Christopher Adolph

Department of Political Science
and

Center for Statistics and the Social Sciences
University of Washington, Seattle

Why R?

Real question: Why programming?

Non-programmers stuck with package defaults

For your substantive problem, defaults may be

inappropriate (not quite the right model, but “close™)

unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.

4. Programming makes replication easy.

- widely use

- the future for most fields

But once you learn one language, the others are much easier

> print(y)
[1] "hello"

> z <- c(15, -3, 8.2)
> print(z)
[1] 15.0 -3.0 8.2

> a <- x72
> print (x)
[1] 2
> print(a)
[1] 4

> b <-z + 10

> print(z)

[1] 15.0 -3.0 8.2
> print (b)

[1] 256.0 7.0 18.2

Introduction to R

> ¢ <= c(w,y)

> print (w)

[1] "gdp" "pop" "income"

> print (y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command ()
The usual way to use a command is:

output <- command (input)

We've already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)
> mz <- mean(z)

> print (mz)

[1] 6.733333

Introduction to R

Some commands have multiple inputs. Separate them by commas:
plot(varl,var2) plots varl against var2

Some commands have optional inputs. |If omitted, they have default values.
plot(varl) plots varl against the sequence {1,2,3,. ..}

Inputs can be identified by their position or by name.

plot(x=varl,y=var2) plots var2 against varl

Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven't closed the parenthesis, and hit enter, R let's you continue with this
prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(), with the name of the
file as input (ie, in "")

| prefer the source () approach. Leads to good habits of retaining code.

Data types

R has three important data types to learn now

Numeric y <- 4.3
Character y <- "hello"
Logical y <- TRUE

We can always check a variable's type, and sometimes change it:

population <- c("1276", "562", "8903")
print (population)
is.numeric(population)

is.character (population)

Oops! The data have been read in as characters, or “strings”. R does not know they
are numbers.

population <- as.numeric(population)

Dataframe

List (to be covered later)

Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings
Let’'s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?
mean (x)
What if we wanted the standard deviation?

sd (x)

sort (x) [100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist (x)

Matrices in R
Many ways to make a matrix in R
a <- matrix(data=NA, nrow, ncol, byrow=FALSE)
This makes a matrix of nrow X ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up
the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(varl, var2, var3)
c <- rbind(obsl, obs2)

there is one name for each variable & observation

Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

al1,1] Gets the first element of a

al[1:10,1] Gets the first ten rows of the first column
al,5] Gets every row of the fifth column

al4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()
R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t () Transposes the matrix

Much more on matrices next week.

Dataframes in R

Dataframes are a special kind of matrix used to store datasets
To turn a matrix into a dataframe (note the extra .):
a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names () command

names (a) <- c("Vari1","Var2")

Dataframes can be “attached”, which makes each column into a vector with the
appropriate name

attach(a)

attach(data

to access the variables directly

Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")
attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x, the original data$x is
unchanged.

2. If you have more than one dataset with the same variable names, attach() is a
bad idea: only the first will be attached!

Sometimes attach() is handy, but be careful!

na.strings=c(".","","NA")

Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)
To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]
dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit ()

Mathematical Operations

R can do all the basic math you need

Binary operators:

Logical operators (and, or, not, control-flow and, control-flow not; use parentheses!):
& |V & ||

Math /stat fns:
log exp mean median min max sd var Ccov COr

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses

Example 1: US Economic growth

Let's investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?
Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)

Example 1: US Economic growth

Load data
data <- read.csv("gdp.csv", na.strings="")
attach(data)

Construct party specific variables
gdp.dem <- grgdpch[party==-1]
gdp.rep <- grgdpch[party==1]

Make the histogram

hist(grgdpch,
breaks=seq(-5,8,1),
main="Histogram of US GDP Growth, 1951--2000",
xlab="GDP Growth")

Histogram of US GDP Growth, 1951--2000

10

Frequency

GDP Growth

GDP Growth under Democratic Presidents

Frequency
3
|

N p—
H p—
O p—
[[[[[[[
-4 -2 0 2 4 6 8
GDP Growth

GDP Growth under Republican Presidents

Frequency
4
|

GDP Growth

Make a box plot
boxplot (grgdpch™as.factor(party),
boxwex=0.3,
range=0.5,
names=c ("Democratic\n Presidents",
"Republican\n Presidents"),
ylab="GDP growth",
main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

vy x1+x2+x3

In this case, grgdpch is being “modelled” as a function of party
boxplot () needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor (party), which turns the numeric variable into a
factor

Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments

Annual GDP
growth
(percent)

o)
. 8
| I
|
|
|
L 4
; .
N T
o
o I
|
R T
C
o
I I
Democratic Republican
President President

Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments

o)
Annual GDP
growth © —
(percent) — 8
| I
75th 45 |
< — |
median 3.4 |
o mean 3.1 75th 3.2
median 2.4
N | 25th 2.1 * mean 1.7
—_l
o)
o e
. 25th --0.5
O |
|
V- 1
e
<
| o)
I |
Democratic Republican
President President

std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments

O Reagan 1984
Annual GDP
growth © —
(percent) S 8
| '
75th 45 ,
<+ — |
median 3.4 '
* mean 3.1 75th 3.2
median 2.4
N T | 25th 2.1 IS mean 1.7
—_
O JFK 1961
o el ¢ o o 6 s s s s s s s s s s s s s s v s s s s s e e e e s e e s e el
T 25th --0.5
O Carter 1980 |
|
V- 1
C
< _
| O Reagan 1982

I I
Democratic Republican

President President
std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments

O Reagan 1984
Annual GDP
growth o —
(percent) _— 8
| '
|
v p— I
|
.
N — | .
1
O JFK 1961
o e T KT
O Carter 1980 :
[
I 1
8
S _
I O Reagan 1982

I I
Democratic Republican

President President

Installing R on a PC

Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

Under the heading “Download and Install R, click on “Windows"
Click on “base”

Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.0-win.exe"

Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Installing R on a Mac

Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

Under the heading “Download and Install R”, click on “MacOS X"

Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.0.pkg"

(EI Capitan or higher OS)

Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Editing scripts
Don't use Microsoft Word to edit R code!

Word adds lots of “stuff” to text; R needs the script in a plain text file.

Some text editors:

Notepad: Free, and comes with Windows (under Start — Programs —
Accessories). Gets the job done; not powerful.

TextEdit: Free, and comes with Mac OS X. Gets the job done; not powerful.

TINN-R: Free and fairly powerful. Windows only.
http://www.sciviews.org/Tinn-R/

Emacs: Free and very powerful (my preference). Can use for R and Latex.
Available for Mac and PC.

For Mac (easy installation): http://aquamacs.org/

For Windows (see the README): http://ftp.gnu.org/gnu/emacs/windows/

Editing data
R can load many other packages’ data files
See the foreign library for commands
For simplicity & universality, | prefer Comma-Separated Variable (CSV) files
Microsoft Excel can edit and export CSV files (under Save As)
R can read them using read.csv()

OpenOffice is free alternative to Excel & makes CSV files (for all platforms):
http://www.openoffice.org/

My detailed guide to installing social science software on the Mac:
http://thewastebook.com/?post=social-science-computing-for-mac

Focus on steps 1.1 and 1.3 for now; come back later for Latex in step 1.2

Example 2: A simple linear regression

Let's investigate a bivariate relationship

Cross-national data on fertility (children born per adult female) and the percentage
of women practicing contraception.

Data are from 50 developing countries.

Source: Robey, B., Shea, M. A., Rutstein, O. and Morris, L. (1992) “The
reproductive revolution: New survey findings.” Population Reports. Technical Report
M-11.

Example 2: A simple linear regression

Load data

data <- read.csv("robeymore.csv", na.strings="")
completedata <- na.omit(data)
attach(completedata)

Transform variables
contraceptors <- contraceptors/100

Run linear regression
res.lm <- Im(tfr~contraceptors)
print (summary(res.1lm))

Get predicted values
pred.1lm <- predict(res.lm)

Example 2: A simple linear regression

Make a plot of the data
plot(x=contraceptors,
y=tfr,
ylab="Fertility Rate",
xlab="% of women using contraception",
main="Average fertility rates & contraception; \n
50 developing countries",
xaxp=c(0,1,5)
)

Add predicted values to the plot
points(x=contraceptors,y=pred.lm,pch=16,col="red")

Example 2: A simple linear regression

> summary(res.lm)

Call:
Im(formula = tfr ~ contraceptors)

Residuals:
Min 1Q Median 3Q Max
-1.54934 -0.30133 0.02540 0.39570 1.20214

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8751 0.1569 43.83 <2e-16 **x
contraceptors -5.8416 0.3584 -16.30 <2e-16 **x*
Signif. codes: 0 “**x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.5745 on 48 degrees of freedom
Multiple R-Squared: 0.847, Adjusted R-squared: 0.8438
F-statistic: 265.7 on 1 and 48 DF, p-value: < 2.2e-16

Data and Prediction

Average fertility rates & contraception;
50 developing countries

Fertility Rate

I I I
0.2 0.4 0.6
% of women using contraception

> x$b[2]
[1] 15

> x$giraffe
[1] "hello"

> x[3]
$giraffe
[1] "hello"

> x[["giraffe"]]
[1] "hello"

- Allow us to move lots of variables in and out of functions

- Functions often return lists (only way to have multiple outputs)

To get the coefficients
res$coefficients

or
coef (res)

#To get residuals
resPresiduals

#or

resid(res)

1m() basics

To get the variance-covariance matrix of the regressors
vcov (res)

To get the standard errors
sqrt (diag(vcov(res)))

To get the fitted values
predict(res)

To get expected values for a new observation or dataset
predict (res,

newdata, # a dataframe with same x vars

as data, but new values
interval = "confidence", # alternative: "prediction"
level = 0.95

)

R lists & Object Oriented Programming

A list object in R can be given a special “class” using the class() function

This is just a metatag telling other R functions that this list object conforms to a
certain format

So when we run a linear regression like this:
res <- 1lm(y~x1+x2+x3, data)
The result res is a list object of class ¢ “1m’’

Other functions like plot () and predict () will react to res in a special way
because of this class designation

Specifically, they will run functions called plot.1m() and predict.1lm()

Object-oriented programming:
a function does different things depending on class of input object

An example: Party systems & Redistribution

Cross sectional data on industrial democracies:

povertyReduction Percent of citizens lifted out of poverty
by taxes and transfers

effectiveParties Effective number of parties

partySystem Whether the party system is Majoritarian,
Proportional, or Unanimity (Switzerland)

Source of data & plot: Torben lversen and David Soskice, 2002, “Why do some
democracies redistribute more than others?” Harvard University.

Considerations:

1. The marginal effect of each extra party is probably diminishing,
so we want to log the effective number of parties

2. The party system variable needs to be “dummied out;"
there are several ways to do this

An example: Party systems & Redistribution

Clear memory of all objects
rm(list=1s())

Load libraries
library(RColorBrewer) # For nice colors

Load data
file <- "iverRevised.csv"
iversen <- read.csv(file,header=TRUE)

Create dummy variables for each party system

iversen$majoritarian <- as.numeric(iversen$partySystem=="Majoritarian")
iversen$proportional <- as.numeric(iversen$partySystem=="Proportional")
iversen$unanimity <- as.numeric(iversen$partySystem=="Unanimity")

A bivariate model, using a formula to log transform a variable
modell <- povertyReduction ~ log(effectiveParties)

Im.resl <- 1Im(modell, data=iversen)

summary (lm.res1)

An example: Party systems & Redistribution

Call:
Ilm(formula = modell, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-48.907 -4.115 8.377 11.873 18.101

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.80 16.15 1.349 0.2021
log(effectiveParties) 24 .17 12.75 1.896 0.0823 .

Signif. codes: O *x*x*x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 19.34 on 12 degrees of freedom
Multiple R-squared: 0.2305,Adjusted R-squared: 0.1664
F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229

An example: Party systems & Redistribution

Call:
Ilm(formula = model2, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -31.29 26.55 -1.178 0.26588
log(effectiveParties) 26 .69 14.15 1.886 0.08867 .
majoritarian 48.95 17.86 2.740 0.02082 *
proportional 58.17 13.52 4.302 0.00156 *x*

Signif. codes: O **x*x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.7378,Adjusted R-squared: 0.6592
F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964

An example: Party systems & Redistribution

Call:
Ilm(formula = model3, data = iversen)

Residuals:
Min 1Q Median 3Q
-23.3843 -1.4903 0.6783 6.2687

Coefficients:

Max

13.9376

Estimate Std. Error t value Pr(>|t|)

log(effectiveParties) 26 .69
majoritarian 17.66
proportional 26.88
unanimity -31.29

Signif. codes: O **x*x 0.001 *x 0.01 * 0.05 .

14.15
12.69
21.18
26.55

1.886
1.392
1.269
-1.178

0.1

0.0887 .

0.1941
0.2331
0.2659

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.9636,Adjusted R-squared:

F-statistic: 66.13 on 4 and 10 DF,

0.949
p-value: 3.731e-07

An example: Party systems & Redistribution

Call:
lm(formula = model4, data
Residuals:

Median
2.8532

1Q
0.0668

Min
-22.2513

Coefficients:

(Intercept)
log(effectiveParties)
majoritarian
proportional

log(effectiveParties) :majoritarian

Signif. codes:

iversen)
3Q Max
4.7318 12.9948

Estimate Std.

-14.83
16.78
16.34
56.18
29.55

O **xx 0.001 *x 0.01 * 0.05 .

0.

1

Error t value Pr(>|t])

31.42 -0.472 0.64813
17.39 0.965 0.35994
37.65 0.434 0.67445
13.70 4.102 0.00267 *x*
30.02 0.984 0.35065

1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared:

F-statistic: 7.256 on 4 and 9 DF,

0.7633,Adjusted R-squared:
p-value: 0.006772

0.6581

An example: Party systems & Redistribution

Call:
lm(formula = modelb, data
Residuals:

Median
2.8532

1Q
0.0668

Min
-22.2513

Coefficients:

(Intercept)
log(effectiveParties)
majoritarian
proportional

log(effectiveParties) :majoritarian

Signif. codes:

iversen)
3Q Max
4.7318 12.9948

Estimate Std.

-14.83
16.78
16.34
56.18
29.55

O **xx 0.001 *x 0.01 * 0.05 .

0.

1

Error t value Pr(>|t])

31.42 -0.472 0.64813
17.39 0.965 0.35994
37.65 0.434 0.67445
13.70 4.102 0.00267 *x*
30.02 0.984 0.35065

1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared:

F-statistic: 7.256 on 4 and 9 DF,

0.7633,Adjusted R-squared:
p-value: 0.006772

0.6581

Plotting a best fit line

o
o
—
o _|
(@]
o _|
[o0] |
Belgium

o _| |
M~ Denmilirk

u u Finland

Norwayelerlands
Sweden

60

A
France

Poverty Reduction
50
|

A
United Kingdom A
Germany
| |
g] Australia Italy
o _
m A
Canada

o _|
AN

A K
8 — United States Switzerland
© | | | | | |

2 3 4 5 6 7

Effective Number of Parties

Let's turn to the code to see how we can make this plot using R base graphics

