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The zoonotic origin of the novel severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)1 first reported in 
Wuhan, China2, and the global spread of the coronavirus dis-

ease 2019 (COVID-19; https://covid19.who.int/)3 promises to be  
a defining global health event of the twenty-first century4. This 
pandemic has already resulted in extreme societal, economic and  
political disruption across the world and in the United States (https://
www.economist.com/united-states/2020/03/14/tracking-the- 
economic-impact-of-covid-19-in-real-time/)5,6. The establishment  
of SARS-CoV-2 and its rapid spread in the United States has  
been dramatic (https://www.thinkglobalhealth.org/article/updated- 
timeline-coronavirus/). Since the first case in the United States  
was identified on 20 January 2020 (ref. 7; first death on 6 February 
2020: https://www.sccgov.org/sites/covid19/Pages/press-release-04-
21-20-early.aspx), SARS-CoV-2 has spread to every state and has 
resulted in more than 28.2 million cases and 199,213 deaths as of  
21 September 2020 (https://coronavirus.jhu.edu/map.html)7,8.

There remains no approved vaccine for the prevention of 
SARS-CoV-2 infection, and few pharmaceutical options for the treat-
ment of COVID-19 are available9–11. The most optimistic scientists 
do not predict the availability of new vaccines or therapeutics before 
2021 (refs. 12–15). Non-pharmaceutical interventions (NPIs) are, there-
fore, the only available policy levers to reduce transmission16. Several 
NPIs have been put in place across the United States in response 
to the epidemic (Fig. 1), including the dampening of transmission 
through the wearing of face masks and social distancing mandates 
(SDMs) aimed at reducing contacts through school closures, restric-
tions of gatherings, stay-at-home orders and the partial or full closure 
of nonessential businesses. Increased testing and isolation of infected 
individuals and their contacts will also have had an impact17. These 
NPIs are credited with a reduction in viral transmission18,19, along 
with a host of other environmental, behavioral and social determi-
nants postulated to affect the course of the epidemic at the state level.

In the United States, decisions to implement SDM or require 
mask use are generally made at the state level by government  

officials. These executives need to balance net losses from the soci-
etal turmoil, economic damage and indirect effects on health caused 
by NPIs with the direct benefits to human health of controlling  
the epidemic. Disease control has often been operationally defined 
in this pandemic context as the restriction of infections to below 
a specified level at which health services are not overwhelmed 
by demand and the loss of human health and life is consequently 
minimized20.

In the first months of the SARS-CoV-2 outbreak in the United 
States, states enacted restrictive SDMs intended to reduce transmis-
sion (by limiting human-to-human contact)5, while there was confli 
cting advice on the use of masks (https://www.npr.org/sections/ 
goatsandsoda/2020/04/10/829890635/why-there-so-many 
different-guidelines-for-face-masks-for-the-public/). At that early 
stage, relatively simple statistical models of future risk were suf-
ficient to capture the general patterns of transmission21. As differ-
ent behavioral responses to SDMs emerged and, more importantly, 
as some states began to relax SDMs (Fig. 1), a modeling approach 
that directly quantified transmission and could be used to explore 
these developing scenarios was necessary. As states varied in their 
actions to remove and reinstate SDMs (Fig. 1) or began to issue 
mandatory mask-use orders (https://www.cnn.com/2020/06/19/us/ 
states-face-mask-coronavirus-trnd/index.html) amid resurgences  
of COVID-19 (https://www.nytimes.com/2020/07/01/world/
coronavirus-updates.html), a clear need for evidence-based 
assessments of the possible effect of the NPI options available to 
decision-makers became apparent.

There is now growing evidence that face masks can considerably 
reduce the transmission of respiratory viruses like SARS-CoV-2, 
thereby limiting the spread of COVID-19 (refs. 22–24). We updated 
a recently published review24 to generate a new meta-analysis 
(Supplementary Information) of peer-reviewed studies and pre-
prints to assess the effectiveness of masks at preventing respiratory 
viral infections in humans25. This analysis indicated a reduction in 
infection (from all respiratory viruses) for mask wearers by 40% 
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(relative risk = 0.60, 95% uncertainty interval (UI) = 0.46–0.80)) 
relative to controls25. This is suggestive of a considerable popula-
tion health benefit to mask use with great potential for uptake in 
the United States, where the national average for self-reported mask 
wearing was 49% as of 21 September 2020 (https://covid19.health-
data.org/; Supplementary Information).

Here we provide a state-level descriptive epidemiological analy-
sis of the introduction of SARS-CoV-2 infection across the United 
States, from the first recorded case through to 21 September 2020. 
We use these observations to learn about epidemic progression and 
thereby model the first wave of transmission using a deterministic 
SEIR compartmental framework26,27. This observed, process-based 
understanding of how NPIs affect epidemiological processes is then 
used to make inferences about the future trajectory of COVID-
19 and how different combinations of existing NPIs might affect 
this course. Five SEIR-driven scenarios, along with covariates that 
inform them, were then projected through to 28 February 2021 
(Methods). We use these scenarios as a sequence of experiments to 
describe a range of model outputs, including Reffective (the change over 
time in the average number of secondary cases per infectious case 
in a population where not everyone is susceptible26–28), infections, 
deaths and hospital demand outcomes, which might be expected 
from plausible boundaries of the policy options available the fall 
and winter of 2020 (see Methods and Supplementary Information 
for an extended rationale on scenario construction).

We established three boundary scenarios. First, we forecast the 
expected outcomes if states continue to remove SDMs at the cur-
rent pace of ‘mandate easing’, with resulting increases in popula-
tion mobility and number of person-to-person contacts. This is an 
alternative scenario to the more probable situation where states are 
expected to respond to an impending health crisis by reinstating 
some SDMs. In the second, ‘plausible reference’ scenario, we model 
the future progress of the pandemic assuming that states would 
once again shut down social interaction and some economic activity 
at a threshold for the daily death rate of 8 deaths per million popu-
lation—the 90th percentile of the observed distribution of when 
states previously implemented SDMs (Fig. 1 and Supplementary 
Information). This scenario assumes reinstatement of SDMs for 6 
weeks. In addition, newly available data on mask efficacy enabled 
the exploration of a third, ‘universal mask-use’ scenario to investi-
gate the potential population-level benefits of increased mask use 
in addition to the same threshold-driven reinstatement of SDMs. 
In this best-case scenario model, ‘universal’ was defined as 95% 
of people wearing masks in public, based on the highest observed 
coverage of mask use globally (in Singapore) during the COVID-19  
pandemic to date (Supplementary Information). Two derivative 
scenarios were also included to assist understanding, nuance and 
policy resolution around the three boundary scenarios. The first 
scenario, termed ‘plausible reference + 85% mask use’, modeled less 
than universal mask use in public (85%) in the presence of reinstate-
ment of SDMs. The second was a scenario of universal mask use 
(95%) in the absence of any NPIs (termed ‘mandate easing + univer-
sal mask use’). Details and results for these additional scenarios are 
in the Supplementary Information. In addition, sensitivity analyses 
and detailed diagnostics are provided to help users calibrate the 
effects of the covariates used in the models on the scenarios dis-
cussed (Supplementary Information).

Results
Observed COVID-19 patterns. The COVID-19 epidemic has pro-
gressed unevenly across states. Since the first death was recorded 
in the United States in early February 2020, cumulative through 
21 September 2020, 199,213 deaths from COVID-19 have been 
reported in the United States (Fig. 2); a sixth of those (16.6%) 
occurred in New York alone. Washington and California issued 
the first sets of state-level mandates on 11 March 2020, prohibiting  

gatherings of 250 people or more in certain counties, and by 23 
March 2020, all 50 states initiated some combination of SDMs 
(Fig. 1). The highest levels of daily deaths at the state level between 
February and September of 2020 occurred in New York, New Jersey 
and Texas at 998, 311 and 220 deaths per day, respectively (Fig. 3  
and Extended Data Fig. 1). On 21 September 2020, the highest 
level of daily deaths was in Florida at 101 deaths per day. A criti-
cal policy need at this stage of the modeling was the forecasting of 
hospital resource demands in the US states with the worst effec-
tive transmission rates (Virginia, New York and Missouri; Fig. 4). 
The highest peak demand was observed as 8,380 hospital intensive 
care unit (ICU) beds in New York (estimated initial hospital ICU 
bed availability of 718) on April 10 and 2,786 hospital ICU beds in 
New Jersey (estimated initial hospital ICU bed availability of 466) 
on April 21; demand for hospital ICU beds had receded to within 
initial capacity levels across the United States by 21 September 2020 
(Extended Data Fig. 3). Hospital resource demands (all bed capac-
ity) had been exceeded in the period before 21 September 2020 in 
three states (New York, New Jersey and Connecticut; Extended Data 
Figs. 2 and 3).

Predicted COVID-19 patterns. Under a boundary scenario where 
states continue with removal of SDMs (mandate easing), our model 
projections show that cumulative total deaths across the United 
States could reach 1,053,206 (759,693–1,452,397) by 28 February 
2021 (Fig. 2 and Table 1). At the state level, contributions to that 
death toll would be heterogeneously distributed across the United 
States. Approximately one-third of the deaths projected from 22 
September 2020 to 28 February 2021 in this scenario would occur 
across just three states: California (146,501 (84,828–221,194) 
deaths), Florida (66,943 (40,826–96,282) deaths) and Pennsylvania 
(62,352 (30,318–93,164) deaths). The highest cumulative death 
rates (per 100,000) from 22 September 2020 to 28 February 2021 
are predicted to occur in Rhode Island (605.1 (428.1–769.0) deaths 
per 100,000)), Massachusetts (561.4 (315.8–901.3) deaths per 
100,000), Connecticut (547.8 (209.3–978.2) deaths per 100,000) and 
Pennsylvania (541.1 (294.7–778.3) deaths per 100,000; Extended 
Data Fig. 4 and Table 1). By the US national election on 3 November 
2020, a total of five states are predicted to exceed a threshold of daily 
deaths of 8 deaths per million (Fig. 3), and a total of 40 states would 
have an Reffective greater than one (Fig. 4). By 28 February 2021, a total 
of 45 states are predicted to exceed that threshold under this sce-
nario, and all states would reach an Reffective of greater than one before 
the end of February 2021 (Table 1 and Fig. 4). This scenario results 
in an estimated total of 152,775,751 (115,305,817–199,130,145) 
infections across the United States by the end of February 2021 
(Extended Data Fig. 5). The highest infection levels in states relative 
to their population size are estimated to occur in Arizona (71.2% 
(61.5–80.8%) infected), New Jersey (68.2% (47.5–84.1%) infected) 
and Rhode Island (65.5% (50.0–79.7%) infected; Extended Data 
Fig. 6). Further results for projected hospital resource-use needs are 
presented in Extended Data Figs. 2 and 3, and forecasted infections 
under this scenario are available in Extended Data Figs. 7 and 8.

When we modeled the future course of the epidemic assum-
ing that states will once again shut down social interaction and 
economic activity when daily deaths reach a threshold of 8 deaths 
per million (plausible reference scenario), the projected cumula-
tive death toll across the United States is forecast to be lower than 
that under the mandate-easing scenario, with 511,373 (469,578–
578,347) deaths by 28 February 2021 (Fig. 2). Thus, across the 45 
states that are projected to exceed daily deaths of 8 deaths per mil-
lion under the mandate-easing scenario by the end of February 2021 
(Table 1), the reinstatement of SDMs under the plausible reference 
scenario could save 541,738 (281,283–886,373) lives. This scenario 
also results in 80,798,356 (47,333,280–121,526,052) fewer estimated 
infections across the United States by the end of February 2021 
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(Extended Data Fig. 5) compared with the mandate-easing scenario, 
with the highest rates of infections estimated to occur in Arizona 
(46.2% (38.8–55.9%) infected), New Jersey (41.1% (35.1–50.8%) 
infected) and Louisiana (33.3% (29.9–37.4%) infected) (Extended 
Data Fig. 6). As with the previous scenario, even with the reinstate-
ment of SDMs when daily deaths exceed 8 per million population, 
all states would reach an Reffective greater than one before the end of 
the February 2021 (Fig. 4 and Table 1). Further results for hospital 
resource-use needs are presented in Extended Data Figs. 2 and 3 

and forecast infections by state under this scenario are presented in 
Extended Data Figs. 7 and 8.

The universal mask-use scenario where the population of each 
state was assumed to adopt and maintain a 95% level of mask use 
in public (Methods)—in addition to states reinstating SDM if a 
threshold daily death rate of 8 deaths per million population was 
exceeded—resulted in the lowest projected cumulative death toll 
across US states, with a total of 381,798 (336,479–421,953) cumu-
lative deaths by 28 February 2021 (Fig. 2 and Table 1). Under this 
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scenario, on 3 November 2020, no states will have exceeded a daily 
death rate of 8 deaths per million (Fig. 3), although 47 states are 
still estimated to exceed an Reffective of 1.0 at some point in the pro-
jected period, and three states would have an Reffective greater than 

1.0 on 28 February 2021 (Fig. 4). Through the end of the February 
2021, the daily death rate is forecast to exceed 8 deaths per million  
in nine states (California, Colorado, Massachusetts, New Jersey,  
New Mexico, North Carolina, North Dakota, Pennsylvania and 
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Rhode Island; Table 1) saving 129,574 (85,284–170,867) lives  
when compared to the plausible reference scenario and 671,407 
(376,883–1,046,250) lives when compared to the mandate-easing 
scenario. Universal mask use combined with threshold-driven 

implementation of SDM results in 17,408,352 (11,278,442–
23,291,371) fewer estimated infections across the United States by 
the end of February 2021 compared with the plausible reference 
scenario, and 98,106,708 (59,908,817–142,318,907) fewer estimated 
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infections compared to the mandate-easing scenario (Extended 
Data Fig. 5). The highest infection rates under the 95% mask-use 
scenario are estimated to occur in Arizona (38.1% (28.0–43.3%) 
infected), New Jersey (35.7% (30.2–41.0%) infected) and Delaware 
(28.2% (23.3–31.1%) infected) (Extended Data Fig. 6). Further 
results for hospital resource-use needs are presented in Extended 

Data Figs. 2 and 3, and forecast infections under this scenario are 
available in Extended Data Figs. 7 and 8.

To provide additional policy nuance to the three boundary sce-
narios, we also examined plausible reference + 85% mask use and 
mandate-easing + universal mask-use scenarios (Figs. 2–4, Extended 
Data Figs. 1 and 4–8 and Supplementary Information). In brief, 
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the plausible reference + 85% mask-use scenario saves a consider-
able number of lives at the national level (95,814 (60,731–133,077) 
over and above the reference scenario, but is not as effective as the 
plausible reference + universal mask-use scenario. Although not 
surprising, this does help to confirm that any additional coverage  
that can be achieved through mask use will save lives. The mandate- 
easing + universal mask-use scenario reveals substantial lives saved 
(20,936 (0–102,507)) over the plausible reference scenario, even 
in the absence of reinstatement of SDMs at the daily threshold of 
8 deaths per one million population, underscoring the potential 
effects that increased levels of mask adoption could have while 
minimizing the deleterious economic repercussions of other NPIs.

Two out-of-sample (OOS) model assessments were conducted 
for two different time intervals of the modeling period to investi-
gate the strength of evidence behind each of the covariate drivers of 
SARS-CoV-2 transmission intensity. Full details of these sensitiv-
ity analyses are shown at the national level in the Supplementary 
Information. These analyses indicate that care needs to be taken in 
interpreting the strength of these relationships, which show vari-
ability in time and space. For example, our OOS tests indicate that 
over some time frames, pneumonia mortality seasonality was either 
the most or least useful covariate, despite in-sample tests having 
consistently shown this to be an important predictor. Since pneu-
monia seasonality is one of the leading covariates driving expected 
increases in COVID-19 deaths in the fall and winter, it is impor-
tant to be aware of this uncertainty when assessing the forecasts. It 
is critical to note, however, that even when we completely remove 
this covariate from our model, sensitivity analyses show a forecast of 
over 100,000 deaths from COVID-19 by the end of winter (101,615 
(81,479–126,295) additional deaths; Supplementary Information). 
Since this covariate complexity makes it difficult to generalize the 
effects of this uncertainty, we provide extensive diagnostics for the 
covariate relationships in each of the states with examples of how to 
interpret these findings (Supplementary Information).

Model performance. The models presented here have been evalu-
ated for OOS predictive validity using standard tests and metrics in 
an ongoing fashion and in a publicly available framework21. These 
SEIR models have consistently produced among the most accu-
rate forecasts observed across models compared21. For example, 
for models released in June, the Institute for Health Metrics and 
Evaluation (IHME) SEIR model had the lowest median absolute 
percentage error (MAPE) at 10 weeks of forecasting at 20.2%, com-
pared to 32.6% across models. We have included new sets of model 
and covariate diagnostics with worked descriptions for the most 
populous states (Supplementary Information and Supplementary 
Data 1–4) for transparent evaluation of our model performance. 
We emphasize that these are forecasts of possible futures, which are 
subject to many model assumptions and sources of data variability.

Discussion
We have delimited three possible future scenarios of the course of the  
COVID-19 epidemic in the United States, at the state level—mandate- 
easing, plausible reference and universal mask-use scenarios— 
to help frame and inform a national discussion on what actions 
could be taken during the fall of 2020 and the public health, eco-
nomic and political influences that these decisions will have for the 
rest of the winter (here defined as the end of February 2021). To help 
us understand the policy nuances of these boundary scenarios, two 
derivative scenarios (plausible reference + 85% mask use and man-
date easing + universal mask use) were also explored. In addition, 
selected sensitivity analyses were conducted for the covariates used 
in the models, so that their influence could be better understood.

Under all scenarios evaluated here, the United States is likely 
to face a continued public health challenge from the COVID-19 
pandemic through 28 February 2021 and beyond, with populous 

states in particular potentially facing high levels of illness, deaths 
and ICU demands as a result of the disease. The implementation 
of SDMs as soon as individual states reach a threshold of 8 daily 
deaths per million could dramatically ameliorate the effects of the 
disease; achieving near-universal mask use could delay, or in many 
states, possibly prevent, this threshold from being reached and has 
the potential to save the most lives while minimizing damage to the 
economy. National and state-level decision-makers can use these 
forecasts of the potential health benefits of available NPIs, alongside 
considerations of economic and other social costs, to make more 
informed decisions on how to confront the COVID-19 pandemic at 
the local level. Our findings indicate that universal mask use, a rela-
tively affordable and low-impact intervention, has the potential to 
serve as a priority life-saving strategy in all US states. Our derivative 
scenarios suggest that this likely remains true at sub-universal levels 
of mask coverage and at universal mask coverage in the absence of 
any other NPIs.

New epidemics, resurgences and second waves are not inevitable. 
Several countries, such as South Korea, Germany and New Zealand 
have sustained reductions in COVID-19 cases over time (https://
covid19.healthdata.org/). Early indications that seasonality may play 
a role in transmission, with increased spread during colder winter 
months as is seen with other respiratory viruses29–32, highlight the 
importance of taking action both before and during the pneumonia 
season in the United States. While it is yet unclear if COVID-19 sea-
sonality will follow the pattern of related coronaviruses32 and paral-
lel that of pneumonia seasonality, the sometimes strong associations 
observed in these forecasts indicate that increased government vigi-
lance is prudent. Moreover, given the potential sensitivity of the model 
to effects of seasonality, a substantial winter effect cannot be ruled out. 
This effect would be against a background of more widespread and 
prevalent COVID-19 infection than experienced in the first wave.

Mask use has emerged as a contentious issue in the United States 
with only 49% of US residents reporting that they ‘always’ wear a mask 
in public as of 21 September 2020 (https://covid19.healthdata.org/). 
Regardless, toward the end of 2020, masks could help to contain a 
second wave of resurgence while reducing the need for frequent and 
widespread implementation of SDMs. Although 95% mask use across 
the population may seem a high threshold to achieve and maintain, 
on a neighborhood scale this level has already been observed in 
areas of New York (https://www.nytimes.com/2020/08/20/nyregion/
nyc-face-masks.html); and on a state level, reported mask use has 
exceeded 60% in Virginia, Florida and California (see Supplementary 
Information for related methods). In countries where mask use has 
been widely adopted, such as Singapore, South Korea, Hong Kong, 
Japan and Iceland among others, transmission has declined and, in 
some cases, halted (https://covid19.healthdata.org/). These exam-
ples serve as additional natural experiments33 of the likely effects of 
masks and support the assumptions and findings from the universal 
mask-use scenario in our study. The potential life-saving benefit of 
increasing mask use in the coming fall and winter cannot be over-
stated. It is likely that US residents will need to choose between higher 
levels of mask use or risk the frequent redeployment of more strin-
gent and economically damaging SDMs; or, in the absence of either 
measure, face a reality of a rising death toll34. Longer term, the future 
of COVID-19 in the United States will be determined by the deploy-
ment of an efficacious vaccine and the evolution of herd immunity35.

This work represents the outputs of a class of models that aim to 
abstract the disease transmission process in populations to a level 
that is tractable for understanding, and, in this case, that can be used 
for prediction. A clear limitation of any such modeling exercise is 
that it will be constrained by data (disease and relevant covari-
ates), the model of understanding developed and the length of time 
available to the model to learn/train the important dynamics. We 
have therefore tried to benchmark our model against alternative  
models of the COVID-19 pandemic and fully document our  
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predictive performance with a range of measures21. In addition, we 
have provided all the data and model code to enable full reproduc-
ibility and increased transparency, provided sensitivity analyses 
to some of our core assumptions; and presented a range of likely 
futures36 in the form of mandate-easing, plausible reference and 
universal mask-use scenarios (as well as two derivative scenarios 
thereof) for decision-makers to review. In addition, triangulation of  
other outputs of the SEIR model, such as the proportion of the pop-
ulation that are affected, are also provided and tested against inde-
pendent data, in this case seroprevalence surveys (Extended Data  
Fig. 9). Finally, because uncertainty compounds with increased distance  
into the future predicted, the data, model and its assumptions 
will be iteratively updated as the pandemic continues to unfold 
(https://www.latimes.com/opinion/story/2020-07-10/covid- 
forecast-deaths-ihme-washington/).

We wish to reiterate to decision-makers that there are a mul-
titude of limitations in any modeling study of this type26,27; an 
extended description of the limitations specific to this study is pro-
vided (Methods). Specifically, (1) these models are approximations 
of real-world scenarios, and we have simplified many aspects of the 
epidemiological process of disease transmission to make these mod-
els computationally feasible; (2) these models are driven strongly by 
mortality data with all of its fidelity and recording imperfections; 
(3) these models are also informed by a wealth of other data types 
that each have differential availability, as well as detection and mea-
surement bias issues for which we can never fully calibrate; (4) these 
models make particular assumptions about covariates, including 
seasonality, that while evidence-based and explicitly stated, are sub-
ject to sensitivity analyses because their effects could be substantial; 
and (5) our knowledge of this dynamic pandemic improves daily, so 
there should be no expectation that this modeling framework is final 
or that the data that drive it are fixed. While acknowledging all of 
these policy-relevant limitations, we take care to note that our pub-
licly released model comparison framework21 supports the robust, 
iterative and objective evaluation of our modeling approach. This 
is especially valuable as the complexities of the pandemic response 
require that our modeling efforts remain agile to epidemiological 
and societal developments and that we continue to reevaluate and 
post updates weekly (https://covid19.healthdata.org/). Finally, it is 
especially important for decision-makers that we emphasize that we 
are not forecasting a future, but rather a range of outcomes that we 
believe are more probable given the scenarios tested, based on the 
data observed so far and our model assumptions. These forecasts 
are best considered as helpful guides, rather than definitive maps.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41591-020-1132-9.
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Methods
Our analysis strategy supports two main and interconnected objectives: (1) to 
generate forecasts of COVID-19 deaths, infections and hospital resource needs 
for all US states; and (2) to explore alternative scenarios on the basis of changes 
in state-enforced SDMs or population-level mask use. The modeling approach to 
achieve this is summarized in the Supplementary Information and can be divided 
into four stages: (1) identification and processing of COVID-19 data, (2) exploration 
and selection of key drivers or covariates, (3) modeling deaths and cases across 
three boundary scenarios of SDMs in US states using an SEIR framework and (4) 
modeling health service utilization as a function of forecast infections and deaths 
within those scenarios. This study complies with the Guidelines for Accurate and 
Transparent Health Estimates Reporting statement (Supplementary Information).

Data identification and processing. IHME forecasts include data from local 
and national governments, hospital networks and associations, the World Health 
Organization, third-party aggregators and a range of other sources. Data sources 
and corrections are described in detail in the Supplementary Information and in 
the data availability statement. Briefly, daily confirmed case and death numbers 
due to COVID-19 are collated from the Johns Hopkins University data repository; 
we supplement and correct this dataset as needed to improve the accuracy of our 
projections and adjust for reporting-day biases (Supplementary Information). 
Testing data are obtained from Our World in Data (https://ourworldindata.org/), 
The COVID Tracking Project (https://covidtracking.com/) and supplemented with 
data from additional government websites (Supplementary Information). Social 
distancing data are obtained from a number of different official and open sources, 
which vary by state (Supplementary Information). Mobility data are obtained from 
Facebook Data for Good (https://dataforgood.fb.com/docs/covid19/), Google 
(https://www.google.com/covid19/mobility/), SafeGraph (https://www.safegraph.
com/dashboard/covid19-shelter-in-place/) and Descartes Labs (https://www.
descarteslabs.com/mobility/; Supplementary Information). Mask-use data are 
obtained from the Facebook Global Symptom Survey (in collaboration with the 
University of Maryland Social Data Science Center), the Kaiser Family Foundation, 
YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/
covid-19/) and PREMISE (https://www.premise.com/covid-19/; Supplementary 
Information). Specific sources for data on licensed bed and ICU capacity and average 
annual utilization in the United States are detailed in the Supplementary Information.

Before modeling, observed cumulative deaths are smoothed using a 
spline-based smoothing algorithm with randomly placed knots37. Uncertainty 
is derived from bootstrapping and resampling of the observed deaths. The time 
series of case data is used as a leading indicator of death based on an infection 
fatality ratio (IFR) and a lag from infection to death. These smoothed estimates 
of observed deaths by location are then used to create estimated infections based 
on an age distribution of infections and on age-specific IFRs. The age-specific 
infections were collapsed into total infections by day and state and used as 
data inputs in the SEIR model. Detailed descriptions of data smoothing and 
transformation steps are provided in the Supplementary Information.

Covariate selection. Covariates for the compartmental transmission SEIR 
model are predictors of the β parameter in the model that affects the transition 
from the susceptible to exposed state; specifically, β represents the contact 
rate multiplied by the probability of transmission per contact. Covariates 
were evaluated on the basis of biological plausibility and on the impact on the 
results of the SEIR model. Given limited empirical evidence of population-level 
predictors of SARS-CoV-2 transmission, biologically plausible predictors of 
pneumonia such as population density (percentage of the population living in 
areas with more than 1,000 individuals per square kilometer), tobacco smoking 
prevalence, population-weighted elevation, lower respiratory infection mortality 
rate and particulate matter air pollution were considered. These covariates are 
representative at a population level and are time invariant. Location-specific 
estimates for these covariates are derived from the Global Burden of Disease Study 
2019 (refs. 38–40). Time-varying covariates include pneumonia excess mortality 
seasonality, diagnostic tests administered per capita, population-level mobility and 
personal mask use. These are described below.

Pneumonia seasonality. We used weekly pneumonia mortality data from the 
National Center for Health Statistics Mortality Surveillance System (https://gis.
cdc.gov/grasp/fluview/mortality.html) from 2013 to 2019 by US state. Pneumonia 
deaths included all deaths classified by the full range of the International 
Classification of Disease codes in J12–J18.9. We pooled data over available years 
for each state and found the weekly deviation from the annual, state-specific mean 
mortality due to pneumonia. We then fit a seasonal pattern using a Bayesian 
meta-regression model with a flexible spline and assumed annual periodicity 
(Supplementary Information). For locations outside the United States, we used 
vital registration data where available. Locations without vital registration data had 
weekly pneumonia seasonality predicted based on latitude from a model pooling 
all available data (Supplementary Information).

Testing per capita. We considered diagnostic testing for active SARS-CoV-2 
infections as a predictor of the ability for a state to identify and isolate active 

infections. We assumed that higher rates of testing were negatively associated with 
SARS-CoV-2 transmission. Our primary sources for US testing data were compiled 
by the COVID Tracking Project (Supplementary Information). Unless testing 
data existed before the first confirmed case in a state, we assumed that testing was 
non zero after the date of the first confirmed case. Before producing predictions 
of testing per capita, we smoothed the input data by using the same smoothing 
algorithm used for smoothing daily death data before modeling (previously 
described). Testing per capita projections for unobserved future days were based 
on linearly extrapolating the mean day-over-day difference in daily tests per capita 
for each location. We put an upper limit on diagnostic tests per capita of 500 per 
100,000 based on the highest observed rates in June 2020.

Social distancing mandates. SDMs were not used as direct covariates in the 
transmission model. Rather, SDMs were used to predict population mobility (see 
below), which was subsequently used as a covariate in the transmission model. We 
collected the dates of state-issued mandates enforcing social distancing, as well as 
the planned or actual removal of these mandates. The measures that we included 
in our model were: (1) severe travel restrictions, (2) closing of public educational 
facilities, (3) closure of nonessential businesses, (4) stay-at-home orders and  
(5) restrictions on gathering size. Generally, these came from state government 
official orders or press releases.

To determine the expected change in mobility due to SDMs, we used a 
Bayesian, hierarchical meta-regression model with random effects by location on 
the composite mobility indicator to estimate the effects of social distancing policies 
on changes in mobility (Supplementary Information).

Mobility. We used four data sources on human mobility to construct a composite 
mobility indicator. Those sources were Facebook, Google, SafeGraph and Descartes 
Labs (Supplementary Information). Each source takes a slightly different approach 
to capturing mobility, so before constructing a composite mobility indicator, we 
standardized these different data sources (Supplementary Information). Briefly, 
this first involved determining the change in a baseline level of mobility for each 
location by data source. Then, we determined a location-specific median ratio 
of change in mobility for each pairwise comparison of mobility sources, using 
Google as a reference and adjusting the other sources by that ratio. The time series 
for mobility was estimated using a Gaussian process regression model using the 
standardized data sources to get a composite indicator for change in mobility for 
each location day.

We calculated the residuals between our predicted composite mobility time 
series and input composite time series, and then applied a first-order random walk 
to the residuals. The random walk was used to predict residuals from 1 January 
2020 to 1 January 2021, which were then added to the mobility predictions to 
produce a final time series with uncertainty: ‘past’ changes in mobility from  
1 January 2020 to 28 September 2020 and projected mobility from 28 September 
2020 to 1 January 2021.

Masks. We performed a meta-analysis of 40 peer-reviewed scientific studies in 
an assessment of mask effectiveness for preventing respiratory viral infections 
(Supplementary Information). The studies were extracted from a preprint 
publication24. In addition, we considered all articles from a second meta-analysis23 
and one supplemental publication41. These studies included both persons working 
in health care and the general population, especially family members of those 
with known infections. The studies indicate overall reductions in infections due to 
masks preventing exhalation of respiratory droplets containing viruses, as well as 
some prevention of inhalation by those uninfected. The resulting meta-regression 
calculated log-transformed relative risks and corresponding log-transformed 
standard errors based on raw counts and used a continuity correction for studies 
with zero counts in the raw data (0.001). We included additional specifications and 
characteristics to account for differences in the characteristics of individual studies 
and to identify important factors impacting mask effectiveness (Supplementary 
Information).

We used MR-BRT (meta-regression, Bayesian, regularized and trimmed), a 
meta-regression tool developed at the Institute for Health Metrics and Evaluation 
(Supplementary Information), to perform a meta-analysis that considered 
the various characteristics of each study. We accounted for between-study 
heterogeneity and quantified remaining between-study heterogeneity into the width 
of the UI. We also performed various sensitivity analyses to verify the robustness of 
the modeled estimates and found that the estimate of the effectiveness of mask use 
did not change significantly when we explored four alternative analyses, including 
changing the continuity correction assumption, using odds ratio versus relative 
risk from published studies, using a fixed-effects versus a mixed-effects model and 
including studies without information on covariates.

We estimated the proportion of people who self-reported always wearing a 
face mask when outside in public for both US and global locations using data 
from PREMISE (US), the Kaiser Family Foundation (US), YouGov (non-US) and 
Facebook (non-US) surveys (Supplementary Information). We used the same 
smoothing model as for COVID-19 deaths and testing per capita to produce 
estimates of observed mask use. This smoothing process averaged each data point 
with its neighbors. The level of mask use starting on 21 September 2020 (the last 
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day of processed and analyzed data) was assumed to be flat. Among states without 
state-specific data, a within-the-US regional average was used.

Deterministic modeling framework. Model specification is summarized in a 
schematic with additional details provided in the Supplementary Information. To 
fit and predict disease transmission dynamics, we include a SEIR component in our 
multistage model. In particular, the population of each location is tracked through 
the following system of differential equations:

dS
dt ¼ �β tð Þ S I1þI2ð Þα

N

dE
dt ¼ β tð Þ S I1þI2ð Þα

N � σE

dI1
dt ¼ σE � γ1I1

dI2
dt ¼ γ1I1 � γ2I2

dR
dt ¼ γ2I2

where α represents a mixing coefficient to account for imperfect mixing within 
each location, σ is the rate at which infected individuals become infectious, γ1 is  
the rate at which infectious people transition out of the presymptomatic phase and 
γ2 is the rate at which individuals recover. This model does not distinguish between 
symptomatic and asymptomatic infections but has two infectious compartments  
(I1 and I2) to allow for interventions that would avoid focus on those who could not 
be symptomatic; I1 is thus the presymptomatic compartment.

Using the next-generation matrix approach, we can directly calculate both the 
basic reproductive number under control (Rc(t)) and the effective reproductive 
number (Reffective(t)) as (Supplementary Information):

Rc tð Þ ¼ α ´ β tð Þ ´ I1 tð Þ þ I2 tð Þð Þα�1 ´ 1
γ1
þ 1

γ2

� �

I

 and

Reffective tð Þ ¼ Rc tð Þ ´ S tð Þ
N

IBy allowing β(t) to vary in time, our model is able to account for increases in 
transmission intensity as human behavior shifts over time (for example, changes in 
mobility, adding or removing SDMs and changes in population mask use). Briefly, 
we combine data on cases (correcting for trends in testing), hospitalizations and 
deaths into a distribution of trends in daily deaths.

To fit this model, we resampled 1,000 draws of daily deaths from this distribution 
for each state (Supplementary Information). Using an estimated IFR by age and the 
distribution of time from infection to death (Supplementary Information), we then 
used the daily deaths to generate 1,000 distributions of estimated infections by day 
from 10 January to 21 September 2020. We then fit the rates at which infectious 
individuals may come into contact and infect susceptible individuals (denoted as 
β(t)) as a function of a number of predictors that affect transmission. Our modeling 
approach acts across the overall population (that is, no assumed age structure for 
transmission dynamics), and each location is modeled independently of the others 
(that is, we do not account for potential movement between locations).

We detail the SEIR fitting algorithm in the Supplementary Information. Briefly, 
for each draw, we first fit a smooth curve to our estimates of daily new infections. 
Then, sampling γ2, σ and α from defined ranges from the literature (Supplementary 
Information) and using γ1 ¼ 1

2
I

, we then sequentially fit the E, I1, I2 and R 
components in the past. We then algebraically solve the above system of differential 
equations for β(t).

The next stage of our model fit relationships between past changes in β(t) and 
covariates described above: mobility, testing, masks, pneumonia seasonality and 
others. The time-varying covariates were forecast from 28 September to 28 February 
2021 (Supplementary Information). The fitted regression was then used to estimate 
future transmission intensity βpred(t). The final future transmission intensity is then 
an adjusted version of βpred(t) based on the average fit over the recent past (where the 
window of averaging varies by draw from 2 to 4 weeks; Supplementary Information).

Finally, we used the future estimated transmission intensity to predict future 
transmission (using the same parameter values for all other SEIR parameters for 
each draw). In a reversal of the translation of deaths into infections, we then used 
the estimated daily new infections to calculate estimated daily deaths (again using 
the location-specific IFR). We also used the estimated trajectories of each SEIR 
compartment to calculate Rc and Reffective.

A final step to take predicted infections and deaths and a hospital-use 
microsimulation to estimate hospital resource need for each US state is described 
in the Supplementary Information and the results are presented online (https://
covid19.healthdata.org/).

Forecasts/scenarios. Policy responses to COVID-19 can be supported by 
the evaluation of the impacts of various scenarios of those options, against a 
background of a business-as-usual assumption, to explore fully the potential 
impact of policy levers available. Additional details are available in the 
Supplementary Information.

We estimate the trajectory of the epidemic by state under a mandate-easing 
scenario that models what would happen in each state if the current pattern of 
easing SDMs continues and new mandates are not implemented. This should be 

thought of as a worst-case scenario where, regardless of how high the daily death 
rate becomes, SDMs will not be reintroduced and behavior (including population 
mobility and mask use) will not vary before 28 February 2021. In locations where 
the number of cases is rising, this leads to very high numbers of cases by the end 
of the year.

As a more plausible scenario, we use the observed experience from the first 
phase of the pandemic to predict the likely response of state and local governments 
during the second phase. This plausible reference scenario assumes that in 
each location the trend of easing SDMs will continue at its current trajectory 
until the daily death rate reaches a threshold of 8 deaths per million. If the daily 
death rate in a location exceeds that threshold, we assume that SDMs will be 
reintroduced for a 6-week period. The choice of threshold (of a daily rate of 8 
deaths per million) represents the 90th percentile of the distribution of daily death 
rate at which US states implemented their mandates during the first months of 
the COVID-19 pandemic. We selected the 90th percentile rather than the 50th 
percentile to capture an anticipated increased reluctance from governments to 
reinstate mandates because of the economic effects of the first set of mandates. In 
locations that do not exceed the threshold of a daily death rate of 8 per million, the 
projection is based on the covariates in the model and the forecasts for these to 28 
February 2021. In locations where the daily death rate exceeded 8 per million at the 
time of running our final model (21 September 2020), we assumed that mandates 
would be introduced within 7 days.

The scenario of universal mask use models what would happen if 95% of the 
population in each state always wore a mask when they were in public. This value 
was chosen to represent the highest observed rate of mask use in the world so far 
during the COVID-19 pandemic (Supplementary Information). In this scenario, 
we also assumed that if the daily death rate in a state exceeds 8 deaths per million, 
SDMs will be reintroduced for a 6-week period.

Two additional, derivative scenarios were included to assist understanding 
and policy resolution of these main framework scenarios: a less comprehensive 
mask-wearing scenario of 85% public use of masks and a scenario of universal 
mask use in the absence of any additional NPIs. The less comprehensive 
mask-wearing scenario evaluated what would happen if 85% of the population 
in each state always wore a mask when they were in public. As with the universal 
mask-use scenario, we also assumed that if the daily death rate in a state exceeds 
8 deaths per million, SDMs will be reintroduced for a 6-week period. For 
completeness, we also evaluated universal mask use by 95% of the population in a 
scenario that assumes no implementation of other NPIs at any threshold value of 
daily deaths—the results from this scenario, which did not differ notably from the 
more probable version where states respond to rising numbers of daily COVID-19 
deaths by reinstating SDM, are provided in the Supplementary Information and 
Figs. 2–4. SEIR model vetting plots for scenarios of 95% mask use with mandates 
(Supplementary Data 1), 95% mask use without mandates (Supplementary Data 2)  
and 85% mask use with mandates (Supplementary Data 3), as well as detailed 
regression diagnostics (Supplementary Data 4) and the spatial distribution of select 
covariates (Supplementary Data 5) are available in the Supporting Information. All 
scenarios assume an increase in mobility associated with the opening of schools 
across the country.

Model validation. OOS predictive performance for IHME SEIR models has 
been assessed against subsequently observed trends in an ongoing fashion and 
compared to other publicly available COVID-19 mortality forecasting models 
in a publicly available framework21. The IHME SEIR model described here has 
consistently demonstrated high accuracy, as measured by a low MAPE, when 
compared to models from other groups. For example, among models released in 
June, at 10 weeks of extrapolation, the IHME SEIR model had the lowest MAPE of 
any observed forecasting group at 20.2%, compared to an average of 32.6% across 
groups. Numerous other aspects of predictive performance are assessed in our 
publicly available framework21.

The increasing number of population-based serology surveys conducted 
also provides a unique opportunity to cross-validate our forecasts with modeled 
epidemiological outcomes. In Extended Data Fig. 9, we compare these serology 
surveys (such as the Spanish ENE-COVID study42) to our estimated population 
seropositivity, time indexed to the date that the survey was conducted. In general, 
across the varied locations that have been reported globally, we note a high degree 
of agreement between the estimated and surveyed seropositivity. As more serology 
studies are conducted and published, especially in the United States, this will allow 
an ongoing and iterative assessment of model validity. Two sensitivity analyses 
were conducted; the first assessed the importance of specific model assumptions 
on OOS predictive validity, while the second assessed the robustness of our 
conclusions to these same model assumptions (Supplementary Information).

Limitations. Epidemics progress based on complex nonlinear and dynamic 
biological and social processes that are difficult to observe directly and at scale. 
Mechanistic models of epidemics, formulated either as ordinary differential 
equations or as individual-based simulation models, are a useful tool for 
conceptualizing, analyzing or forecasting the time course of epidemics. In the 
COVID-19 epidemic, effective policies and the responses to those policies have 
changed the conditions supporting transmission from one week to the next, 
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with the effects of policies realized typically after a variable time lag. Each model 
approximates an epidemic, and whether used to understand, forecast or advise, 
there are limitations on the quality and availability of the data used to inform it 
and the simplifications chosen in model specification. It is unreasonable to expect 
any model to do everything well, so each model makes compromises to serve a 
purpose, while maintaining computational tractability.

One of the largest determinants of the quality of a model is the corresponding 
quality of the input data. Our model is anchored to daily COVID-19-related 
deaths, as opposed to daily COVID-19 case counts, due to the assumption that 
death counts are a less biased estimate of true COVID-19-related deaths than 
COVID-19 case counts are of the true number of SARS-CoV-2 infections. 
Numerous biases such as treatment-seeking behavior, testing protocols (such as 
only testing those who have traveled abroad) and differential access to care greatly 
influence the utility of case count data. Moreover, there is growing evidence that 
inapparent and asymptomatic individuals are infectious, as well as individuals 
who eventually become symptomatic and are infectious before the onset of any 
symptoms. As such, our primary input data for our model are counts of deaths; 
death data can likewise be fallible, however, and where available, we combine death 
data, case data and hospitalization data to estimate COVID-19 deaths.

Beyond the basic input data, a large number of other data sources with their 
own potential biases are incorporated into our model. Testing, mobility and mask 
use are all imperfectly measured and may or may not be representative of the 
practices of those that are susceptible and/or infectious. Moreover, any forecast of 
the patterns of these covariates is associated with a large number of assumptions 
(Supplementary Information), and as such, care must be taken in the interpretation 
of estimates farther into the future, as the uncertainty associated with the 
numerous submodels that go into these estimates increases in time. Moreover, 
although our time-invariant covariates are simpler to estimate, some of them may 
be more associated with disease outcome than transmission potential, and thus 
their impact on the model may be more muted.

For practical purposes, our transmission model has made a large number 
of simplifying assumptions. Key among these is the exclusion of movement 
between locations (for example, importation) and the absence of age structure 
and mixing within location (for example, we assume a well-mixed population). 
It is clear that there are large, super-spreader-like events that have occurred 
throughout the COVID-19 pandemic, and our current model is unable to fully 
capture these dynamics. Another important assumption to note is that of the 
relationship between pneumonia seasonality and SARS-CoV-2 seasonality. To 
date, across both the Northern and Southern Hemispheres, there is a strong 
association between COVID-19 cases and deaths and general seasonal patterns 
of pneumonia deaths (Supplementary Information). Our forecasts to the end of 
February 2021 are immensely influenced by the assumption that this relationship 
will maintain throughout the year and that SARS-CoV-2 seasonality will be well 
approximated by pneumonia seasonality. While we assess this assumption to the 
extent possible (Supplementary Information), we have not yet experienced a full 
year of SARS-CoV-2 transmission, and as such cannot yet know if this assumption 
is valid. Additionally, our model attempts to account for some of the associated 
uncertainties in the process but does not fully capture all levels of uncertainty. 
Future iterations should track uncertainties that arise from more complex 
processes such as demographic stochasticity. There is also uncertainty (and 
unidentifiability) surrounding a number of the parameters of the transmission 
model. Here we have chosen to incorporate this lack of knowledge by drawing 
key transmission parameters from plausible distributions and then presenting 
the average result across these potential realities. As more information becomes 
available, we hope to tune these parameters to each location in turn.

Finally, the model presented herein is not the first model our team has 
developed to predict current and future transmission of SARS-CoV-2. As the 
outbreak has progressed, we have attempted to adapt our modeling framework 
to both the changing epidemiological landscape, as well as the increase in data 
that could be useful to inform a model. Changes in the dynamics of the outbreak 
overwhelmed both the initial purpose and some key assumptions of our first 
model, requiring evolution in our approach. While the current SEIR formulation 
is a more flexible framework (and thus less likely to need complete reconfiguration 
as the outbreak progresses further), we fully expect the need to adapt our model to 
accommodate future shifts in patterns of SARS-CoV-2 transmission. Incorporating 
movement within and without locations is one example, but resolving our model 
at finer spatial scales, as well as accounting for differential exposure and treatment 
rates across sexes and races are other dimensions of transmission modeling that we 
currently do not account for but expect will be necessary additions in the coming 
months. As we have done before, we will continually adapt, update and improve 
our model based on need and predictive validity.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Results specific to the model run for this publication are accessible for each state 
(http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios- 
2020-2021). The estimates viewable in our online tool (https://covid19.healthdata.

org/) will be iteratively updated as new data are incorporated and will ultimately 
supersede the results in this paper. The findings of this study are supported by 
data available in public online repositories and data that are available upon request 
from the data provider; non-publicly available data were used under license for 
the current study but can be made available with permission of the data provider; 
contact information is provided where applicable. Data citations for COVID-19 
metrics (cases, hospitalizations and deaths) include the COVID-19 Repository 
by the Center for Systems Science and Engineering at Johns Hopkins University 
(cases and deaths; https://github.com/CSSEGISandData/COVID-19) and the 
COVID Tracking Project (hospitalizations; https://covidtracking.com/data/api). 
State-level datasets were replaced in the following locations, using the following 
sources: Alaska hospitalizations from https://coronavirus-response-alaska-dhss.
hub.arcgis.com/; Delaware cases and deaths from https://www.dhss.delaware.gov/
dhss/dph/index.html; Hawaii cases and deaths from https://health.hawaii.gov/
coronavirusdisease2019/what-you-should-know/current-situation-in-hawaii/; 
Illinois cases and deaths from https://dph.illinois.gov/covid19/covid19-statistics; 
Indiana cases and deaths from https://www.coronavirus.in.gov/2393.htm;  
Kentucky cases and deaths from https://govstatus.egov.com/kycovid19; Maryland 
cases and deaths from https://coronavirus.maryland.gov/; Nebraska cases 
and deaths from http://dhhs.ne.gov/Pages/Coronavirus.aspx; New York cases 
and deaths from https://github.com/nychealth/coronavirus-data and https://
covid19tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-19 
Tracker-Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=n; North Carolina 
cases and deaths from https://covid19.ncdhhs.gov/dashboard; and Washington 
cases, hospitalizations and deaths from https://www.doh.wa.gov/Emergencies/
COVID19/DataDashboard. The timing of mandate implementation for each 
state was derived from a preprint study43 and supplemented with ad hoc 
additional resources available at http://ghdx.healthdata.org/record/ihme-data/
united-states-covid-19-scenarios-2020-2021. The mobility covariate was 
constructed using data from Google Community Mobility Reports (https://www.
google.com/covid19/mobility/); Facebook Data for Good Disease Prevention 
Maps (https://dataforgood.fb.com/tools/disease-prevention-maps/; with access 
coordinated via diseaseprevmaps@fb.com); SafeGraph Shelter in Place Index 
(https://www.safegraph.com/dashboard/covid19-shelter-in-place?s=US& 
d=09-13-2020&t=counties&m=index; with access coordinated through the 
SafeGraph COVID-19 Data Consortium via https://www.safegraph.com/covid-19- 
data-consortium/); and Descartes Labs (https://github.com/descarteslabs/
DL-COVID-19). The testing covariate was constructed using data from the 
COVID Tracking Project (https://covidtracking.com/data/api/). State-level 
datasets for the testing covariate were replaced in Washington, using https://
www.doh.wa.gov/Emergencies/COVID19/DataDashboard. Mask-use data were 
obtained from Premise COVID-19 Global Impact Survey (https://www.premise.
com/the-dos-and-donts-of-conducting-surveys-during-covid-19/; with access 
coordinated through info@premise.com); the Facebook (COVID) Symptom 
Survey (with access coordinated through University of Maryland Joint Program 
in Survey Methodology via admin-C19survey-fb@umd.edu); and the YouGov 
COVID-19 Behavioural Tracker Survey (https://github.com/YouGov-Data/
covid-19-tracker). Pneumonia seasonality estimates, particulate matter air 
pollution estimates, lower respiratory infection country-specific mortality 
rate estimates and smoking estimates were generated by the Global Burden of 
Disease study (http://ghdx.healthdata.org/record/ihme-data/united-states-covid-
19-scenarios-2020-2021/). Altitude was sourced from the National Oceanic and 
Atmospheric Administration National Centers for Environmental Information 
Global Land One-km Base Elevation Project (https://www.ngdc.noaa.gov/mgg/
topo/globe.html) and population data were obtained from WorldPop Population 
Counts (https://www.worldpop.org/project/list/). These sources are further 
detailed in the Supplementary Information44–51. Source data are provided with  
this paper.

Code availability
All code used for these analyses was custom created for this study and is publicly 
available online (https://github.com/ihmeuw/covid-model-seiir-pipeline/ and 
https://github.com/ihmeuw/covid-model-deaths-spline/).
Analyses were carried out using R version 3.6.1, Python 3.8 and R-INLA version 
20.01.29.9000. All maps presented in this study are generated by the authors using 
RStudio (R Version 3.6.3) and ArcGIS Desktop 10.6, and no permissions were 
required to publish them. Administrative boundaries were retrieved from the 
Database of Global Administrative Areas. Land cover was retrieved from the online 
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Extended Data Fig. 1 | Estimated daily COVID-19 death rate (per 100,000 population) by state for all five scenarios. The inset map displays the 
estimated daily deaths from COVID-19 death per 100,000 population by state on 28 February 2021. The light yellow background separates the observed 
and predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. Numbers are the means 
and uncertainty interval (UI) for the plausible reference scenario on dates highlighted.
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Extended Data Fig. 2 | Estimated total hospital beds needed for COVID-19 patients by state from 01 February 2020 to 28 February, 2021, under the 
plausible reference scenario. The inset map displays the estimated peak number of all COVID-19 beds above capacity by state between 22 September 
2020 and 28 February 2021. The light yellow background separates the observed and predicted part of the time series, before and after 21 September 
2020. The dashed vertical line identifies 03 November 2020. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on 
dates highlighted.
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Extended Data Fig. 3 | Estimated total ICU beds needed for COVID-19 patients by state from 01 February 2020 to 28 February 2021, under the plausible 
reference scenario. The inset map displays the estimated peak number of all ICU COVID-19 beds above capacity by state between 22 September 2020 
and 28 February 2021. The light yellow background separates the observed and predicted part of the time series, before and after 21 September 2020. 
The dashed vertical line identifies 03 November 2020. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 
highlighted.
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Extended Data Fig. 4 | Estimated cumulative deaths from COVID-19 per 100,000 population from 01 February 2020 to 28 February 2021, by state, for 
all five scenarios. The inset map displays the estimated cumulative deaths per 100,000 population under the plausible reference scenario on 28 February 
2021. The light yellow background separates the observed and predicted part of the time series, before and after 21 September 2020. The dashed vertical 
line identifies 03 November 2020. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The UIs 
are shown only for the plausible reference scenario.
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Extended Data Fig. 5 | Estimated cumulative infections from SARS-CoV-2 from 01 February 2020 to 28 February 2021, by state, for all five scenarios. 
The inset map displays the estimated cumulative infections under the plausible reference scenario on 28 February 2021. The light yellow background 
separates the observed and predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. 
Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The UIs are shown only for the plausible 
reference scenario.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NATURE MEDICInE

Extended Data Fig. 6 | Estimated cumulative SARS-CoV-2 infection rate (per 100,000 population) by state, for all five scenarios. The inset map displays 
the estimated cumulative infections from COVID-19 per 100,000 population by state on 28 February 2021. The light yellow background separates the 
observed and predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. Numbers 
are the means and uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The UIs are shown only for the plausible reference 
scenario.
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Extended Data Fig. 7 | Estimated daily infections from SARS-CoV-2 from 01 February 2020 to 28 February 2021 by state, for all five scenarios. The 
inset map displays the estimated daily infections under the plausible reference scenario on 28 February 2021. The light yellow background separates the 
observed and predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. Numbers 
are the means and uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The UIs are shown only for the plausible reference 
scenario.
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Extended Data Fig. 8 | Estimated daily SARS-CoV-2 infection rate (per 100,000 population) by state, for all five scenarios. The inset map displays the 
estimated daily infections from COVID-19 per 100,000 population by state on 28 February 2021. The light yellow background separates the observed and 
predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. Numbers are the means and 
uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The UIs are shown only for the plausible reference scenario.
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Extended Data Fig. 9 | Modeled SARS-CoV-2 infection prediction totals compared with survey-derived seroprevalence rates in select locations. 
Modeled SARS-CoV-2 infection prediction totals compared with survey-derived seroprevalence rates in select locations globally. The scatter plots show 
locations colour coded by country; horizontal bars are the 95% confidence interval in the modeled estimates. The inset violin plot of the measured 
seropositivity data show the predominantly low values seropositivity estimates (below 5%) recorded in this global sample.
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