 1 and T > 1 (sometimes in political science)
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You say Panel, I say TSCS. . .

Usages of the term TSCS data vary by field and sub-field

1. Data with small N ≈ 20 and medium to large T > 15 (esp. in political science)

2. Data with any N , T , but each cross section has new units;
so i in period t is a different person from i in period t+ 1 (esp. opinion research)

3. Any data with both N > 1 and T > 1



You say Panel, I say TSCS. . .

Data with large N and small T offer different problems and opportunities compared
to data with small N and medium T

Beware blanket statements about panel estimators or panel data.

The author—even in a textbook—may be assuming an N and T ubiquitous in his
field, but uncommon in yours!

Especially a problem for comparativists learning from econometrics texts
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A pooled TSCS model

GDPit = φ1GDPi,t−1 + β0 + β1Democracyit + εit

This model assumes the same effect of Democracy on GDP for all countries i (β1)

And influence of past GDP on current GDP is the same for all countries i (φ1)

The shared parameters make this a Pooled Time Series Cross Section model



Data storage issues
To get panel data ready for analysis, we need it stacked by unit and time period,
with a time variable and a grouping variable included:

Cty Year GDP lagGDP Democracy

1 1962 5012 NA 0
1 1963 6083 5012 0
1 1964 6502 6083 0

. . .
1 1989 12530 12266 0
1 1990 12176 12530 0
2 1975 1613 NA NA
2 1976 1438 1613 0

. . .
135 1989 6575 6595 0
135 1990 6450 6575 0



Data storage issues
To get panel data ready for analysis, we need it stacked by unit and time period,
with a time variable and a grouping variable included:

Cty Year GDP lagGDP Democracy

1 1962 5012 NA 0
1 1963 6083 5012 0
1 1964 6502 6083 0

. . .
1 1989 12530 12266 0
1 1990 12176 12530 0
2 1975 1613 NA NA
2 1976 1438 1613 0

. . .
135 1989 6575 6595 0
135 1990 6450 6575 0

Don’t use lag() to create lags in panel data!
(Exception: okay inside plm() formulas)

You need a panel lag command that accounts for the breaks where the unit changes,
such as lagpanel() in the simcf package.
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Why use Panel Data?

• More data, which might make inference more precise
(at least if we believe β is the same or similar across units)

• Can help with omitted variables, especially if they are time invariant

• Some analysis only possible with panel data;
e.g., if variables don’t change much over time, like institutions

• Heterogeneity is interesting! As long as we can specify a general DGP for whole
panel, can parameterize and estimate more substantively interesting relationships
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Why use Panel Data?

If modeled correctly, costs of panel data are born by researcher, not by model or data:

• Differences across the panel would appear the biggest problem,
but we can relax any homogeneity assumption to get a more flexible panel model

• The price of panel data is a more complex structure to conceptualize and model

• Often need more powerful or flexible estimation tools
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εt−qρq + εt

where ε ∼ N(0, σ2) is white noise

An encompassing specification for many time series processes

Includes as special cases:
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Building Time Series into Panel

Consider the ARIMA(p,d,q) model:

∆dyt = α+ xtβ +

P∑
p=1

∆dyt−pφp +

Q∑
q=1

εt−qρq + εt

where ε ∼ N(0, σ2) is white noise

An encompassing specification for many time series processes

Includes as special cases:

ARMA(p,q) models: Set d = 0

AR(p) models: Set d = Q = 0

MA(q) models: Set d = P = 0

Linear regression: Set d = P = Q = 0

Could even be re-written as an error correction model



Multiple Time Series

Now notice that if we had several parallel time series y1t, y2t, . . . yNt, as for N
countries, we could estimate a series of regression models:

∆d1y1t = α1 + x1tβ1 +

P1∑
p=1

∆d1y1,t−pφ1p +

Q1∑
q=1

ε1,t−qρ1q + ε1t
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Multiple Time Series

Now notice that if we had several parallel time series y1t, y2t, . . . yNt, as for N
countries, we could estimate a series of regression models:

∆d1y1t = α1 + x1tβ1 +

P1∑
p=1

∆d1y1,t−pφ1p +

Q1∑
q=1

ε1,t−qρ1q + ε1t

∆d2y2t = α2 + x2tβ2 +

P2∑
p=2

∆d2y2,t−pφ2p +

Q2∑
q=2

ε2,t−qρ2q + ε2t

. . .

∆dNyNt = αN + xNtβN +

PN∑
p=N

∆dNyN,t−pφNp +

QN∑
q=N

εN,t−qρNq + εNt

Each of these models could be estimated separately



Multiple Time Series

The results would be a panel analysis of a particular kind:

• one with maximum flexibility for heterogeneous data generating processes across
units i,

• and no borrowing of strength across units i

Generally, we can write this series of regression models as:

∆diyit = αi + xitβi +

Pi∑
p=1

∆diyi,t−pφip +

Qi∑
q=1

εi,t−qρiq + εit

We’ve just written all our time series equations in a single matrix

But estimation is still separate for each equation
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Be clear what the subscripts and variables are

∆diyit = αi + xitβi +

Pi∑
p=1

∆diyi,t−pφip +

Qi∑
q=1

εi,t−qρiq + εit

• xit is the vector of covariates for unit i, time t. Not just a scalar.

• βi is the vector of parameters applied to xit just for a particular unit i,
for all periods

• Pi is the number of lags of the response used for unit i. Could vary by unit.

• φip is the AR parameter applied to the pth lag, ∆diyi,t−p, for unit i.



Pooling and Partial Pooling

Alternative: we could “borrow strength” across units in estimating parameters

This involves imposing restrictions on (at least some of) the parameters
to assume they are either related or identical across units

Trade-off between flexibility to measure heterogenity,
and pooling data to estimate shared parameters more precisely

Same kind of trade-off is at work in all modeling decisions,
and all modeling involves weighing these trade-offs



All models are oversimplifications

Same trade-off is at work in all modeling decisions

For example, why can’t we estimate, for a standard cross-sectional dataset
with a Normally distributed yi, this inarguably “correct” linear model:

yi = αi + xiβi + εi



All models are oversimplifications

Same trade-off is at work in all modeling decisions

For example, why can’t we estimate, for a standard cross-sectional dataset
with a Normally distributed yi, this inarguably “correct” linear model:

yi = αi + xiβi + εi

To do any inference,

to learn anything non-obvious from data,

to reduce any data to a simpler model,

we must impose restrictions on parameters which are arguably false

Panel data simply offers a wider range of choices on which parameters to “pool” and
which to separate out



The range of models available for panel data

Full flexibility:

∆diyit = αi + xitβi +

Pi∑
p=1

∆diyi,t−pφip +

Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2
i )

For each i, we need to choose pi, di, qi and estimate αi,βi,φi,ρi, σ
2
i



The range of models available for panel data

Full flexibility:

∆diyit = αi + xitβi +

Pi∑
p=1

∆diyi,t−pφip +

Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2
i )

For each i, we need to choose pi, di, qi and estimate αi,βi,φi,ρi, σ
2
i

Full pooling:

∆dyit = α+ xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

We choose common p, d, q across all i, and estimate common α,β,ρ,φ, σ2



Popular panel specifications

Variable intercepts
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Popular panel specifications

Variable lag structures

∆diyit = α+ xitβ +

Pi∑
p=1

∆diyi,t−pφip +

Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2)

Panel heteroskedasticity

∆dyit = α+ xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σi
2)



Still more time series options

Variable intercepts with a unit-specific trend

∆dyit = αi + tθi + xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)



Still more time series options

Variable intercepts with a unit-specific trend

∆dyit = αi + tθi + xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

Variable intercepts with unit-specific additive seasonality

∆dyit = αi + κk,i + +xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

Note that you could also assume the same trend and/or seasonality applies to the
whole panel by dropping the relevant i subscripts



Models of variable intercepts

∆dyit = αi + xitβ +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

How do we model αi?

Let the mean of αi be α∗
i .



Models of variable intercepts

∆dyit = αi + xitβ +
P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

Then there are a range of possibilities:

Let αi be a random variable with no systemic component
(this type of αi known as a random effect)

αi ∼ N
(
0, σ2

α

)



Models of variable intercepts

∆dyit = αi + xitβ +
P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

Then there are a range of possibilities:

Let αi be a random variable with no systemic component
(this type of αi known as a random effect)

αi ∼ N
(
0, σ2

α

)
Let αi be a systematic component with no stochastic component
(this type of αi is known as a fixed effect)

αi = α∗
i



Models of variable intercepts

∆dyit = αi + xitβ +
P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

Then there are a range of possibilities:

Let αi be a random variable with no systemic component
(this type of αi known as a random effect)

αi ∼ N
(
0, σ2

α

)
Let αi be a systematic component with no stochastic component
(this type of αi is known as a fixed effect)

αi = α∗
i

Let αi be a random variable with a unit-specific systematic component
(this type of αi known as a mixed effect)

αi ∼ N
(
α∗
i , σ

2
α

)



Random effects

αi ∼ N
(
0, σ2

α

)
Intuitive from a maximum likelihood modeling perspective

A unit specific error term

Assumes the units come from a common population,
with an unknown (estimated) variance, σ2

α

In likelihood inference, estimation focuses on this variance, not on particular αi’s

Uncorrelated with xit by design

Need MLE to estimate



Random effects example

A (contrived) example may help clarify what random effects are.

Suppose that we have data following this true model:

yit = β0 + β1xit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

Note that we are ignoring time series dynamics for now

It may help to pretend that these data have a real world meaning
though remember throughout we have created them out of thin air and rnorm()

So let’s pretend these data reflect undergraduate student assignment scores over a
term for N = 100 students and T = 5 assignments



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student assignment scores

over a term for N = 100 students and T = 5 assignments:

scoreit = β0 + β1hoursit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

The response is the assignment score, scoreit

and the covariate is the hours studied, hoursit

and each student has an unobservable aptitude αi which is Normally distributed

Aptitude has the same (random) effect on each assignment by a given student



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student assignment scores

over a term for N = 100 students and T = 5 assignments:

scoreit = 0 + 0.75× hoursit + αi + εit

αi ∼ N (0, 0.72)

εit ∼ N (0, 0.22)

with i ∈ {1, . . . 100} and t ∈ {1, . . . 5}

the above are the true values of the parameters I used to generate the data

let’s see what role the random effect αi plays here



hours of study

exam

score

The 500 obervations

A relationship between
effort & scores seems
evident



hours of study

exam

score

Let’s summarize the
relationship using the
least squares β̂1

Approximately equal
to the true β1 = 0.75

Haven’t discussed,
used, or estimated the
random effects yet

Do we need them?



hours of study

exam

score

Identify each of the
100 students using
colored dots (we have
8 colors; they repeat)

Clear that each
student’s scores are
tightly clustered

Note the student-level
slopes



hours of study

exam

score

Each student follows
the same regression
line as the whole class,
but with a unique
intercept

That intercept is the
random effect αi

It’s also the average
difference between
student i’s scores and
the class-level
regression line



hours of study

exam

score

The student random
effect is the
student-specific
component of the
error term

After we remove it, a
student’s scores across
exams exhibit white
noise variation around
a student-specific
version of the overall
regression line



hours of study

exam

score

These random effects
αi reflect the portion
of the error term that
results from
unmeasured student
characteristics

I’ve labelled this
random component
“aptitude”

But that’s is just a
word for everything
related to a student’s
ability



hours of study

exam

score The distribution of the
random effects is
shown at the left

A plot of a marginal
distribution on the side
of a scatterplot is
called a “rug”



hours of study

exam
score

A density plot of the
distribution of random
effects suggests they
are approximately
Normal



hours of study

exam
score

Random effects are a
decomposition of the
error term into

1. a unit-specific part

2. an idiosyncratic
part

Random effects are
determined after we
have the overall
regression slope and
cannot change that
slope



hours of study

exam
score

The model is now
hierarchical or
multilevel

Level 1: Student level

sits above

Level 2: Student ×
exam level

There’s random
variation at both levels

But mainly at the
student level



hours of study

exam
score

Students randomly
vary a lot: σα = 0.7

Exams for a given
student vary little:
σε = 0.2

Student level random
effects comprise
100% ×√

0.72/(0.72 + 0.22) =

96% of the total error
variance



hours of study

exam
score

We haven’t controlled
for any omitted
confounders

What if unmeasured
ability were correlated
with study effort?

Our β̂1 estimate would
be biased

This bias persists even
if we allow for random
effects



Random effects example: Student aptitude & effort

Suppose that ability is correlated with effort

For example, perhaps high ability students rationally choose to study harder
as their best available human capital investment opportunity

We have the same model, but now hoursit is a function of αi:

scoreit = 0 + 0.75× hoursit + αi + εit

hoursit = 0 + 0.5× αi + uniform(−0.7, 0.7)

αi ∼ N (0, 0.72)

εit ∼ N (0, 0.22)

with i ∈ {1, . . . 100} and t ∈ {1, . . . 5}

What happens when we estimate a treat αi as a random effect and estimate β̂1?



hours of study

exam

score I’ve shown only the
first 30 students to
make the graph easier
to read

A stronger relationship
between effort and
grades seems evident



hours of study

exam

score

RE estimateRE estimate

Least squares model
finds β̂1 ≈ 1.6

More than double the
true value of 0.75!

Where did the bias
come from?
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RE estimateRE estimate

With multilevel data,
it helps to start at the
lowest level

I’ve colored the points
by student

A random effects
model finds the
student specific
intercept after
estimating the slope of
the main regression
line
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RE estimateRE estimateRE estimateRE estimate

The student specific
relationships between
effort and scores as
estimated by a random
effects model

Are these estimates
right?
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Truth

Not even close

The true regression
lines by student and
overall

Random effects
estimates of effort is
biased because the
student-specific effect
is correlated with effort
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Truth

Random effects are an
inadequate model
when the grouping
indicator is correlated
with our covariates

In this case we have
omitted variable bias

We need a different
model of α:
fixed effects



Fixed effects

αi = α∗
i

Easiest to conceptualize in a linear regression framework

Easiest to estimate: just add dummies for each unit, and drop the intercept

Can be correlated with xit: FEs control for all omitted time-invariant variables

Indeed, that’s usually the point.
FEs usually included to capture unobserved variance potentially correlated with xit.

Comes at a large cost:
we’re actually purging the cross-sectional variation from the analysis

Then assuming a change in x would yield the same response in each time series

Fixed effects models use over-time variation in covariates to estimate parameters;
Cannot be added to models with perfectly time invariant covariates



More on fixed effects

αi = α∗
i

Fixed effects specifications incur an incidental parameters problem:
MLE is consistent as T →∞, but not as N →∞.



More on fixed effects

αi = α∗
i

Fixed effects specifications incur an incidental parameters problem:
MLE is consistent as T →∞, but not as N →∞.

Of concern in microeconomics, where panels are sampled on N with T fixed.
Not of concern in CPE/IPE, where N is fixed, and T could expand

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if t > 15 or so; we’ll see some of these results later

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).



More on fixed effects

αi = α∗
i

Fixed effects specifications incur an incidental parameters problem:
MLE is consistent as T →∞, but not as N →∞.

Of concern in microeconomics, where panels are sampled on N with T fixed.
Not of concern in CPE/IPE, where N is fixed, and T could expand

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if t > 15 or so; we’ll see some of these results later

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).

Sui generis: Fixed effects basically say “France is different because it’s France,”
“America is different because it’s America,” etc.



Fixed effects example

Another example may help clarify what fixed effects are.

Suppose that we have data following this true model:

yij = β0 + β1xij + β2zi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

There are N = 15 states total, and we drew Mj = M = 15 counties from each state

Note that we are ignoring time series dynamics completely now

(We could add them back in if j were ordered in time)



Fixed effects example

Suppose the data represent county level voting patterns for the US

(I.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State w/
contrived data)

RVSij = β0 + β1Incomeij + β2ConservativeCulturei + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

Remember: the data I’m using are fake, and contrived to illustrate a concept simply

Gelman et al investigate this in detail with real data and get similar but more
nuanced findings

We will review the real data later in this lecture



Fixed effects example: What’s the matter with Kansas?

Suppose the data represent county level voting patterns for the US

(I.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State
using similar but contrived data)

RVSij = β0 + β1Incomeij + β2Conservatismi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

A problem:
suppose we don’t have (or don’t trust) a measure of state-level Conservatism

If we exclude it, or mismeasure it, we could get omitted variable bias in β̂1

This leads to potentially large misconceptions. . .
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Suppose we observe 15 counties from each of 15 states (225 observations)

Our first cut is to estimate this simple linear regression: yij = β0 + β1Incomeij + εij
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We find that β̂1 is negative:

Poor counties seem to vote more Republican than rich counties!
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But Republican elected officials attempt to represent the affluent

What’s the matter with (poor counties in) Kansas, as Thomas Frank asked?
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Let’s look at which observations come from which states

Clearly, counties from the same state are clustered
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Within each state, there’s a positive relationship
between income & voting Republican
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Suggests we need to control for variation at the state level,

either by collecting the state level variables causing the variation, or. . .
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use brute force: add a dummy for each state to the matrix of covariates

to purge the omitted variable bias
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Controlling for state fixed effects, β̂1 flips signs!

Including fixed effects for each state removes state-level omitted variable bias
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What’s the matter with Kansas? On average, Kansans are more conservative than
other Americans, but within Kansas, the same divide between rich and poor holds
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What’s the matter with Kansas? On average, Kansans are more conservative than
other Americans, but within Kansas, the same divide between rich and poor holds

. . . or at least it did until 2016
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How are fixed effects different from random effects?
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Fixed effects control for omitted variables random effects don’t

Fixed effects don’t follow any particular distribution random effects do
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Aside 1 the above reversal is an example of the ecological fallacy,
which says that aggregate data can mislead us about individual level relationships

Here, the pattern across states mislead us as to the pattern within states
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Aside 2 Above are results on actual data from Gelman et al

This version of their model assume intercepts (but not slopes) vary by state
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Aside 2 When Gelman et al allow slopes β̂1i to vary across states,

they find the rich-poor divide is actually steeper in poor states!



Variable slopes and intercepts

∆dyit = αi + xitβi +

P∑
p=1

∆dyi,t−pφp +

Q∑
q=1

εi,t−qρq + εit

How do we let βi vary over the units?

For the kth covariate xkit, let βki be random, with a multivariate Normal distribution

βki ∼MVN(β∗
ki,Σβki)

β∗
ki = wiζ

That is, the βki’s are now a function of unit-level covariates wi

and their associated hyperparameters ζ



Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit
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α)
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β1i
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Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit

αi ∼ N(0, σ2
α)

β1 ∼ N(β∗
1i, σ

2
β1i

)

β∗
1i = ζ0 + ζ1Educationi

Now the effect of Democracy on GDP varies across countries, as a function of their
level of Education and a country random effect with variance σ2

β1i

This is now a multilevel or hierarchical model

See Gelman & Hill for a nice textbook on these models

Easiest to accomplish using Bayesian inference
(place priors on each parameter and estimate by MCMC)



Variable slopes and intercepts: Poor man’s version

GDPit = φ1GDPi,t−1 + αi + β1Democracyit

+β2Democracy × Education + εit

αi is a matrix of country dummies

This version omits the random effects for αi and βi; instead, we have fixed country
effects

and a fixed, interactive effect that makes the relation between Democracy and GDP
conditional on Education

Note that we can’t include an Education base term—it’s part of the fixed effects
already

But we can include the time invariant Education variable within a time-varying
interaction

Should have approximately similar results to hierarchical


